Systematic Relationships Between Tropical Corallimorpharians

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Relationships Between Tropical Corallimorpharians BULLETIN OF MARINE SCIENCE. 59( I): 196--208. 1996 CORAL REEF PAPER SYSTEMATIC RELATIONSHIPS BETWEEN TROPICAL CORALLIMORPHARIANS (CNIDARIA: ANTHOZOA: CORALLIMORPHARIA): UTILITY OF THE 5.8S AND INTERNAL TRANSCRIBED SPACER (ITS) REGIONS OF THE rRNA TRANSCRIPTION UNIT Chao/un A. Chen, Bette L. Willis and David J. Miller ABSTRACT The nucleotide sequences of a segment of the rRNA transcription unit spanning the 3'- end of the 18S rDNA to the 5'-end of the 28S rDNA were determined for the tropical corallimorpharians (Cnidaria: Anthozoa), Rhodactis howesii, R. mussoides, Amplexidiscus fenestrafer, Actinodiscus nummiformis, A. unguja and an undescribed species. Comparison of the 5.8S rDNA sequences indicated a close relationship between the genera Rhodactis and Amplexidiscus and a much more distant relationship between these two genera and Actinod- iscus spp. The level of variation detected in this conserved region of the ribosomal transcrip- tion unit is not consistent with den Hartog's revision of the family Actinodiscidae to a single genus. Among the range of species studied, there was considerable variation in both length and % (G+C) content in the ITS regions. Both ITS sequences appear to be conserved within genera but highly variable between genera, and can therefore be used for generic assignment. Analysis of both ITS and 5.8S rRNA sequences supports assignment of the undescribed species to the genus Amplexidiscus. The Corallimorpharia is a small and poorly characterized order within the an- thozoan sub-class Zoanthmia. Although morphologically similar to both the Ac- tiniaria (sea anemones) and Scleractinia (hard corals), the relationships between the Corallimorpharia and these two major orders of Hexacorallia are controversial (den Hartog, 1980; Fautin, 1993; Chen et a!., 1995). Within the order Coralli- morpharia, two distinct groups are recognisable: azooxanthallate genera which are limited to temperate and deeper waters, and zooxanthallate genera which are lim- ited to the tropics (Carlgren, 1949). This division is supported by phylogenetic analyses of the 5'-end of 28S ribosomal DNA (rDNA): in both parsimony and distance analyses, azooxanthallate corallimorpharians consistently clustered with primitive actiniarians, and zooxanthallate corallimorpharians with more advanced actiniarians (Chen et a!., 1995). Both the Corallimorpharia and Actiniaria may therefore be paraphyletic. Corallimorpharians are sometimes major components of tropical shallow water ecosystems (Fishelson, 1970; den Hartog, 1980; England, 1987). Traditionally, tropical corallimorpharians were classified into two families containing a total of six genera: the Actinodiscidae, containing Actinodiscus, Orinia, Paradiscosoma, Rhodactis and Metarhodactis, and the Corallimorphidae, containing the single genus, Ricordea (Carlgren, 1949). Of these genera, only three are known to have widespread distributions: Actinodiscus is restricted to the Red Sea and Indo-Pa- cific, whereas Rhodactis and Ricordea occur in both the Indo-Pacific and Carib- bean (Carlgren 1949). Orinia, Paradiscosoma and Metarhodactis each contain only a single species, the first two genera being restricted to the Caribbean and the last to the western Pacific (Carlgren, 1949). In addition to these, an Indo- Pacific species originally described as Discosoma yuma (Carlgren, 1900) should probably be relocated to the genus Ricordea (Chen, pers. obser.). Many of the criteria used to distinguish the actinodiscid genera, such as ab- 196 CHEN ET AL.: CORAL SYSTEMATICS 197 o 100 200km 15'S '25'S 150•E Figure 1. Map of the Great Barrier Reef Marine Park showing collection sites. sence/presence of a naked marginal zone, cnidom composition and thickness of the mesogloeal ridge in the oral disc, are ambiguous (for review, see den Hartog, 1980). After extensively reviewing the Caribbean corallimorpharian fauna, which includes three species of actinodiscids, den Hartog (1980) recognized that these characters did not reflect generic differences, and proposed that all five actino- discid genera should be lumped into the single genus, Discosoma. A new genus has been proposed (Dunn and Hamner, 1980) to accommodate the morphologi- cally-distinct Australian species, Amplexidiscus fenestrafer (family Actinodisci- dae). Systematic relationships amongst these tropical corallimorpharians are equivocal, largely because there are few informative morphological characters. 