Does Sulfur Dioxide in Ulsan Affect Nearby Cities?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Current State of In-Cabinet Response Spectra for Seismic Qualification of Equipment in Nuclear Power Plants
Transactions, SMiRT-24 BEXCO, Busan, Korea - August 20-25, 2017 Division V CURRENT STATE OF IN-CABINET RESPONSE SPECTRA FOR SEISMIC QUALIFICATION OF EQUIPMENT IN NUCLEAR POWER PLANTS Abhinav Gupta1, Sung-Gook Cho2, Kee-Jeung Hong3, Minsoo Han4 1 Professor, Dept. of Civil, Construction and Environmental Engineering, NC State University, USA 2 Director, R&D Center, Innose Tech Co. Ltd., Korea 3 Professor, School of Civil and Environmental Engineering, Kookmin University, Korea 4 Researcher, R&D Center, Innose Tech Co. Ltd., Korea INTRODUCTION South Korea experienced its biggest earthquake in recent history on September 12, 2016. The Gyeongju earthquake of magnitude (Mw) 5.4 has initiated a significant activity in the area of seismic safety for nuclear power plants. Initial reports indicate that the nature of this earthquake is similar to the recent findings from geophysical investigations in Central and Eastern United States (CEUS), i.e., the earthquake ground motions contain not only the low frequency content but also some high frequency content. As is the case with most of the nuclear plants in CEUS, the safe shutdown earthquake (SSE) for most of the Korean plants have only low frequency content (below 10 Hz). Therefore, the nuclear plants in Korea are beginning to conduct a detailed seismic safety assessment of their structures, systems, and components (SSC). In the context of seismic safety assessment, high frequency motions are not likely to cause damage to structural systems as the displacements associated with such motions are relatively very small. Yet, past experience around the world has shown that electrical instruments such as relays, breakers, and contact switches can exhibit loss of functionality due to high frequency motions. -
Republic of Korea Hoeyang Lake
1 1 1 1 1 2 S2 unchon 2 2 2 5 6 7 8 9 ? Sukchon ? Sinchang-ni ? ? ? Pyongwon Sunan Okpyong-ni Songchon National Capital Kangdong Yangdok Yangdog-up Wonsan Pyongyang Provincial Capital ? City, town ? 9 Sungho-dong 9 3 Major Airport 3 Roads Chunghwa Nampo Democratic People's Railroad Songnim River Hwangju Republic of Korea Hoeyang Lake Anag-up International Boundary Anak Sariwon Demarcation Line Hungsu-ri Pyonggang Sinchon Chaeryong Sinmak Provincial Boundary Changyon 0 5 10 20 30 40 Ayang-ni Kilometers Miles Haeju 0 4 8 16 24 32 ? ? 8 Kaesong 8 3 Pyoksong 3 Dongducheon Ongjin Chuncheon SEA OF Sigyo-ri Gangneung Euijeongbu JAPAN Hongcheon Seoul KANG-WON-DO Mugho Bucheon SEOUL Samcheog Incheon Hoengseon Anyang KYONGGI-DO INCHON Weonju Jeongseon Suweon Jecheon Osan Yeongweol Chechon ? Pyeongtaeg Jungju ? 7 7 3 3 Eumseong Chungju CHUNGCHONGBUK-DO Cheonan Yeongju Oncheon-ri CHUNGCHONGNAM-DO Yeongyang Yesar Jeoneui Cheongju Hongseong Jeomchon Yecheon Cwangcheon Hamchang Andong Yeonghae TAEJON KYONGSANGBUK-DO Gongju Sangju Yeongdeog Daecheon Daejeon Euiseong Gyuam Buyeo Ogcheon Nonsan Seonsan Gunwi Ganggyeong Yeanmudae Yeongdong Gimcheon Seocheon Gumi Jacheon Pohang ? Geumsan Yangmog ? 6 6 3 Janghang 3 YELLOW SEA Muju Yeongcheon Kunsan Gunsan TAEGU Samnye Taegu Hayang RJeoenjupublic of KoreaDaegu Gyeongsan Gyeongju Gimje Jinan Janggye Geochang Goryeong CHOLLABUK-DO Hyeopung Cheongdo Aneui Ulsan Byeongyeong Hahcheon Changyeong Eonyang Hamyang Miryang Bangeojin Sancheong Gimhae Yangsan KWANGJU KYONGSANGNAM-DO Gupo Jinju Masan Kwangju Jinhae Pusan Sacheon Ungcheon ? Naju Chinhae ? 5 5 3 Goseong PUSAN 3 Yeongsanpo Suncheon CHOLLANAM-DO Samcheongpo Mogpo KOREA STRAIGHT Yeongam Beqlgyo Namhae Byeongyeong Yeosu Gangjin Jangheung Haenam Jindo ? ? 4 4 3 3 Repu blic Cheju Jeju of Korea Seogwipo Moseulpo Maetsuyoshi CHEJU-DO ? JAPAN ? 3 3 3 3 REPUBLIC OF KOREA Fukue Tomie ? ? ? ? ? 5 6 7 8 9 2 2 2 2 2 1 1 1 1 1 The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. -
Investigation of Changes in Indoor Radon Concentrations Before and After Seismic Activities in Gyeongju and Pohang, Korea
International Journal of GEOMATE, April 2019, Vol.16, Issue 56, pp. 98 - 103 ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2019.56.4635 Special Issue on Science, Engineering & Environment INVESTIGATION OF CHANGES IN INDOOR RADON CONCENTRATIONS BEFORE AND AFTER SEISMIC ACTIVITIES IN GYEONGJU AND POHANG, KOREA Hanyoung Joo1, Jae Wook Kim1, and Joo Hyun Moon1 1Department of Nuclear Energy System Engineering, Dongguk University, Gyeongju; Republic of Korea *Corresponding Author, Received: 27 Nov. 2018, Revised: 11 Dec. 2018, Accepted: 29 Dec. 2018 ABSTRACT: This paper made a continuous measurement of the indoor radon concentrations at a university building in Gyeongju, Rep. of Korea, to check if there is any notable pattern between the indoor radon concentrations and seismic activities. On September 12, 2016, earthquakes with a magnitude of 5.1 and 5.8 consecutively occurred in Gyeongju. 