Preparation of an Ion with the Highest Calculated Proton Affinity: Ortho- Diethynylbenzene Dianion

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of an Ion with the Highest Calculated Proton Affinity: Ortho- Diethynylbenzene Dianion University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2016 Preparation of an ion with the highest calculated proton affinity: ortho- diethynylbenzene dianion Berwyck L. J Poad University of Wollongong, [email protected] Nicholas D. Reed University of Wollongong, [email protected] Christopher Hansen University of Wollongong, [email protected] Adam J. Trevitt University of Wollongong, [email protected] Stephen J. Blanksby Queensland University of Technology, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Poad, Berwyck L. J; Reed, Nicholas D.; Hansen, Christopher; Trevitt, Adam J.; Blanksby, Stephen J.; Mackay, Emily G.; Sherburn, Michael S.; Chan, Bun; and Radom, Leo, "Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion" (2016). Faculty of Science, Medicine and Health - Papers: part A. 4094. https://ro.uow.edu.au/smhpapers/4094 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Preparation of an ion with the highest calculated proton affinity: ortho- diethynylbenzene dianion Abstract Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful "superbases". Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis. We report the synthesis and isolation of the ortho-diethynylbenzene dianion (ortho-DEB2−) and present observations of this novel species undergoing gas-phase proton-abstraction reactions. Using a theoretical model based on Marcus-Hush theory, we attribute the stability of ortho-DEB2− to the presence of a barrier that prevents spontaneous electron detachment. The proton affinity of 1843 kJ mol−1 calculated for this dianion superbase using high-level quantum chemistry calculations significantly exceeds that of the lithium monoxide anion, the most basic system previously prepared. The ortho-diethynylbenzene dianion is therefore the strongest base that has been experimentally observed to date. Disciplines Medicine and Health Sciences | Social and Behavioral Sciences Publication Details Poad, B. L. J., Reed, N. D., Hansen, C., Trevitt, A. J., Blanksby, S. J., Mackay, E. G., Sherburn, M. S., Chan, B. & Radom, L. (2016). Preparation of an ion with the highest calculated proton affinity: ortho- diethynylbenzene dianion. Chemical Science, 7 (9), 6245-6250. Authors Berwyck L. J Poad, Nicholas D. Reed, Christopher Hansen, Adam J. Trevitt, Stephen J. Blanksby, Emily G. Mackay, Michael S. Sherburn, Bun Chan, and Leo Radom This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/4094 Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion† Cite this: Chem. Sci.,2016,7,6245 Berwyck L. J. Poad,ab Nicholas D. Reed,b Christopher S. Hansen,b Adam J. Trevitt,b Stephen J. Blanksby,a Emily G. Mackay,c Michael S. Sherburn,c Bun Chan‡d and Leo Radomd Owing to the increased proton affinity that results from additional negative charges, multiply-charged anions have been proposed as one route to prepare and access a range of new and powerful “superbases”. Paradoxically, while the additional electrons in polyanions increase basicity they serve to diminish the electron binding energy and thus, it had been thought, hinder experimental synthesis. We report the synthesis and isolation of the ortho-diethynylbenzene dianion (ortho-DEB2À) and present observations of this novel species undergoing gas-phase proton-abstraction reactions. Using a theoretical model based on Marcus–Hush theory, we attribute the stability of ortho-DEB2À to the Received 20th April 2016 presence of a barrier that prevents spontaneous electron detachment. The proton affinity of 1843 kJ Creative Commons Attribution 3.0 Unported Licence. Accepted 17th June 2016 molÀ1 calculated for this dianion superbase using high-level quantum chemistry calculations significantly DOI: 10.1039/c6sc01726f exceeds that of the lithium monoxide anion, the most basic system previously prepared. The ortho- www.rsc.org/chemicalscience diethynylbenzene dianion is therefore the strongest base that has been experimentally observed to date. Introduction solvent interaction, provides an ideal way to investigate the fundamental basicity of these highly reactive systems.7 Exploration of the fundamental thermochemistry of acids and In the gas phase, the proton affinity of an anion is equivalent D bases informs our understanding of chemical transformations to the enthalpy of deprotonation ( acidH298) of the conjugate This article is licensed under a À ¼ D and can drive innovation in the design of new reactions and acid (i.e., PA[X ] acidH298[XH]). The strongest base prepared À 8 reagents.1–3 The hydroxide anion has the largest proton affinity to date is the lithium monoxide