Synthesis of Proazaphosphatranes and Their Applications in Organic Synthesis Philip Barnaba Kisanga Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Proazaphosphatranes and Their Applications in Organic Synthesis Philip Barnaba Kisanga Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Synthesis of proazaphosphatranes and their applications in organic synthesis Philip Barnaba Kisanga Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons, and the Organic Chemistry Commons Recommended Citation Kisanga, Philip Barnaba, "Synthesis of proazaphosphatranes and their applications in organic synthesis " (1999). Retrospective Theses and Dissertations. 12392. https://lib.dr.iastate.edu/rtd/12392 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct prirrt, cokxed or poor quality illustratkxis and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a riote will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6' x 9' t>lack arxj white photographic prints are available for any photographs or illustrations appearing in this copy for an additk)nal charge. Contact UMI directly to order. Bell & Howell lnformatk>n and Learning 300 North 2!eeb Road, Ann Arfaor, Ml 48106-1346 USA 800-521-0600 Synthesis of proazaphosphatranes and their applications in organic synthesis by Philip Bamaba Kisanga A dissertation presented to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Organic Chemistry Major Professor: Dr. John G. Verkade Iowa State University Ames, Iowa 1999 UMI Number: 9992455 UMI ® UMI Microform 9992455 Copyright 2001 by Bell & Howell Information and Leaming Company. AJI rights reserved. This microform edition is protected against unauthorized copying under Title 17. United States Code. Bell & Howell Information and Leaming Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the Doctoral dissertation of Philip Bamaba Kisanga has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For Major Program Signature was redacted for privacy. For th te College iii DEDICATION To my beloved wife Grace Kabang Mikaya, children, family and friends who stood firmly behind me throughout this endeavor. iv TABLE OF CONTENTS CHAPTER 1. GENERAL INTRODUCTION 1 CHAPTER 2. SYNTHESIS OF NEW PROAZAPHOSPHATRANES AND THEIR APPLICATION IN ORGANIC SYNTHESIS 8 CHAPTER 3. MODIFIED SYNTHESIS OF INTERMEDIATES LEADING TO P(/-PrNCH3CH,)3N 44 CHAPTER 4. P(RNCH2CH2)3N-CATALYZED a,P-DIMEIUZATION OF UNSATURATED MTRILES: FORMATION OF 2-ALKYLIDINE-3-ALKYLGLUTARONITRILES 49 CHAPTER 5. P(RNCHXH,)3N-CATALYZED SYNTHESIS OF (3-HYDROXY NITRILES 70 CHAPTER 6. P(RNCH2CH2)3N: AN EFFICIENT PROMOTER FOR THE NITROALDOL (HENRY) REACTION 96 CHAPTER 7. P(RNCH,CH,)3N: AN EFHCIENT PROMOTER FOR THE DIRECT SYNTESIS OF £-a,P-UNS ATURATED ESTERS AND THE SYNTHESIS OF 3-SUBSTITUTED COUMARINS 145 CHAPTERS. PCRNCHoCH.jsN: EFHCIENT 1,4-ADDITION CATALYSTS 196 CHAPTER 9. P(RNCH2CH2)3N-CATALYZED DIASTEREOSELECTIVE SYNTHESIS OF OXAZOLIDINES 220 CHAPTER 10. GENERAL CONCLUSIONS 236 ACKNOWLEDGEMENTS 1 CHAPTER 1 GENERAL INTRODUCTION Dissertation Organization This dissertation is made up of ten chapters. The first chapter deals with general introduction and a statement of the purpose of the project. The second chapter is dedicated to the synthesis of three new proazaphosphatranes, while the third chapter describes a modified synthesis of intermediates leading to the proazaphosphatrane P(/-PrNCH2CH2)3N. Subsequent chapters focus on applications of proazaphosphatranes in organic synthesis, namely in the synthesis of glutaronitriles, P-hydroxy nitriles, P-nitroalkanols, E-ajP-unsaturated esters and oxazolidines, as well as Michael addition reactions of alcohols, nitroalkanes and imines derived from a-amino esters. The last chapter contains general conclusions and a prospective outlook for the chemistry of proazaphosphatranes. Each of the chapters that describe research, are either papers published or papers still in progress, except for Chapter 3 which discloses a discovery to be submitted as a Record of Invention to Iowa State University Research Foundation (ISURF). 2 Introduction and Statement of the Project Proazaphosphatranes (1) constitute a class of compounds that is emerging as useful bases for important organic transformations. The strong basicity of these compounds has been attributed to their ability to form a transannular bond leading to the highly stable five-membered azaphosphatrane ring systems 2. The first proazaphosphatrane P(MeNCH2CH2)3N (la) was synthesized in our group by Lensink et al. in 1989.