198 BULLETIN OF MARINE SCIENCE. VOL. 59,1"0. I, 1996 Table I. Taxonomic information, collecting locations of the tropical corallimorpharians, and number of individuals (in the brackets) used in this study. Identification was carried out by following the original descriptions and Carlgren's key (1949); thus we did not use Discosoma as synonymous to the original generic nomenclature. Collecting sites Taxon (from the Great Barrier Reef) Identification references* Rhodactis howesii Arthur Bay, Magnetic Island (4) Carlgren, 1949, 1950 Rhodactis mussoides Geoffrey Bay, Magnetic Island Saville-Kent, 1893; Haddon, (2) 1898; Carlgren, 1949 Amplexidiscus fenestrafer Swain Reef (2) Dunn and Hanmer, 1980 Undescribed species North Reef, Orpheus Island (2) Actinodiscus nummiformis Geoffrey Bay, Magnetic Island Carlgren, 1943 (1) Actinodiscus unguja Swain Reef (1) Carlgren, 1900 This paper reexamines den Hartog's proposal in the light of a revision of Indo- Pacific corallimorpharians (Chen, in prep.). The paucity of conserved morphological characters has led us to evaluate mo- lecular criteria for the estimation of systematic relationships between tropical cor- allimorpharians. The ribosomal RNA transcription unit has proved to be one of the most informative regions for this purpose (reviewed by Hillis and Dixon, 1991). In eukaryotes, two internal transcribed spacers (ITS I and ITS2) separate the 18S, 5.8S and 28S coding sequences, and an external transcribed spacer (ETS) is located 5'- of the 18S gene. These transcribed spacers contain signals for pro- cessing the rDNA transcript. Adjacent ribosomal RNA transcription units are sep- arated by a nontranscribed spacer (NTS) or intergenic spacer (IGS). This region contains subrepeating elements which enhance transcription (For review, see Hillis and Dixon, 1991). The coding regions of the rRNA transcription unit have been extensively used to investigate phylogenetic relationships from the phylum to the genus level (reviewed by Hillis and Dixon, 1991; Wainright et aI., 1993; Sidow and Thomas, 1994; Chen et aI., 1995); the transcribed spacers, on the other hand, are rapidly evolving regions that have been used to resolve relationships among closely-related animal (Maden et aI., 1983; Michot et aI., 1983; Goldman et aI., 1983; Chambers et aI., 1986; Gonzalez et aI., 1990; Wesson et aI., 1992; Anderson and Adlard, 1994) and plant (Torres et aI., 1990; Baldwin, 1992; Lee and Taylor, 1992; Saunders and Druehl, 1993, van Oppen, 1993; Zechman et aI., 1994) taxa. The aim of the present study was to explore the potential of ITS and 5.8S sequence data for estimating relationships among tropical corallimorpharian gen- era. For these purposes, we selected five species from the family Actinodiscidae and an undescribed species provisionally placed in this family (Chen, unpubI.). MATERIALS AND METHODS Material.-The six species of tropical corallimorpharians were collected from various sites on the Great Barrier Reef (Fig. I). Table 1 summarizes taxonomic information, collecting locations, and number of individuals used in the present study. DNA Extraction.-Genomic DNA was extracted as described in Chen et al. (1995). Small pieces (approximately 125 mm3) of tissue were ground into powder under liquid nitrogen, homogenised in 2-ml aliquots of lysis buffer (250 mM Tris-borate buffer, containing 50 mM EDTA, 0.5 M NaCI and 2% (w/v) SDS), and then incubated at 65°C for 30 min. After this time, proteinase K was added to 0.5 mg·ml-I final concentration, and the solutions incubated at 50°C until clear (4-48 h). The Iysates were then extracted two to three times with phenol-chloroform-isoamyl alcohol (25:24: I), and the DNA precipitated with isopropylalcohol and resuspended in sterile double-distilled water. CHEN ET AL.: CORAL SYSTEMATICS 199 188 5.88 288 15~ A7~ 55 ~ -I--CJ---I BD1 ~ ~A4 .....,-J'_~2SSBD2 Figure 2. Schematized ribosomal DNA repeat unit showing the positions of the ITS and coding regions. Positions and orientations of primers used for PCR and DNA sequencing are indicated by arrows. Primer sequences are given in Table 2. Polymerase Chain Reaction (PCR).