anion (LiO ). With an esti- À À possible in an aqueous environment, since any base with mated proton affinity of 1782 Æ 8 kJ mol 1, LiO supplanted the Open Access Article. Published on 20 June 2016. Downloaded 15/09/2016 02:20:50. À À a larger PA will abstract a proton from H2O (PA[OH ] ¼ 1633.14 methide anion (CH3 ) at the top of the basicity scale in 2008, À Æ 0.04 kJ mol 1).4 To generate stronger bases in solution, non- exceeding the proton affinity of the carbanion by approximately À 4,9,10 aqueous solvents are required. For example lithium diisopro- 40 kJ mol 1. More recently, computational studies have pylamide, which is oen employed in organic synthesis as proposed extending this framework to even more basic ions À 11 a deprotonating agent, must be used in an aprotic solvent such such as OLi3O . However no clear synthetic route to form as tetrahydrofuran.5 Such extremely strong bases are referred to these ions in the gas phase has been demonstrated. Anionic 6 À À as superbases. Owing to these environmental factors, investi- superbases such as LiO and CH3 necessarily satisfy two gation and comparison of the intrinsic basicity of compounds essential requirements: they are the conjugate bases of very in solution is limited. Probing the reactivity of high proton weak gas-phase acids and their neutral radicals have low elec- affinity species in the gas phase, an environment free from any tron affinities (EAs). Multiply-charged anions can also full these thermochemical requirements, as the gas-phase acidity of ffi aCentral Analytical Research Facility, Institute for Future Environments, Queensland an anion is inherently low while the electron a nity of an anion University of Technology, Brisbane, QLD 4001, Australia. E-mail: berwyck.poad@ (i.e., the affinity for addition of a second electron to produce qut.edu.au a dianion) can be low or even negative. Despite their potential bSchool of Chemistry, University of Wollongong, Gwynneville, NSW 2522, Australia instability, such dianion systems have been observed because of cResearch School of Chemistry, Australian National University, Canberra, ACT 2601, a repulsive Coulomb barrier (RCB) that arises from the inter- Australia action between the local bound-potential of the functional dSchool of Chemistry, University of Sydney, Sydney, NSW 2006, Australia † group carrying the charge (e.g., a carboxylate group) and the Electronic supplementary information (ESI) available: Synthesis of precursor 12,13 compounds, detailed experimental and theoretical procedures, 3 supporting repulsive Coulomb potential between like charges. This RCB gures, 4 supporting tables, NMR spectra of synthesised compounds. See DOI: can stabilise multiply-charged anions and, in some cases, 10.1039/c6sc01726f allows for the generation and isolation of polyanions despite ‡ Present address: Graduate School of Engineering, Nagasaki University, Bunko their negative electron binding energies.14,15 Based on these 1-14, Nagasaki 852-8521, Japan. This journal is © The Royal Society of Chemistry 2016 Chem. Sci.,2016,7,6245–6250 | 6245 View Article Online Chemical Science Edge Article À considerations, the 1,3-diethynylbenzene dianion (meta-DEB2 ) was postulated to be a gas-phase superbase with a calculated PA À À of 1796.6 kJ mol 1, approximately 15 kJ mol 1 greater than that of the lithium monoxide anion.8 Thus far, no experimental studies have been reported on this gas-phase dianion – presumably due to the expectation that Coulomb repulsion between the proximate negative charges would destabilise the dianion and thus pose a challenge to its generation and isolation. À In this article, we outline the synthesis of meta-DEB2 in the gas phase along with the isomeric 1,2- and 1,4-dieth- À ynylbenzene dianions (ortho- and para-DEB2 , respectively). Observation of proton-transfer reactions between these dia- nions and a number of weak acids demonstrates their behav- Fig. 1 Mass spectra illustrating the synthesis of the ortho-DEB dianion ffi iour as gas-phase bases. The calculated proton a nity of each of base. The mass-isolated dicarboxylate anion at m/z 106 (a) is observed À the DEB2 isomers exceeds that of the lithium monoxide anion, to decarboxylate under CID to yield m/z 84 (b). Subsequent isolation À with ortho-DEB2 representing the strongest gas-phase base and activation of this m/z 84 ion yields a second decarboxylation m z meta synthesised to date. product at / 62 and associated reaction products (c). The - and para-DEB dianions were synthesised using the same approach. Results and discussion À diacids (i.e., ortho, meta and para-DEB2 ). This is strongly sup- 2À Synthesis of the ortho-DEB dianion at a mass-to-charge ratio ported by the differences in product ions and product ion Creative Commons Attribution 3.0 Unported Licence.