^ Following its synthesis, this compound was found to be a very strong base with a pK^ of about 26.8 in THF based on competitive deprotonation." However, the pK^ value extrapolated for acetonitrile (41.6) appears to be questionable and will be revisited in Chapter 2 of this dissertation. The proazaphosphatrane la was also found to be a very efficient catalyst for the trimerization of isocyanates.^ Results of experiments carried out so far suggest that la has a pK^ value higher than that of proton sponge (4) and consequently a much stronger base than either DBU (5) or TMG (6), which are conmionly used nonionic organic bases. The ability of la to equilibrate with P4-r-Bu (7) was taken as an indication that this base has a pK^ value close to that of P4- r-Bu/ However, the current study (Chapter 2) concludes that this observation was erroneous. NHo NHo NH N X (Me2N)3R=N-^N=P(NMe2)3 N-V MeaN NMea n P(NMe2)3 6 7 Several new proazaphosphatranes have been prepared over the last decade. Hence, Lensink et al} prepared the benzylic derivative 8 while Tang prepared the imidate 9.^ Wroblewski^ and D'Sa^ were able to place 8 9 isopropyl groups on the equatorial nitrogens to form proazaphosphatranes lb and 3, respectively, which were also found to be strong bases. With the preparation of these new bases by our group, the list of reactions catalyzed/promoted by proazaphosphatranes grew. D'Sa found that these compounds could fiinction as superior catalysts for the silylation® and 4 acylation^ of alcohols. An elegant use of proazaphosphatranes discovered by D'Sa et al. was the direct synthesis of a,P-unsaturated nitriles.'® With these results, the proazaphosphatranes caught the attention of other researchers," '" including Yamamoto, who was able to prepare the first Cj symmetric derivative (10) of these compounds.'^ Yamamoto's effort was 10 11 12 followed by those Liu et al. who successfully prepared a second Cj symmteric analogue (11) that has been found to be an efficient reagent for the determination of enantiomeric excesses of chiral azides.'"* Ilankumaran has found that the proazaphosphatranes can be used as efficient catalysts for transesterification reactions.'^ Studies by Arumugam and McLeod revealed that proazaphosphatranes can be used for dehydrohalogenations that afforded alkenes in excellent yields.'^ In a recent study, D'Sa observed that these bases promote the most efficient synthesis of benzofurans reported to date.'^ He also found that these compounds are capable of isomerizing methylene-intemipted double bonds.'® 5 Work by Wang has resulted in the preparation of a novel ylide'^ 12 from the proazaphosphatrane la in addition to using the same proazaphosphatrane as a base for Wittig reactions of aldehydes."® Furthermore, Wang et al. have been able to prepare homoallylic alcohols from aldehydes and CH^iCHCH^SiMej in a reaction catalyzed by P(i-PrNCH2CH2)3N.^' In other studies, Wang was able to prepare a- cyanohydrins^^ and to induce the reduction of carbonyl compounds with PHMS in the presence of P(MeNCH2CH2)3N.-^ These results show that proazaphosphatranes do offer advantageous alternatives to conventional methodologies. The current study was initiated in an attempt to develop further uses for proazaphosphatranes as reagents and catalysts in organic synthesis. The focus of this study was to identify reactions in which these bases offer improved methodologies. Since the commercially available base P(MeNCH2CH2)3N synthesized by our group is expensive ($238.00/g), we also decided to seek a preparation of analogous bases that could be made more easily at a lower price. 6 References 1. Lensink, C.; Xi, S. —K.; Daniels, L. M.; Verkade, J. G. J. Am. Chem. Soc. 1989, 111, 3478. 2. Laramay, M. A.; Verkade, J. G. J. Am. Chem. Soc. 1990, 112, 9421. 3. Tang, J. -S.; Verkade, J. G. Angew. Chem., Int. Ed. Engl. 1993, 32, 896. 4. (a) For a review see: Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233. For basicity related studies on these bases see: (b) Milbrath, D. S.; Verkade, J. G. J. Am. Chem. Soc. 1977, 77, 6607. (c) Leffek, K. T.; Pruszynski, P.; Thanapaalasingham, K. Can. J. Chem. 1989, 67, 590; and references cited therein, (d) Laramay, M. A.; Verkade, J. G. Z. Anorg. Allg. Chem. 1991, 605, 163. 5. Tang, J. -S.; Dopke, J.; Verkade, J. G. J. Am. Chem.