-PCR primers were designed from the conserved 185 and 285 regions to amplify the entire ITS and 5.8S (Fig. 2). Internal sequencing primers were designed from conserved 185 and 5.85, 285 regions (Fig. 2). The nucleotide sequences of primers used in this study are shown in Table 2. Amplification was performed using the following protocol: one cycle at 95°C (3 min), 50°C (l min), noc (2 min); four cycles at 94°C (30 s), 50°C (l min), noc (2 min), 25 cycles at 94°C (30 s), 57°C (l min), noc (2 min), and one cycle 75°C (\0 min). Taq polymerase (Promega) was used in the buffer supplied with the enzyme and under the conditions recommended by the manufacturer. PCR products were purified by preparative agarose gel electrophoresis, then extraction with phenol: cWoroform: isoamylalcohol, followed by precipitation using ethanol/sodium acetate. Cloning and DNA Sequencing.-PCR products were cloned into pUC vectors by blunt-end ligation. PCR products were end-filled using two units of Klenow
Recommended publications
  • Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: Documenting Unusual Reefs
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303060119 Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: documenting unusual reefs Article · May 2016 DOI: 10.5281/zenodo.51289 CITATIONS READS 0 174 6 authors, including: Nicole Crane Peter Ansgar Nelson Cabrillo Community College District University of California, Santa Cruz 21 PUBLICATIONS 248 CITATIONS 26 PUBLICATIONS 272 CITATIONS SEE PROFILE SEE PROFILE Giacomo Bernardi University of California, Santa Cruz 367 PUBLICATIONS 4,728 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: One People One Reef: Micronesian outer islands View project Stay or Go View project All content following this page was uploaded by Nicole Crane on 13 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: documenting unusual reefs NICOLE L. CRANE Department of Biology, Cabrillo College, 6500 Soquel Drive, Aptos, CA 95003, USA Oceanic Society, P.O. Box 844, Ross, CA 94957, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA MICHELLE J. PADDACK Santa Barbara City College, Santa Barbara, CA 93109, USA Oceanic Society, P.O. Box 844, Ross, CA 94957, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA PETER A. NELSON H. T. Harvey & Associates, Los Gatos, CA 95032, USA Institute of Marine Science, University of California Santa Cruz, CA 95060, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA AVIGDOR ABELSON Department of Zoology, Tel Aviv University, Ramat Aviv, 69978, Israel One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA JOHN RULMAL, JR.
    [Show full text]
  • MCBI's Comments to the USCRTF: Degrading Shipwrecks Devastating
    Marine Conservation Biology Institute William Chandler, Vice President for Government Affairs February 24, 2011 Marine Conservation Biology Institute’s Comments to the US Coral Reef Task Force Meeting Degrading Shipwrecks Devastating Coral Reefs in the Pacific Remote Islands Marine National Monument US Coral Reef Task Force chairs, members, and fellow participants, My name in Bill Chandler and I am the Vice President for Government Affairs at Marine Conservation Biology Institute. MCBI is a global leader in the fight to protect vast areas of the ocean. We use science to identify places in peril and advocate for bountiful, healthy oceans for us and future generations. I am here today to update you on a serious problem affecting some of our nation’s most pristine coral reefs. At the 2009 US Coral Reef Task Force meeting in San Juan, the Task Force was briefed on marine debris impacts on coral. One impact comes from abandoned derelict vessels. As mentioned in the 2009 presentation, two shipwrecks located within the Pacific Remote Islands Marine National Monument, one at Palmyra Atoll and one at Kingman reef, are causing an ecosystem “phase shift” within the monument’s reefs resulting in the destruction of hundreds of acres of corals. I am here today to give you an update on these wrecks. As you will recall, a 121-foot Taiwanese fishing boat sank on Palmyra Atoll in 1991 and an 85-foot fishing vessel was discovered on Kingman Reef in August 2007. In addition to the initial harm to the reef from the groundings of each wreck, other problems have developed.
