Download (8MB)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malaria Plasmodium Chabaudi Against Blood-Stage Long-Term Strain
IFN- −γ Induced Priming Maintains Long-Term Strain-Transcending Immunity against Blood-Stage Plasmodium chabaudi Malaria This information is current as of September 25, 2021. Henrique Borges da Silva, Érika Machado de Salles, Raquel Hoffmann Panatieri, Silvia Beatriz Boscardin, Sérgio Marcelo Rodríguez-Málaga, José Maria Álvarez and Maria Regina D'Império Lima J Immunol 2013; 191:5160-5169; Prepublished online 16 Downloaded from October 2013; doi: 10.4049/jimmunol.1300462 http://www.jimmunol.org/content/191/10/5160 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/10/16/jimmunol.130046 Material 2.DC1 References This article cites 46 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/191/10/5160.full#ref-list-1 by guest on September 25, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The -
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
Inger Damon M.D., Ph.D
Status of human monkeypox, epidemiology and research…comparisons with smallpox… considerations for emerging orthopoxviruses Inger Damon M.D., Ph.D. Chief, Poxvirus and Rabies Branch SEC2010 August 24, 2010 National Center for Emerging and Zoonotic Infectious Diseases Division of High Consequence Pathogens and Pathology Timeline • First observed in captive primate colonies – 8 outbreaks1958-1968 – isolated and characterized from primate tissues – 1 outbreak in exposed zoo animals (anteater and primates) – No transmission to humans • First human disease 1970 – surveillance activities of smallpox eradication program – W. Africa (rare cases, no secondary human to human transmission) – Zaire (DRC) • Active surveillance Zaire (DRC) 1981-1986 (338 cases) – Majority cases virologically confirmed – Human to human transmission • Ongoing outbreaks reported from DRC 1996-present – Largely retrospective analyses – Minority cases virologically confirmed, use orthopoxvirus serostatus determination – Over 500 cases reported • First human disease reported outside of Africa, in the U.S. 2003 • Enhanced surveillance DRC RoC Monkeypox: the virus • Species of Orthopoxvirus genus -Member of the Poxvirus family – Other Orthopoxviruses that infect humans – zoonotic except variola • Cowpox, vaccinia, variola • Ectromelia (mousepox), taterapox (gerbilpox) not known to infect humans – Large (~200 kb) complex double stranded DNA virus, cytoplasmic life cycle, brick shaped morphology – 95% nucleotide identity amongst species – 93% conservation of AA of antigens on -
Chromerid Genomes Reveal the Evolutionary Path From
RESEARCH ARTICLE elifesciences.org Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Yong H Woo1*, Hifzur Ansari1,ThomasDOtto2, Christen M Klinger3†, Martin Kolisko4†, Jan Michalek´ 5,6†, Alka Saxena1†‡, Dhanasekaran Shanmugam7†, Annageldi Tayyrov1†, Alaguraj Veluchamy8†§, Shahjahan Ali9¶,AxelBernal10,JavierdelCampo4, Jaromır´ Cihla´ rˇ5,6, Pavel Flegontov5,11, Sebastian G Gornik12,EvaHajduskovˇ a´ 5, AlesHorˇ ak´ 5,6,JanJanouskovecˇ 4, Nicholas J Katris12,FredDMast13,DiegoMiranda- Saavedra14,15, Tobias Mourier16, Raeece Naeem1,MridulNair1, Aswini K Panigrahi9, Neil D Rawlings17, Eriko Padron-Regalado1, Abhinay Ramaprasad1, Nadira Samad12, AlesTomˇ calaˇ 5,6, Jon Wilkes18,DanielENeafsey19, Christian Doerig20, Chris Bowler8, 4 10 3 21,22 *For correspondence: yong. Patrick J Keeling , David S Roos ,JoelBDacks, Thomas J Templeton , 12,23 5,6,24 5,6,25 1 [email protected] (YHW); arnab. Ross F Waller , Julius Lukesˇ , Miroslav Obornık´ ,ArnabPain* [email protected] (AP) 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering † These authors contributed Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; equally to this work 2Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Present address: ‡Vaccine and Cambridge, United Kingdom; 3Department of Cell Biology, University of Alberta, Infectious Disease Division, Fred Edmonton, Canada; 4Canadian Institute for Advanced Research, Department of Botany, -