Recommended publications
  • Superhalogen and Superacid. Superalkali and Superbase
    Superhalogen and Superacid. Superalkali and Superbase Andrey V. Kulsha,1 Dmitry I. Sharapa2,3 Correspondence to: Andrey V. Kulsha [email protected]; Dmitry I. Sharapa [email protected] 1 Andrey V. Kulsha Lyceum of Belarusian State University, 8 Ulijanauskaja str., Minsk, Belarus, 220030 2 Dmitry I. Sharapa Chair of Theoretical Chemistry and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany 3 Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany, D-76344 ABSTRACT A superhalogen F@C20(CN)20 and a superalkali NC30H36 together with corresponding Brønsted superacid and superbase were designed and investigated on DFT and DLPNO-CCSD(T) levels of theory. Calculated compounds have outstanding properties (electron affinity, ionization energy, deprotonation energy, and proton affinity, respectively). We consider superacid H[F@C20(CN)20] to be able to protonate molecular nitrogen, while NC30H35 superbase should easily deprotonate SiH4. Neutral NC30H36 should form a metallic metamaterial with extreme properties like remarkable transparency to visible light due to infrared plasmonic wavelength. The stability of these structures is discussed, while some of the previous predictions concerning Brønsted superacids and superbases of record strength are doubted. The proton affinity limit was suggested for stable neutral Brønsted superbases. Introduction Traditionally, a superhalogen is a molecule with However, few of the known superhalogen and high electron affinity, which forms a stable superalkali neutral molecules are stable in 5-7 anion. A good example is AuF6 with electron condensed phase. For example, some anions affinity of about 8.2 eV.1 Just in the same way a were predicted to have vertical electron superalkali is a molecule with low ionization detachment energies above 13 eV,8,9 but the energy, which forms a stable cation.
    [Show full text]
  • Proton Affinity Changes Driving Unidirectional Proton Transport In
    doi:10.1016/S0022-2836(03)00903-3 J. Mol. Biol. (2003) 332, 1183–1193 Proton Affinity Changes Driving Unidirectional Proton Transport in the Bacteriorhodopsin Photocycle Alexey Onufriev1, Alexander Smondyrev2 and Donald Bashford1* 1Department of Molecular Bacteriorhodopsin is the smallest autonomous light-driven proton pump. Biology, The Scripps Research Proposals as to how it achieves the directionality of its trans-membrane Institute, 10550 North Torrey proton transport fall into two categories: accessibility-switch models in Pines Road, La Jolla, CA 92037 which proton transfer pathways in different parts of the molecule are USA opened and closed during the photocycle, and affinity-switch models, which focus on changes in proton affinity of groups along the transport 2Schro¨dinger Inc., 120 West chain during the photocycle. Using newly available structural data, and Forty-Fifth Street, 32nd Floor adapting current methods of protein protonation-state prediction to the Tower 45, New York, NY non-equilibrium case, we have calculated the relative free energies of pro- 10036-4041, USA tonation microstates of groups on the transport chain during key confor- mational states of the photocycle. Proton flow is modeled using accessibility limitations that do not change during the photocycle. The results show that changes in affinity (microstate energy) calculable from the structural models are sufficient to drive unidirectional proton trans- port without invoking an accessibility switch. Modeling studies for the N state relative to late M suggest that small structural re-arrangements in the cytoplasmic side may be enough to produce the crucial affinity change of Asp96 during N that allows it to participate in the reprotonation of the Schiff base from the cytoplasmic side.