    [Show full text]
  • Sex, Polyps, and Medusae: Determination and Maintenance of Sex in Cnidarians†
    e Reviewl Article Sex, Polyps, and Medusae: Determination and maintenance of sex in cnidarians† Runningc Head: Sex determination in Cnidaria 1* 1* i Stefan Siebert and Celina E. Juliano 1Department of Molecular and Cellular Biology, University of California, Davis, CA t 95616, USA *Correspondence may be addressed to [email protected] or [email protected] r Abbreviations:GSC, germ line stem cell; ISC, interstitial stem cell. A Keywords:hermaphrodite, gonochorism, Hydra, Hydractinia, Clytia Funding: NIH NIA 1K01AG044435-01A1, UC Davis Start Up Funds Quote:Our ability to unravel the mechanisms of sex determination in a broad array of cnidariansd requires a better understanding of the cell lineage that gives rise to germ cells. e †This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which t may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1002/mrd.22690] p e Received 8 April 2016; Revised 9 August 2016; Accepted 10 August 2016 c Molecular Reproduction & Development This article is protected by copyright. All rights reserved DOI 10.1002/mrd.22690 c This article is protected by copyright. All rights reserved A e l Abstract Mechanisms of sex determination vary greatly among animals. Here we survey c what is known in Cnidaria, the clade that forms the sister group to Bilateria and shows a broad array of sexual strategies and sexual plasticity. This observed diversity makes Cnidariai a well-suited taxon for the study of the evolution of sex determination, as closely related species can have different mechanisms, which allows for comparative studies.t In this review, we survey the extensive descriptive data on sexual systems (e.g.
    [Show full text]
  • Wildlife Health from Land to Sea: Impacts of a Changing World
    58th Annual International Conference of the Wildlife Disease Association Wildlife Health from Land to Sea: Impacts of a Changing World Program and Abstracts August 2—7, 2009 Blaine, Washington 58th Annual International Conference of the Wildlife Disease Association Semiahmoo, Blaine, Washington USA 2009 THANK YOU TO OUR SPONSORS Oregon Department of Fish and Wildlife Platinum Sponsor $10,000 Centers for Disease Control and Prevention Gold Sponsor $5,000 USDA/APHIS/Wildlife Services Gold Sponsor $5,000 Nevada Bighorns Unlimited, Reno Chapter Silver Sponsor $2,500 US Geological Survey Silver Sponsor $2,500 Utah Division of Wildlife Resources Silver Sponsor $2,500 American Association of Wildlife Veterinarians $1,500 Oregon State University $1,000 International Wildlife Veterinary Services, Inc $1,000 Mule Deer Foundation $750 Wild Sheep Foundation $750 Idaho Department of Fish and Game $500 U.C. Davis, School of Veterinary Medicine, Wildlife Health Center in-kind Washington Department of Fish and Wildlife in-kind Nevada Department of Wildlife in-kind Wildlife Conservation Society in-kind Cover Photo: By permission: Orcinus orca by Billy Doran Eclipse Photography http://www.wclipsephoto.org/ Back Cover Photo: Colin Gillin Centers for Disease Control and Prevention (CDC) funded the printing of this year’s program 58th Annual International Conference of the Wildlife Disease Association August 2-7, 2009 Semiahmoo Blaine, Washington Program & Abstracts 58th Annual International Conference of the Wildlife Disease Association Semiahmoo, Blaine,
    [Show full text]
  • USDI-FWS Award F13AC00200 Final Report
    USDI-FWS Award F13AC00200 Final Report The ecology of Rhodactis howesii at Palmyra Atoll: determining mechanisms of invasion and patterns of succession Principal Investigator: Dr. Jennifer E. Smith; PhD. Student:Amanda L. Carter, Scripps Institution of Oceanography Email: [email protected], [email protected] March 12, 2016 Motivation: Invasive species represent a persistent form of biotic pollution across multiple aquatic and terrestrial ecosystems. These invaders put pressure on native species and can cause local or regional extinctions as native species are outcompeted for valuable resources. Invasive species are often introduced to an ecosystem through anthropogenic vectors (transfer mechanisms); including but not limited to ship-ballast water, agricultural trade, and in some instances, deliberate introduction. Although many invasions are the result of the introduction of a non-native species, there are cases in which disturbances in an ecosystem may cause a species that was native but present in low abundance to proliferate and spread in a manner similar to an invasive non-native species. The mechanism of the invasion of the corallimorph Rhodactis howesii at Palmyra Atoll has been a matter of debate since the species was first observed in the 1990s. The goals of our research were to examine possible mechanisms that may influence the invasion of the corallimorph across the atoll as well as to monitor spread, and investigate potential control options. Specifically, we examined whether there was evidence to suggest that iron released from the Hui Feng Longliner shipwreck might have provided a limiting nutrient that allowed the corallimorph to bloom. Further, we established a number of permanent monitoring plots across the atoll to monitor change in abundance over time.