Sex Ratios in the Rodent Malaria Parasite, Plasmodium Chabaudi
419 Sex ratios in the rodent malaria parasite, Plasmodium chabaudi S. E. REECE*, A. B. DUNCAN, S. A. WEST and A. F. READ Institute of Cell, Animal and Population Biology, Ashworth Laboratories, West Mains Road, University of Edinburgh, Edinburgh EH9 3JT, UK (Received 30 January 2003; revised 3 June 2003; accepted 10 June 2003) SUMMARY The sex ratios of malaria and related Apicomplexan parasites play a major role in transmission success. Here, we address 2 fundamental issues in the sex ratios of the rodent malaria parasite, Plasmodium chabaudi. First we test the accuracy of empirical methods for estimating sex ratios in malaria parasites, and show that sex ratios made with standard thin smears may overestimate the proportion of female gametocytes. Secondly, we test whether the mortality rate differs between male and female gametocytes, as assumed by sex ratio theory. Conventional application of sex ratio theory to malaria parasites assumes that the primary sex ratio can be accurately determined from mature gametocytes circulating in the peripheral circulation. We stopped gametocyte production with chloroquine in order to study a cohort of gametocytes in vitro. The mortality rate was significantly higher for female gametocytes, with an average half-life of 8 h for female gametocytes and 16 h for male gametocytes. Key words: sex allocation theory, gametocyte, mortality, blood smears. INTRODUCTION ratio (r*), should be related to the inbreeding rate by the equation r* (1–F)/2, where F is Wrights co- In order for malaria parasites to transmit to new ver- = efficient of inbreeding (the probability that 2 hom- tebrate hosts, a round of sexual reproduction must ologous genes in 2 mating gametes are identical by be undertaken in the mosquito vector. -
Impact of Babesia Microti Infection on the Initiation and Course Of
Tołkacz et al. Parasites Vectors (2021) 14:132 https://doi.org/10.1186/s13071-021-04638-0 Parasites & Vectors RESEARCH Open Access Impact of Babesia microti infection on the initiation and course of pregnancy in BALB/c mice Katarzyna Tołkacz1,2*, Anna Rodo3, Agnieszka Wdowiarska4, Anna Bajer1† and Małgorzata Bednarska5† Abstract Background: Protozoa in the genus Babesia are transmitted to humans through tick bites and cause babesiosis, a malaria-like illness. Vertical transmission of Babesia spp. has been reported in mammals; however, the exact timing and mechanisms involved are not currently known. The aims of this study were to evaluate the success of vertical transmission of B. microti in female mice infected before pregnancy (mated during the acute or chronic phases of Babesia infection) and that of pregnant mice infected during early and advanced pregnancy; to evaluate the pos- sible infuence of pregnancy on the course of parasite infections (parasitaemia); and to assess pathological changes induced by parasitic infection. Methods: The frst set of experiments involved two groups of female mice infected with B. microti before mating, and inseminated on the 7th day and after the 40th day post infection. A second set of experiments involved female mice infected with B. microti during pregnancy, on the 4th and 12th days of pregnancy. Blood smears and PCR targeting the 559 bp 18S rRNA gene fragment were used for the detection of B. microti. Pathology was assessed histologically. Results: Successful development of pregnancy was recorded only in females mated during the chronic phase of infection. The success of vertical transmission of B. -
Malaria in Pregnancy: the Relevance of Animal Models for Vaccine Development Justin Doritchamou, Andrew Teo, Michal Fried & Patrick E Duffy