14 months later, an earthquake with a magnitude of 5.5 occurred in Pohang, about 30 km away from Gyeongju, on November 15, 2017. This study investigated the change in the indoor radon concentrations before and after earthquakes to identify if there is any pattern between them and found an interesting pattern. Prior to earthquakes, radon anomalies, which are radon concentration deviating by more than ±2σ from the seasonal average, was usually identified. When 5.0 or greater magnitude earthquakes occurred, the indoor radon concentrations decreased sharply a few days before them, and then continuously increased until the occurrence of the earthquake. Keywords: Earthquake, Gyeongju, Pohang, Indoor radon concentration, Radon abnormally 1. INTRODUCTION earthquake occurrence by detecting radon radioactivity change [9]. -
Energy Storage Safety Monitor October 2019
Energy Storage Safety Monitor October 2019 1 Recent lithium-ion battery storage fire incidents Arizona 2MW / 2MWh Energy Storage Facility, USA As of April 2019 September 2019: “The McMicken disaster unfolded in two distinct but related events. First, a single battery rack caught fire and burned — an occurrence that battery engineers refer to as thermal runaway. Second, an explosion rocked the enclosure when first Eight AZ Firefighters Hurt, One Critically, in Explosion responders opened the door. Photo: Fox News The parties have not released the cause of the fire, but they quickly identified 27 where it occurred: one particular rack, containing 14 battery modules. The fire incidents monitoring systems detected a voltage drop across those modules, followed by between 2017 -2019 an increase in temperature.” ---Greentech Media Chungnam Solar Station, South Korea August 2019 203+ MWh “[T]he system caught fire two days after increasing the state-of-charge to affected 95% from 70%. The cause of the fire is not yet clear, but the battery supplier, LG Chem Ltd., requested all storage sites equipped with their batteries lower the SOC back to 70%.” ---Bloomberg New Energy Finance Photo: Korea Fire Department, chuneng.bjx.com Gangwon Pyeongchang 40MW / 21MWh, South Korea September 2019 “The cause of the fire is under investigation.”---nengyuanjie.net Photo: Korea Fire Department, nengyuenjie.net Fire-hazards not limited to stationary energy storage Electric Bus Explosion, China August 2018 An electric bus exploded while in a tunnel in eastern China due to a battery fault. Source: https://www.newsflare.com/video/234049/crime-accidents/battery-fault-causes-electric-bus-to- explode-in-chinese-tunnel Photo: li-b.cn Battery Fire on Diesel-Electric Passenger Ferry, Norway October 2019 Norwegian authorities are warning ship-owners and operators about the dangers associated with lithium-ion battery systems after a fire and subsequent gas explosion on board a diesel-electric ferry in Norway. -
Seismic Surface Deformation Risks in Industrial Hubs: a Case Study from Ulsan, Korea, Using Dinsar Time Series Analysis
remote sensing Article Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis Hye-Won Yun 1,2, Jung-Rack Kim 1,* , HaSu Yoon 1 , YunSoo Choi 1 and JungHum Yu 2 1 Department of Geoinformatics, University of Seoul, Seoulsiripdae-ro 163, Dongdaemum-gu, Seoul 02504, Korea; [email protected] (H.-W.Y.); [email protected] (H.Y.); [email protected] (Y.C.) 2 Disaster Information Research Division, National Disaster Management Research Institute, 365, Jongga-ro, Jung-gu, Ulsan 44538, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-02-649-2880 Received: 19 March 2019; Accepted: 13 May 2019; Published: 20 May 2019 Abstract: The unprecedentedly strong 2016 Gyeongju and 2017 Pohang earthquakes on the Korean Peninsula aroused public concern regarding seismic hazards previously considered improbable. In this study, we investigated the effects of recent seismic activity close to the epicenters of both earthquakes in the heavy industrial complex of Ulsan. This was performed using Sentinel-1 InSAR time series data combined with on-site GPS observations and background GIS data. The interpretations revealed ongoing topographic deformation of a fault line and surrounding geological units of up to 15 mm/year. Postseismic migrations through the fault line, coupled with the two earthquakes, were not significant enough to pose an immediate threat to the industrial facilities or the residential area. However, according to InSAR time series analyses and geophysical modelling, strain from the independent migration trend of a fault line and eventual/temporal topographic changes caused by potential seismic friction could threaten precisely aligned industrial facilities, especially chemical pipelines. -