    [Show full text]
  • Character Evolution in Light of Phylogenetic Analysis and Taxonomic Revision of the Zooxanthellate Sea Anemone Families Thalassianthidae and Aliciidae
    CHARACTER EVOLUTION IN LIGHT OF PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION OF THE ZOOXANTHELLATE SEA ANEMONE FAMILIES THALASSIANTHIDAE AND ALICIIDAE BY Copyright 2013 ANDREA L. CROWTHER Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson Daphne G. Fautin ________________________________ Paulyn Cartwright ________________________________ Marymegan Daly ________________________________ Kirsten Jensen ________________________________ William Dentler Date Defended: 25 January 2013 The Dissertation Committee for ANDREA L. CROWTHER certifies that this is the approved version of the following dissertation: CHARACTER EVOLUTION IN LIGHT OF PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION OF THE ZOOXANTHELLATE SEA ANEMONE FAMILIES THALASSIANTHIDAE AND ALICIIDAE _________________________ Chairperson Daphne G. Fautin Date approved: 15 April 2013 ii ABSTRACT Aliciidae and Thalassianthidae look similar because they possess both morphological features of branched outgrowths and spherical defensive structures, and their identification can be confused because of their similarity. These sea anemones are involved in a symbiosis with zooxanthellae (intracellular photosynthetic algae), which is implicated in the evolution of these morphological structures to increase surface area available for zooxanthellae and to provide protection against predation. Both
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Palmyra Rhodactis
    UNIVERSITY OF CALIFORNIA, SAN DIEGO MARINE BIOLOGY RESEARCH DIVISION 9500 GILMAN DRIVE SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA, CALIFORNIA 92093-0202 (858) 534-1607 (858) 534-7313 FAX Palmyra Rhodactis Monitoring Project (PRMP) Progress Report March 30th 2015 Prepared by: Gareth J. Williams, Ph.D. ([email protected]) Background In 1991 a longliner vessel (Hui Feng) wrecked on the shallow western reef terrace of Palmyra Atoll National Wildlife Refuge (PANWR). In 2004 when the grounded vessel was first surveyed, low densities of the fleshy (non-calcifying) corallimorph Rhodactis howesii were observed (Work et al. 2008). By 2008 densities had exploded and Rhodactis is now one of the dominant benthic competitors surrounding the shipwreck area (Work et al. 2008) (Fig. 1). While the exact mechanism behind this corallimorph phase-shift is still unknown, it was hypothesized that iron leaching out of the vessel could be tipping the competitve balance in favor of the corallimorphs (Work et al. 2008). Excess iron levels in the oligotrophic central Pacific have since been linked to other phase-shifts on coral reefs including cyanobacterial and filamentous green algae (Wegley Kelly et al. 2012). PANWR represents a biodiversity hotspot in the central Pacific (Williams et al. 2008; Maragos and Williams 2011) and the reefs surrounding the Atoll system boast some of the highest cover of calcifying benthic organisms (Williams et al. 2013) and predatory fish biomass (Sandin et al. 2008) in the central Pacific Ocean. As such, any threats to reef health require management actions to reinstate reef resilience and promote persistance of reef-building (calcifying) organisms.