REVIEW Malaria in pregnancy: the relevance of animal models for vaccine development Justin Doritchamou, Andrew Teo, Michal Fried & Patrick E Duffy Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide- treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population. Among Plasmodium species that infect humans, P. falciparum is bind to chondroitin sulfate A (CSA), a glycosaminoglycan expressed the most deadly. Despite long-term exposure to P. falciparum infec- by syncytiotrophoblast, which localizes to the surface of placental tion, women are again susceptible to P. falciparum infection during villi as well as to fibrinoid in the intervillous spaces15–21. Placental pregnancy, particularly primigravidae1,2. Similarly, susceptibility to sequestration of parasites can elicit an inflammatory infiltrate in P. vivax increases during pregnancy, and while the susceptibility the intervillous spaces, a typical feature in primigravidae that is spe- to P. vivax infection is greatest in primigravidae, the risk of dis- cifically associated with poor outcomes including severe maternal ease is greatest in multigravidae3,4. -
Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale. -
The Kinetics of Cellular and Humoral Immune Responses of Common Carp to Presporogonic Development of the Myxozoan Sphaerospora Molnari Tomáš Korytář1,2, Geert F
Korytář et al. Parasites Vectors (2019) 12:208 https://doi.org/10.1186/s13071-019-3462-3 Parasites & Vectors RESEARCH Open Access The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari Tomáš Korytář1,2, Geert F. Wiegertjes3, Eliška Zusková2, Anna Tomanová4, Martina Lisnerová1,4, Sneha Patra1, Viktor Sieranski4,5, Radek Šíma1, Ana Born‑Torrijos1, Annelieke S. Wentzel6, Sandra Blasco‑Monleon1, Carlos Yanes‑Roca2, Tomáš Policar2 and Astrid S. Holzer1* Abstract Background: Sphaerospora molnari is a myxozoan parasite causing skin and gill sphaerosporosis in common carp (Cyprinus carpio) in central Europe. For most myxozoans, little is known about the early development and the expan‑ sion of the infection in the fsh host, prior to spore formation. A major reason for this lack of information is the absence of laboratory model organisms, whose life‑cycle stages are available throughout the year. Results: We have established a laboratory infection model for early proliferative stages of myxozoans, based on separation and intraperitoneal injection of motile and dividing S. molnari stages isolated from the blood of carp. In the present study we characterize the kinetics of the presporogonic development of S. molnari, while analyzing cellular host responses, cytokine and systemic immunoglobulin expression, over a 63‑day period. Our study shows activation of innate immune responses followed by B cell‑mediated immune responses. We observed rapid parasite efux from the peritoneal cavity (< 40 hours), an initial covert infection period with a moderate proinfammatory response for about 1–2 weeks, followed by a period of parasite multiplication in the blood which peaked at 28 days post‑infection (dpi) and was associated with a massive lymphocyte response. -
New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. -
Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world. -
A Comprehensive Evaluation of Rodent Malaria Parasite Genomes And
Otto et al. BMC Biology 2014, 12:86 http://www.biomedcentral.com/1741-7007/12/86 RESEARCH ARTICLE Open Access A comprehensive evaluation of rodent malaria parasite genomes and gene expression Thomas D Otto1†, Ulrike Böhme1†, Andrew P Jackson2, Martin Hunt1, Blandine Franke-Fayard3, Wieteke A M Hoeijmakers4, Agnieszka A Religa5, Lauren Robertson1, Mandy Sanders1, Solabomi A Ogun6, Deirdre Cunningham6, Annette Erhart7, Oliver Billker1, Shahid M Khan3, Hendrik G Stunnenberg4, Jean Langhorne6, Anthony A Holder6, Andrew P Waters5, Chris I Newbold8,9, Arnab Pain10, Matthew Berriman1* and Chris J Janse3* Abstract Background: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. Results: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilised it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the ‘Plasmodium interspersed repeat genes’ (pir).