Recommended publications
  • Superhalogen and Superacid. Superalkali and Superbase
    Superhalogen and Superacid. Superalkali and Superbase Andrey V. Kulsha,1 Dmitry I. Sharapa2,3 Correspondence to: Andrey V. Kulsha [email protected]; Dmitry I. Sharapa [email protected] 1 Andrey V. Kulsha Lyceum of Belarusian State University, 8 Ulijanauskaja str., Minsk, Belarus, 220030 2 Dmitry I. Sharapa Chair of Theoretical Chemistry and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany 3 Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany, D-76344 ABSTRACT A superhalogen F@C20(CN)20 and a superalkali NC30H36 together with corresponding Brønsted superacid and superbase were designed and investigated on DFT and DLPNO-CCSD(T) levels of theory. Calculated compounds have outstanding properties (electron affinity, ionization energy, deprotonation energy, and proton affinity, respectively). We consider superacid H[F@C20(CN)20] to be able to protonate molecular nitrogen, while NC30H35 superbase should easily deprotonate SiH4. Neutral NC30H36 should form a metallic metamaterial with extreme properties like remarkable transparency to visible light due to infrared plasmonic wavelength. The stability of these structures is discussed, while some of the previous predictions concerning Brønsted superacids and superbases of record strength are doubted. The proton affinity limit was suggested for stable neutral Brønsted superbases. Introduction Traditionally, a superhalogen is a molecule with However, few of the known superhalogen and high electron affinity, which forms a stable superalkali neutral molecules are stable in 5-7 anion. A good example is AuF6 with electron condensed phase. For example, some anions affinity of about 8.2 eV.1 Just in the same way a were predicted to have vertical electron superalkali is a molecule with low ionization detachment energies above 13 eV,8,9 but the energy, which forms a stable cation.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Chemical Engineering A SOLID CATALYST METHOD FOR BIODIESEL PRODUCTION A Dissertation in Chemical Engineering by Dheeban Chakravarthi Kannan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2009 The dissertation of Dheeban Chakravarthi Kannan was reviewed and approved* by the following: Jack V. Matson Professor of Environmental Engineering Dissertation Adviser Themis Matsoukas Associate Professor of Chemical Engineering Chair of Committee Joseph M. Perez Senior Research Scientist, Department of Chemical Engineering Wallis A. Lloyd Adjunct Professor of Chemical Engineering Brian A. Dempsey Professor of Environmental Engineering Thomas P. Hettmansperger Professor of Statistics Andrew Zydney Professor of Chemical Engineering Head of the Department of Chemical Engineering *Signatures are on file in the Graduate School ABSTRACT Biodiesel has considerable production potential as a renewable source of energy. The conventional processes use soluble alkali catalysts that contaminate the biodiesel and glycerol products, and present separation problems. An efficient and clean process is crucial for large scale commercial production. Solid catalysts have the potential to eliminate these problems. A method has been developed to produce biodiesel using a solid catalyst. The reaction is carried out at high temperature and pressure conditions (260 °C, 70 atm). The high temperature is not a problem since the solid catalyst is part of a continuous process in which heat energy can be recovered. The reaction time is short (15 minutes) compared to that of the conventional processes (~ 100 minutes). Promising catalysts were identified from batch tests; and MnO was found to be the most effective catalyst from the lab-scale packed-bed reactor tests.