    [Show full text]
  • Two Distinct, Geographically Overlapping Lineages of the Corallimorpharian Ricordea Florida (Cnidaria: Hexacorallia: Ricordeidae) H
    Roger Williams University DOCS@RWU Feinstein College of Arts & Sciences Faculty Papers Feinstein College of Arts and Sciences 2011 Two Distinct, Geographically Overlapping Lineages of the Corallimorpharian Ricordea Florida (Cnidaria: Hexacorallia: Ricordeidae) H. Torres-Pratts University of Puerto Rico Mayagüe T. Lado-Insua University of Rhode Island Andrew L. Rhyne Roger Williams University, [email protected] L. Rodríguez-Matos University of Puerto Rico Mayagüe N. V. Schizas University of Puerto Rico Mayagüe Follow this and additional works at: http://docs.rwu.edu/fcas_fp Part of the Biology Commons, and the Marine Biology Commons Recommended Citation Torres-Pratts, H., .T Lado-Insua, A.L. Rhyne, L. Rodrigues-Matos, and N.V. Schizas. 2011. "Two Distinct, Geographically Overlapping Lineages of the Corallimorpharian Ricordea Florida Cnidaria: Hexacorallia: Ricordeidae." Coral Reefs 30: 391-396. This Article is brought to you for free and open access by the Feinstein College of Arts and Sciences at DOCS@RWU. It has been accepted for inclusion in Feinstein College of Arts & Sciences Faculty Papers by an authorized administrator of DOCS@RWU. For more information, please contact [email protected]. Coral Reefs (2011) 30:391–396 DOI 10.1007/s00338-010-0709-z NOTE Two distinct, geographically overlapping lineages of the corallimorpharian Ricordea florida (Cnidaria: Hexacorallia: Ricordeidae) H. Torres-Pratts • T. Lado-Insua • A. L. Rhyne • L. Rodrı´guez-Matos • N. V. Schizas Received: 3 March 2010 / Accepted: 12 December 2010 / Published online: 29 December 2010 Ó Springer-Verlag 2010 Abstract We examined the genetic variation of the cor- Guadeloupe, and Curac¸ao. Because of the multi-allelic allimorpharian Ricordea florida; it is distributed throughout nature of the ITS region, four individuals from Lineage 1 the Caribbean region and is heavily harvested for the marine and six from Lineage 2 were cloned to evaluate the levels of aquarium trade.
    [Show full text]
  • Information to Users
    Sponges Dominant In The Alaska Intertidal: Biology, Ecology, And Genetic Diversity Item Type Thesis Authors Knowlton, Ann Lynette Download date 27/09/2021 10:34:55 Link to Item http://hdl.handle.net/11122/8617 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SPONGES DOMINANT IN THE ALASKA INTERTIDAL: BIOLOGY, ECOLOGY, AND GENETIC DIVERSITY A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements of the Degree of DOCTOR OF PHILOSOPHY By Ann Lynette Knowlton, B.S.
    [Show full text]
  • Jacobs Hawii 0085O 11060.Pdf
    A PHYLOGENOMIC EXAMINATION OF PALMYRA ATOLL’S CORALLIMORPHARIAN INVADER A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MARINE BIOLOGY April, 2021 By Kaitlyn P. Jacobs Thesis Committee: Cynthia Hunter, Chairperson Robert Toonen Amanda Pollock Keywords: corallimorph, RAD-seq, species deliniation, anthozoan genetics, Palmyra Atoll This work is dedicated to my dad, for helping me with my troubles and guiding me through my years. ii Acknowledgements First and foremost I would like to thank my family, for their constant support and encouragement in everything that I decide to pursue. In addition I want to thank the friends that had to bear with me while I was at the height of this project, you are all troopers and the love doesn’t go unnoticed. I would like to extend a sincere mahalo to my thesis committee: Dr. Cynthia Hunter, Dr. Rob Toonen, and Dr. Amanda Pollock. Working on this thesis was a very formative process for me and each of you contributed uniquely to that, for which I am eternally grateful. A big thank you to Mariana Rocha de Souza for contributing to the part of this work relating to Symbiodiniaceae sequencing and analysis. I would like to thank the HIMB EPSCoR core facility and the University of Hawai‘i’s Advanced Studies in Genomics, Proteomics, and Bioinformatics facility for their assistance with DNA sequencing. I also would like to give a large thank you to the United States Fish and Wildlife Service Palmyra team for collaboration and sample collection, specifically Stefan Kropidlowski, Danielle Cantrell, the amazing volunteers, and Tim Clark for collection from American Sāmoa.