    [Show full text]
  • Proton Affinity of SO3
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Proton Affinity of SO3 Cynthia Ann Pommerening, Steven M. Bachrach, and Lee S. Sunderlin Department of Chemistry, Northern Illinois University, DeKalb, Illinois, USA ϩ Collision-induced dissociation (CID) of the radical cation H2SO4 gives the product pairs ϩ ϩ ϩ ϩ H2O SO3 and HO HSO3 with a 1:3 ratio that is essentially independent of collision energy. Statistical analysis of the two channels indicates that the proton affinity of HO is 3 Ϯ ϭ Ϯ 4 kJ/mol lower than that of SO3. This can be used to derive PA(SO3) 591 4 kJ/mol at 0 K and 596 Ϯ 4 kJ/mol at 298 K. Previously, Munson and Smith bracketed the proton affinity as PA(HBr) ϭ 584 kJ/mol Ͻ PA(SO ) Ͻ PA(CO) ϭ 594 kJ/mol. The threshold of 152 Ϯ 16 ϩ 3 kJ/mol for formation of H O ϩ SO indicates that the barrier to CID is small or nonexistent, 2 3 ϩ in contrast to the substantial barriers to decomposition for H3SO4 and H2SO4. (JAmSoc Mass Spectrom 1999, 10, 856–861) © 1999 American Society for Mass Spectrometry he development of extensive scales of proton this work provide an independent measurement of the ⌬ affinity (PA), gas basicity (GB), and acidity ( Ha) PA of SO3. values has provided a framework for the quanti- The gas-phase addition of H2OtoSO3 to form T ϭϪ⌬ tative understanding of ion properties. (PA H for sulfuric acid has a substantial barrier, as indicated by addition of a proton, GB ϭϪ⌬G for addition of a reaction rate measurements [4–6] and computational ⌬ ϭ⌬ proton, and Ha H for deprotonation.) The history results [7, 8].
    [Show full text]
  • Acid Dissociation Constant - Wikipedia, the Free Encyclopedia Page 1
    Acid dissociation constant - Wikipedia, the free encyclopedia Page 1 Help us provide free content to the world by donating today ! Acid dissociation constant From Wikipedia, the free encyclopedia An acid dissociation constant (aka acidity constant, acid-ionization constant) is an equilibrium constant for the dissociation of an acid. It is denoted by Ka. For an equilibrium between a generic acid, HA, and − its conjugate base, A , The weak acid acetic acid donates a proton to water in an equilibrium reaction to give the acetate ion and − + HA A + H the hydronium ion. Key: Hydrogen is white, oxygen is red, carbon is gray. Lines are chemical bonds. K is defined, subject to certain conditions, as a where [HA], [A−] and [H+] are equilibrium concentrations of the reactants. The term acid dissociation constant is also used for pKa, which is equal to −log 10 Ka. The term pKb is used in relation to bases, though pKb has faded from modern use due to the easy relationship available between the strength of an acid and the strength of its conjugate base. Though discussions of this topic typically assume water as the solvent, particularly at introductory levels, the Brønsted–Lowry acid-base theory is versatile enough that acidic behavior can now be characterized even in non-aqueous solutions. The value of pK indicates the strength of an acid: the larger the value the weaker the acid. In aqueous a solution, simple acids are partially dissociated to an appreciable extent in in the pH range pK ± 2. The a actual extent of the dissociation can be calculated if the acid concentration and pH are known.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Chemical Engineering A SOLID CATALYST METHOD FOR BIODIESEL PRODUCTION A Dissertation in Chemical Engineering by Dheeban Chakravarthi Kannan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2009 The dissertation of Dheeban Chakravarthi Kannan was reviewed and approved* by the following: Jack V. Matson Professor of Environmental Engineering Dissertation Adviser Themis Matsoukas Associate Professor of Chemical Engineering Chair of Committee Joseph M. Perez Senior Research Scientist, Department of Chemical Engineering Wallis A. Lloyd Adjunct Professor of Chemical Engineering Brian A. Dempsey Professor of Environmental Engineering Thomas P. Hettmansperger Professor of Statistics Andrew Zydney Professor of Chemical Engineering Head of the Department of Chemical Engineering *Signatures are on file in the Graduate School ABSTRACT Biodiesel has considerable production potential as a renewable source of energy. The conventional processes use soluble alkali catalysts that contaminate the biodiesel and glycerol products, and present separation problems. An efficient and clean process is crucial for large scale commercial production. Solid catalysts have the potential to eliminate these problems. A method has been developed to produce biodiesel using a solid catalyst. The reaction is carried out at high temperature and pressure conditions (260 °C, 70 atm). The high temperature is not a problem since the solid catalyst is part of a continuous process in which heat energy can be recovered. The reaction time is short (15 minutes) compared to that of the conventional processes (~ 100 minutes). Promising catalysts were identified from batch tests; and MnO was found to be the most effective catalyst from the lab-scale packed-bed reactor tests.