    [Show full text]
  • Gas-Phase Basicities of Polyfunctional Molecules. Part 2 : Saturated Basic Sites Guy Bouchoux, Jean-Yves Salpin
    Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites Guy Bouchoux, Jean-Yves Salpin To cite this version: Guy Bouchoux, Jean-Yves Salpin. Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites. Mass Spectrometry Reviews, Wiley, 2012, 31 (3), pp.353-390. 10.1002/mas.20343. hal- 00760015 HAL Id: hal-00760015 https://hal.archives-ouvertes.fr/hal-00760015 Submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Gas-phase basicities of polyfunctional molecules. Part 2: saturated basic sites Guy Bouchoux1,2* and Jean-Yves Salpin3,4 (1) Ecole Polytechnique - Laboratoire des Mécanismes Réactionnels (DCMR) - Département de Chimie - 91120 Palaiseau. France. (2) CNRS – UMR 7651 (3) Université d'Evry Val d'Essonne - Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) – Bâtiment Maupertuis – Bd F. Mitterrand - 91025 Evry. France (4) CNRS – UMR 8587 * Correspondence to: Guy Bouchoux. Laboratoire des Mécanismes Réactionnels. Département de Chimie. Ecole Polytechnique. 91120 Palaiseau. France. E-mail address: [email protected] Telephone: (33) 1 69 33 48 42 FAX: (33) 1 69 33 48 03 -1- BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Table of contents I.
    [Show full text]
  • Verkade's Superbase As an Organocatalyst for the Strecker Reaction
    Verkade’s Superbase as an Organocatalyst for the Strecker Reaction Jian Yang, Bastien Chatelet, Fabio Ziarelli, Véronique Dufaud, Damien Hérault, Alexandre Martinez To cite this version: Jian Yang, Bastien Chatelet, Fabio Ziarelli, Véronique Dufaud, Damien Hérault, et al.. Verkade’s Superbase as an Organocatalyst for the Strecker Reaction. European Journal of Organic Chemistry, Wiley-VCH Verlag, 2018, 2018 (45), pp.6328-6332. 10.1002/ejoc.201801170. hal-02079946 HAL Id: hal-02079946 https://hal.archives-ouvertes.fr/hal-02079946 Submitted on 8 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Organocatalytic Mechanisms Verkade's Superbase as an Organocatalyst for the Strecker Reaction Jian Yang,[a] Bastien Chatelet,[a] Fabio Ziarelli,[b] Véronique Dufaud,[c] Damien Hérault,[a] and Alexandre Martinez*[a] Abstract: Proazaphosphatranes -Verkade's superbases- proved A remarkable initial turnover frequency (TOF), close to 105 h–1, to be efficient organocatalysts for the Strecker reaction be- was achieved, associated with an excellent selectivity since no tween protected imines and trimethylsilyl cyanide (TMSCN). Ex- side reactions were observed. A reaction mechanism was pro- cellent to quantitative yields were reached and, compared to posed and the key role played by the apical nitrogen in the other systems, only low catalyst loading and short reaction proazaphosphatrane structure was demonstrated.