    [Show full text]
  • Status of Coral Reefs of the Pacific 2011 PRIA 051813-Dr.Jeankenyon-Todos
    STATUS OF CORAL REEFS OF THE PACIFIC – 2011 ADDENDUM: United States Pacific Remote Islands Marine National Monument (Johnston, Howland, BaKer, Jarvis, Palmyra, Kingman, WaKe) By: Dr. Jean Kenyon, U.S. Fish and Wildlife Service - Inventory and Monitoring Program Marine Area: 225,040 km2 (1) Coastline: unkn Population (2011 est.): < 125 Land Area: 15 km2 Population (2050 proj): <125 Reef Area: 252.3 km2 (2) Population growth: Total MPAs: 8 Urban population: 0 Mangrove area: 0 km2 GDP: NA Percentage of reefs threatened: ?? GDP/Cap: NA Data from NWRS Refuge Profiles database (https://rmis/fws.gov/Profiles) unless indicated with a reference number Overview The US Pacific Remote Islands (PRI) includes seven diverse and widely separated islands, atolls, and reefs in the Central Pacific that are under the jurisdiction of the United States. Baker, Howland, and Jarvis Islands; Johnston and Palmyra Atolls; and Kingman Reef all lie between Hawaii and American Samoa. Wake Atoll is located between the Northwestern Hawaiian Islands (NWHI) and Guam. All of the PRIS have been managed as National Wildlife Refuges by the US Fish and Wildlife Service (USFWS) since 1926 (Johnston), 1974 (Howland, Baker, Jarvis), 2001 (Palmyra and Kingman), or 2009 (Wake). The PRI are distant from human population centers; the least remote are Jarvis and Palmyra, which are both around 350 km from, respectively, Kiritimati and Tabuaeran in the Line Islands chain. Four of the PRIS (Howland, Baker, Jarvis, and Kingman) are unpopulated. A small field camp at Johnston maintained by the USFWS has supported a staff of 4-5 people since 2010 to control non-native invasive Yellow Crazy ants.
    [Show full text]
  • CNIDARIA: ANTHOZOA: CORALLIMORPHARIA): UTILITY of the 5.8S and INTERNAL TRANSCRIBED SPACER (ITS) REGIONS of the Rrna TRANSCRIPTION UNIT
    BULLETIN OF MARINE SCIENCE. 59( I): 196--208. 1996 CORAL REEF PAPER SYSTEMATIC RELATIONSHIPS BETWEEN TROPICAL CORALLIMORPHARIANS (CNIDARIA: ANTHOZOA: CORALLIMORPHARIA): UTILITY OF THE 5.8S AND INTERNAL TRANSCRIBED SPACER (ITS) REGIONS OF THE rRNA TRANSCRIPTION UNIT Chao/un A. Chen, Bette L. Willis and David J. Miller ABSTRACT The nucleotide sequences of a segment of the rRNA transcription unit spanning the 3'- end of the 18S rDNA to the 5'-end of the 28S rDNA were determined for the tropical corallimorpharians (Cnidaria: Anthozoa), Rhodactis howesii, R. mussoides, Amplexidiscus fenestrafer, Actinodiscus nummiformis, A. unguja and an undescribed species. Comparison of the 5.8S rDNA sequences indicated a close relationship between the genera Rhodactis and Amplexidiscus and a much more distant relationship between these two genera and Actinod- iscus spp. The level of variation detected in this conserved region of the ribosomal transcrip- tion unit is not consistent with den Hartog's revision of the family Actinodiscidae to a single genus. Among the range of species studied, there was considerable variation in both length and % (G+C) content in the ITS regions. Both ITS sequences appear to be conserved within genera but highly variable between genera, and can therefore be used for generic assignment. Analysis of both ITS and 5.8S rRNA sequences supports assignment of the undescribed species to the genus Amplexidiscus. The Corallimorpharia is a small and poorly characterized order within the an- thozoan sub-class Zoanthmia. Although morphologically similar to both the Ac- tiniaria (sea anemones) and Scleractinia (hard corals), the relationships between the Corallimorpharia and these two major orders of Hexacorallia are controversial (den Hartog, 1980; Fautin, 1993; Chen et a!., 1995).
    [Show full text]