    [Show full text]
  • Probing the Structure and Reactivity of Gaseous Ions a DISSERTATION
    Probing the Structure and Reactivity of Gaseous Ions A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Matthew Michael Meyer IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Professor Steven R. Kass Febuary 2010 © Matthew Meyer 2010 Acknowledgements I want to express my gratitude to my advisor Dr. Steven Kass for the opportunity to work with him during my time at Minnesota. I am grateful for his willingness to share not only his vast knowledge of chemistry, but his approach to addressing problems. I also would like to acknowledge professors, John Anthony and Mark Meier for their mentorship while I was at the University of Kentucky that led me to a career in chemistry. Due to the broad nature of the research contained herein I am grateful for the contributions of the many collaborators I had the opportunity to work with while at Minnesota. In particular, I would like to thank Professors Richard O’Hair, Steven Blanksby, and Mark Johnson for their wiliness to allow me to spend time in their labs. During my course of studies I have also had the opportunities to interacts with a variety of other scientist that have contributed greatly to my development and completing this document, including Dr. Dana Reed, Dr. Mark Juhasz, Dr. Erin Speetzen, Dr. Nicole Eyet and Mr. Kris Murphy. I am also grateful for the support of my brother and sister through out this process. Lastly, I want to expresses gratitude to my parents for their support in all my pursuits and encouraging my incessant asking why probably since I could talk.
    [Show full text]
  • Gas-Phase Hydrogen/Deuterium Exchange As a Molecular Probe for the Interaction of Methanol and Protonated Peptides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Gas-Phase Hydrogen/Deuterium Exchange as a Molecular Probe for the Interaction of Methanol and Protonated Peptides Eric Gard, M. Kirk Green, Jennifer Bregar, and Carlito B. Lebrilla Departmentof Chemistry, University of California, Davis, California, USA The gas-phase hydrogen/deuterium (H/D) exchange kinetics of several protonated amino acids and dipeptides under a background pressure of CH,OD were determined in an external source Fourier transform mass spectrometer. H/D exchange reactions occur even when the gas-phase basicity of the compound is significantly larger (>20 kcal/mol) than methanol. In addition, greater deuterium incorporation is observed for compounds that have multiple sites of similar basicities. A mechanism is proposed that involves a structurally specific intermediate with extensive interaction between the protonated compound and methanol. (r Am Sot Mass Spectrom 1994,5, 623-631) he production of ionic gas-phase macro- [ 10, 11,18,19]. Investigations by Ausloos and L.ias [lOI molecules allows the possibility of studying these have shown that for protonated compounds H/D ex- T complex systems in the absence of solvent. Al- change reactions do not occur when the proton affinity though the gas and solvated phases are intrinsically of the neutral base is greater than the deuterated different, there is evidence to suggest that conforma- reagent by more than 20 kcal/mol. The correlation tion may be retained by the molecule even in the gas between basicity and reactivity has led many people to phase [l-5].