    [Show full text]
  • Organolithium Compounds Brochure
    Contents I. Introduction . .4 II. Organolithium compounds, properties & structures . .5 III. Reactions of organolithium compounds . .6 a. Metallation . .6 b. Ortho-metallation . .7 c. Nucleophilic addition and substitution . .7 d. Halogen-Metal exchange . .8 e. Transmetallation . .9 f. Anionic Polymerisation . .9 IV. Named organic reactions with organolithium compounds . .10 a. [1,2] and [2,3]-Wittig rearrangement . .10 b. Shapiro Olefination . .10 c. Peterson Olefination . .10 d. Ramberg-Bäcklund-Reaction . .10 e. Parham Cyclization . .11 V. Indicators for the titration of organolithium compounds . .12 VI. Organolithium compounds available at Acros Organics . .14 Dry-solvents . .15 3 I. Introduction Organometallic compounds are amongst the most often used reagents in organic synthesis. The earliest organometallic compound was already discovered in the early 19th cen- tury (“Zeise’s salt”; a zinc-olefin complex was first reported in 1827!) and first exam- ples of synthetic organometallic chemistry are the organozinc-compounds, discovered by Edward Frankland in 1849, the organo-magnesium compounds discovered by Victor Grignard and his teacher Philippe Barbier in 1901 and the organolithium com- pounds, discovered by Wilhelm Schlenk in 1917(1) But only since the 1950th, based on the pioneering work of Georg Wittig and Henry Gilman, organometallic reagents became a routinely used tool in the syn- thetic organic laboratory. A very early but still invaluable application of organometallic reagents is the olefin- polymerisation with the so-called
    [Show full text]
  • Preparation of an Ion with the Highest Calculated Proton Affinity: Ortho- Diethynylbenzene Dianion
    University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2016 Preparation of an ion with the highest calculated proton affinity: ortho- diethynylbenzene dianion Berwyck L. J Poad University of Wollongong, [email protected] Nicholas D. Reed University of Wollongong, [email protected] Christopher Hansen University of Wollongong, [email protected] Adam J. Trevitt University of Wollongong, [email protected] Stephen J. Blanksby Queensland University of Technology, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Poad, Berwyck L. J; Reed, Nicholas D.; Hansen, Christopher; Trevitt, Adam J.; Blanksby, Stephen J.; Mackay, Emily G.; Sherburn, Michael S.; Chan, Bun; and Radom, Leo, "Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion" (2016). Faculty of Science, Medicine and Health - Papers: part A. 4094. https://ro.uow.edu.au/smhpapers/4094 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Preparation of an ion with the highest calculated proton affinity: ortho- diethynylbenzene dianion Abstract Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful "superbases". Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis.
    [Show full text]
  • Template for Electronic Submission to ACS Journals
    Superhalogen and Superacid. Superalkali and Superbase Andrey V. Kulsha†‡*, Dmitry I. Sharapaψ‡* † Lyceum of Belarusian State University, 8 Ulijanauskaja str., Minsk 220030, Belarus ψ Chair of Theoretical Chemistry and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Egerlandstraße3, 91058 Erlangen, Germany KEYWORDS: Superhalogen, superacid, superalkali, superbase, DLPNO-CCSD(T) ABSTRACT A superhalogen F@C20(CN)20 and a superalkali NC30H36 together with corresponding Brönsted superacid and superbase were designed and investigated on DFT and DLPNO-CCSD(T) levels of theory. Calculated compounds have outstanding properties (electron affinity, ionization energy, pKa and proton affinity respectively). We consider superacid H[F@C20(CN)20] to be able to protonate molecular nitrogen, while NC30H35 superbase should easily deprotonate SiH4. Neutral NC30H36 should form a metallic metamaterial with extreme properties like remarkable transparency to visible light due to infrared plasmonic wavelength. Yet stronger superbases with predicted proton affinity of more than 15 eV were designed. The stability of these structures is discussed, while some of the previous predictions concerning Brönsted superacids and superbases of record strength are doubted. 1 1. Introduction Traditionally, a superhalogen is a molecule with high electron affinity, which forms a stable anion. 1 A good example is AuF6 with electron affinity of about 8.2 eV. Just in the same way a superalkali is a molecule with low ionization energy, which forms a stable cation. A common example is Li3O with ionization energy of 3.6 eV.2 Superhalogen anions usually have low proton affinities leading to superacids, while superalkali cations usually have high deprotonation energies leading to superbases.