    [Show full text]
  • Gas-Phase Basicities of Polyfunctional Molecules. Part 2 : Saturated Basic Sites Guy Bouchoux, Jean-Yves Salpin
    Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites Guy Bouchoux, Jean-Yves Salpin To cite this version: Guy Bouchoux, Jean-Yves Salpin. Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites. Mass Spectrometry Reviews, Wiley, 2012, 31 (3), pp.353-390. 10.1002/mas.20343. hal- 00760015 HAL Id: hal-00760015 https://hal.archives-ouvertes.fr/hal-00760015 Submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Gas-phase basicities of polyfunctional molecules. Part 2: saturated basic sites Guy Bouchoux1,2* and Jean-Yves Salpin3,4 (1) Ecole Polytechnique - Laboratoire des Mécanismes Réactionnels (DCMR) - Département de Chimie - 91120 Palaiseau. France. (2) CNRS – UMR 7651 (3) Université d'Evry Val d'Essonne - Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) – Bâtiment Maupertuis – Bd F. Mitterrand - 91025 Evry. France (4) CNRS – UMR 8587 * Correspondence to: Guy Bouchoux. Laboratoire des Mécanismes Réactionnels. Département de Chimie. Ecole Polytechnique. 91120 Palaiseau. France. E-mail address: [email protected] Telephone: (33) 1 69 33 48 42 FAX: (33) 1 69 33 48 03 -1- BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Table of contents I.
    [Show full text]
  • Verkade's Superbase As an Organocatalyst for the Strecker Reaction
    Verkade’s Superbase as an Organocatalyst for the Strecker Reaction Jian Yang, Bastien Chatelet, Fabio Ziarelli, Véronique Dufaud, Damien Hérault, Alexandre Martinez To cite this version: Jian Yang, Bastien Chatelet, Fabio Ziarelli, Véronique Dufaud, Damien Hérault, et al.. Verkade’s Superbase as an Organocatalyst for the Strecker Reaction. European Journal of Organic Chemistry, Wiley-VCH Verlag, 2018, 2018 (45), pp.6328-6332. 10.1002/ejoc.201801170. hal-02079946 HAL Id: hal-02079946 https://hal.archives-ouvertes.fr/hal-02079946 Submitted on 8 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Organocatalytic Mechanisms Verkade's Superbase as an Organocatalyst for the Strecker Reaction Jian Yang,[a] Bastien Chatelet,[a] Fabio Ziarelli,[b] Véronique Dufaud,[c] Damien Hérault,[a] and Alexandre Martinez*[a] Abstract: Proazaphosphatranes -Verkade's superbases- proved A remarkable initial turnover frequency (TOF), close to 105 h–1, to be efficient organocatalysts for the Strecker reaction be- was achieved, associated with an excellent selectivity since no tween protected imines and trimethylsilyl cyanide (TMSCN). Ex- side reactions were observed. A reaction mechanism was pro- cellent to quantitative yields were reached and, compared to posed and the key role played by the apical nitrogen in the other systems, only low catalyst loading and short reaction proazaphosphatrane structure was demonstrated.
    [Show full text]
  • Organolithium Compounds Brochure
    Contents I. Introduction . .4 II. Organolithium compounds, properties & structures . .5 III. Reactions of organolithium compounds . .6 a. Metallation . .6 b. Ortho-metallation . .7 c. Nucleophilic addition and substitution . .7 d. Halogen-Metal exchange . .8 e. Transmetallation . .9 f. Anionic Polymerisation . .9 IV. Named organic reactions with organolithium compounds . .10 a. [1,2] and [2,3]-Wittig rearrangement . .10 b. Shapiro Olefination . .10 c. Peterson Olefination . .10 d. Ramberg-Bäcklund-Reaction . .10 e. Parham Cyclization . .11 V. Indicators for the titration of organolithium compounds . .12 VI. Organolithium compounds available at Acros Organics . .14 Dry-solvents . .15 3 I. Introduction Organometallic compounds are amongst the most often used reagents in organic synthesis. The earliest organometallic compound was already discovered in the early 19th cen- tury (“Zeise’s salt”; a zinc-olefin complex was first reported in 1827!) and first exam- ples of synthetic organometallic chemistry are the organozinc-compounds, discovered by Edward Frankland in 1849, the organo-magnesium compounds discovered by Victor Grignard and his teacher Philippe Barbier in 1901 and the organolithium com- pounds, discovered by Wilhelm Schlenk in 1917(1) But only since the 1950th, based on the pioneering work of Georg Wittig and Henry Gilman, organometallic reagents became a routinely used tool in the syn- thetic organic laboratory. A very early but still invaluable application of organometallic reagents is the olefin- polymerisation with the so-called
    [Show full text]
  • Acid-Base Chemistry Gas-Phase Acid-Base Reactions the Most
    5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 6 Apr 11: Acid-Base Chemistry Gas-Phase Acid-Base Reactions The most straightforward acid-base reaction occurs by attack of H+ on an atom or + molecule (B) in the gas phase. Consider the attack of H on H2 to produce the + simplest polyatomic molecule, H3 (which has been detected by mass spectrometry in electrical discharges of H2 gas). H+ attacks the HOMO of the base B for any protonation in the gas phase. For the example above, the bonding situation is described as follows: 1 + The difference in the bond dissociation energies of H2 and H3 gives the energy for + H association to H2, + + + –1 H3 → 2H + H ∆H1 = BDE(H3 ) = 203 kcal mol –1 H2 → 2H ∆H2 = BDE(H2) = 103 kcal mol Thus the energy for protonation is + + 2H + H → H3 H2 → 2H + + –1 H2 + H → H3 ∆Hassoc = ∆H2 – ∆H1 = –100 kcal mol and therefore the protonation of H2 is comparable to its bond strength. The proton affinity (PA) is the energy released upon attack of H+ on a species B in the gas phase, + + B + H → BH PA = –∆Hassoc by convention, a positive value is exothermic Can divide the protonation reaction in to two hypothetical reactions + + B + H → B + H ∆H1 = IE(B) – IE(H) + + + B + H → BH ∆H2 = –BDE(BH ) + + + B + H → BH ∆Hassoc = IE(B) – IE(H) – BDE(BH ) PA = IE(H) – IE(B) + BDE(BH+) PA = 13.598 eV – IE(B) + BDE(BH+) Protonation of B is therefore favored for small IE(B) … i.e., for small ionization energies of electrons in HOMO (or in other terms, electrons in higher energy HOMO are more easily attacked by the proton) and large bond dissociation energies.
    [Show full text]
  • Template for Electronic Submission to ACS Journals
    Superhalogen and Superacid. Superalkali and Superbase Andrey V. Kulsha†‡*, Dmitry I. Sharapaψ‡* † Lyceum of Belarusian State University, 8 Ulijanauskaja str., Minsk 220030, Belarus ψ Chair of Theoretical Chemistry and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Egerlandstraße3, 91058 Erlangen, Germany KEYWORDS: Superhalogen, superacid, superalkali, superbase, DLPNO-CCSD(T) ABSTRACT A superhalogen F@C20(CN)20 and a superalkali NC30H36 together with corresponding Brönsted superacid and superbase were designed and investigated on DFT and DLPNO-CCSD(T) levels of theory. Calculated compounds have outstanding properties (electron affinity, ionization energy, pKa and proton affinity respectively). We consider superacid H[F@C20(CN)20] to be able to protonate molecular nitrogen, while NC30H35 superbase should easily deprotonate SiH4. Neutral NC30H36 should form a metallic metamaterial with extreme properties like remarkable transparency to visible light due to infrared plasmonic wavelength. Yet stronger superbases with predicted proton affinity of more than 15 eV were designed. The stability of these structures is discussed, while some of the previous predictions concerning Brönsted superacids and superbases of record strength are doubted. 1 1. Introduction Traditionally, a superhalogen is a molecule with high electron affinity, which forms a stable anion. 1 A good example is AuF6 with electron affinity of about 8.2 eV. Just in the same way a superalkali is a molecule with low ionization energy, which forms a stable cation. A common example is Li3O with ionization energy of 3.6 eV.2 Superhalogen anions usually have low proton affinities leading to superacids, while superalkali cations usually have high deprotonation energies leading to superbases.
    [Show full text]