    [Show full text]
  • Studies of Acid-Base Equilibria in Non-Aqueous Media
    DISSERTATIONES CHIMICAE UNIVERSITATIS TARTUENSIS 74 STUDIES OF ACID-BASE EQUILIBRIA IN NON-AQUEOUS MEDIA AGNES KUTT¨ TARTU 2008 DISSERTATIONES CHIMICAE UNIVERSITATIS TARTUENSIS 74 DISSERTATIONES CHIMICAE UNIVERSITATIS TARTUENSIS 74 STUDIES OF ACID-BASE EQUILIBRIA IN NON-AQUEOUS MEDIA AGNES KUTT¨ Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Estonia Dissertation is accepted for the commencement of the Degree of Doctor of Philosophy in Physical and Analytical Chemistry on April 24th, 2008 by the Doctoral Committee of the Institute of Chemistry, University of Tartu. Supervisors: Professor Ivo Leito (PhD) Senior Research Fellow Ivari Kaljurand (PhD) Research Professor Ilmar A. Koppel (DSc) Opponents: Professor Jos´e-LuisM. Abboud (PhD), Instituto de Qu´ımicaF´ısica\Rocasolano", CSIC, Madrid, Spain Professor Margus Lopp (PhD), Tallinn University of Technology, Chair of Organic Chemistry, Tallinn, Estonia Commencement: June 25th 2008 at 11:00, 18 Ulikooli¨ St., room 204 Publication of this dissertation is granted by University of Tartu ISSN 1406{0299 ISBN 978{9949{11{853{3 ISBN 978{9949{11{854{0 c Agnes K¨utt,2008 Tartu Ulikooli¨ Kirjastus www.tyk.ee Tellimus nr. 174 OK, so you're a PhD. Just don't touch anything. CONTENTS LIST OF ORIGINAL PUBLICATIONS :::::::::::::::: 9 ABBREVATIONS :::::::::::::::::::::::::::: 10 1. INTRODUCTION :::::::::::::::::::::::::: 13 2. GENERAL ASPECTS :::::::::::::::::::::::: 15 2.1. Brønsted-Lowry Acid-Base Equilibria . 15 2.2. Side Reactions of Acid-Base Equilibria . 19 2.3. Selection of Solvents . 20 2.4. Selection of Method . 25 2.5. Method Used in This Work { \Pure" UV-vis Spectrophotometric Method . 28 2.6. Isodesmic Reactions Approach . 29 3. EXPERIMENTAL :::::::::::::::::::::::::: 30 3.1.
    [Show full text]
  • Robert H. Morris
    TSpace Research Repository tspace.library.utoronto.ca Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes Robert H. Morris Version Post-print/accepted manuscript Citation Morris, R. H. Chemical Reviews 2016, 116, 8588–8654. (published version) http:/doi.org//10.1021/acs.chemrev.5b00695 Copyright / License Publisher’s Statement This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Reviews, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.chemrev.5b00695. How to cite TSpace items Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page. This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters. Brønsted‐Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes Robert H. Morris* Department of Chemistry, University of Toronto, 80 Saint George St. Toronto, Ontario, M5S3H6, Canada Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted‐Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the LAC estimation of the acid dissociation constant Ka of diamagnetic transition metal hydride and dihydrogen complexes.
    [Show full text]
  • Acid–Base and Donor– Acceptor Chemistry
    Chapter 6 Acid–Base and Donor– Acceptor Chemistry 6.1 Acid–Base Models as Organizing Concepts A long-standing chemical objective is to organize reactions by using models to account for trends and gain insight into what properties of reactants are prerequisites for chemical change. Analyzing trends among similar reactions permits discovery of structure–function relationships (for example, how do molecular geometry and electronic structure influence reactivity?) and guides the design of molecules for practical use. Classifying substances as acids and bases has been important since ancient times; alchemists used neutralization—the ubiquitous reaction of an acid and base to form salt and water—to compile observations about different substances that engaged in similar reactions. Without modern structural analysis tools, such as X-ray crystallography and NMR spectroscopy, alchemists used their senses: they observed the tastes of acids (sour) and bases (bitter) and color changes of indicators. Many acid–base definitions have been devised, but only a few have been widely adopted. This chapter discusses the major acid–base models and their application in inorganic chemistry. After a historical introduction (Section 6.1.1), the models are presented in the rough order of their development. Among these are the ones attributed to ­Arrhenius (­Section 6.2), Brønsted–Lowry (Section 6.3), and Lewis (Section 6.4). These sections emphasize the challenges associated with quantifying acidity and basicity, and rela- tionships between acid/base strength and molecular structure. The 1960s application of molecular orbitals (i.e., HOMO/LUMO interactions) to frame Lewis acid–base reactions (Section 6.4.1) permeates inorganic chemistry and dramatically expands the perspective on what constitutes an acid–base reaction.
    [Show full text]
  • Novel General Halogen-Free Methodology for the Synthesis of Organophosphorus Compounds*
    Pure Appl. Chem., Vol. 84, No. 3, pp. 439–459, 2012. http://dx.doi.org/10.1351/PAC-CON-11-07-11 © 2012 IUPAC, Publication date (Web): 17 January 2012 Novel general halogen-free methodology for the synthesis of organophosphorus compounds* Nina K. Gusarova, Svetlana N. Arbuzova, and Boris A. Trofimov‡ A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation Abstract: The use of novel general halogen-free methodology for the synthesis of phos- phines, phosphine chalcogenides, and phosphinic acids from elemental phosphorus and alkenes and alkynes in the superbase suspensions is described. Keywords: halogen-free phosphorylation with elemental phosphorus; organic synthesis; phosphines; phosphine chalcogenides; phosphinic acids; superbases. INTRODUCTION In the last few years, green chemistry, i.e., a scientific direction dealing with the development and mod- ification of environmentally benign chemical processes, has assumed great importance. In particular, special emphasis is placed on the halogen-free methods for the synthesis of organic compounds. It is common knowledge that application of halogen-containing starting materials is accompanied by the formation of large amounts of diverse hazardous unutilized wastes, including dioxins. This is also true for the synthesis of organophosphorus compounds that are conventionally prepared from phosphorus halides (mainly, chlorides) [1] produced by chlorination of elemental phosphorus with chlorine. The emission of chlorine and hydrogen chloride associated with these processes creates severe environ- mental problems. Besides, the formation of the C–P bond and synthesis of key organophosphorus com- pounds (organic phosphines, phosphine chalcogenides, phosphinic acids) from phosphorus halides require the application of organometallic compounds as co-reagents that represents some experimental problems such as usage of especially pure anhydrous solvents and dry inert atmosphere, utilization of byproducts [1].
    [Show full text]
  • Ortho-Diethynylbenzene Dianion† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion† Cite this: Chem. Sci.,2016,7,6245 Berwyck L. J. Poad,ab Nicholas D. Reed,b Christopher S. Hansen,b Adam J. Trevitt,b Stephen J. Blanksby,a Emily G. Mackay,c Michael S. Sherburn,c Bun Chan‡d and Leo Radomd Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful “superbases”. Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis. We report the synthesis and isolation of the ortho-diethynylbenzene dianion (ortho-DEB2À) and present observations of this novel species undergoing gas-phase proton-abstraction reactions. Using a theoretical model based on Marcus–Hush theory, we attribute the stability of ortho-DEB2À to the Received 20th April 2016 presence of a barrier that prevents spontaneous electron detachment. The proton affinity of 1843 kJ Creative Commons Attribution 3.0 Unported Licence. Accepted 17th June 2016 molÀ1 calculated for this dianion superbase using high-level quantum chemistry calculations significantly DOI: 10.1039/c6sc01726f exceeds that of the lithium monoxide anion, the most basic system previously prepared. The ortho- www.rsc.org/chemicalscience diethynylbenzene dianion is therefore the
    [Show full text]