Modeling Software Helps Rocket Scientists Go with the Flow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
Rocket Propulsion Fundamentals 2
https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Development of a Reliable Performance Gas Generator of 75 Tonf-Class Liquid Rocket Engine for the Korea Space Launch Vehicle II
DOI: 10.13009/EUCASS2019-521 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Development of a Reliable Performance Gas Generator of 75 tonf-class Liquid Rocket Engine for the Korea Space Launch Vehicle II Byoungjik Lim*, Munki Kim*, Donghyuk Kang*, Hyeon-Jun Kim*, Jong-Gyu Kim*, and Hwan-Seok Choi* *Korea Aerospace Research Institute 169-84, Gwahak-ro, Yuseong-Gu Daejeon, 34133, South Korea [email protected] Abstract In this paper, development history and result of a reliable performance gas generator of 75 tonf-class liquid rocket engine is described. Based on the experience acquired from the 30 tonf-class gas generator development, the almost identical concept was adopted to 75 tonf-class gas generator such as a coaxial swirl injector and a regeneratively cooled combustion chamber. During the entire development process using the full-scale and subscale technological demonstration model and development model up to now, combustion tests of over 430 times and cumulative time of over 17 700 seconds have been carried out for a 75 tonf-class gas generate. Now the 75 tonf-class fuel-rich gas generator shows very reliable and reproducible characteristics throughout the entire lifetime including the flight test which was done with the test launch vehicle in November 2018. Thus, it can be said that the development of a 75 tonf-class fuel rich gas generator which will be used in Korea first independent space launch vehicle, KSLV-II was finished successfully. 1. Introduction As a leading institute for technology which is related with space launch vehicle and a national space development agency in the Republic of KOREA, the Korea Aerospace Research Institute (KARI) has been continuously researching and developing technology related to space launch vehicles since establishment in 1989. -
6. Chemical-Nuclear Propulsion MAE 342 2016
2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20 -
Materials for Liquid Propulsion Systems
https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. -
Fastrac Engine: Understanding Technical Implications of Programmatic Decisions
Fastrac Engine: Understanding Technical Implications of Programmatic Decisions Mary Beth Koelbl Katherine Van Hooser 7/28/15 Outline I. Introduction and Objective of Presentation II. Background and Landscape A. Engine Developments B. Fastrac Origins and the Government-Led Approach C. Implementation III. Transition from Manned Space Flight to Faster Better Cheaper A. Fastrac Features B. Lessons Learned IV. Fastrac History V. Program Legacy Background and Landscape • There was significant hiring at MSFC in the late 1980’s and early 1990’s. The center was immersed in Challenger Return-to-Flight and Shuttle upgrades, but little else • By the mid 1990’s, recognizing the need to train the new generation of engineers who were lacking in development expertise, MSFC management decided to take action o Propulsion and Materials management knew that engine developments were difficult and costly o They needed to create an opportunity themselves so they focused on in-house designed component technologies o Simplex Turbopump and 40k Thrust Chamber Assembly began; focused on 15 to 40k thrust applications such as Bantam Background and Landscape • In the Mid 1990s, leveraging the component technology effort, an in- house rocket engine design and development project was initiated • The Objectives were to o Demonstrate low cost engine in a faster, better, cheaper way of doing business. Including utilizing non-traditional suppliers o Give the younger propulsion engineers real hands-on hardware and cradle-to-grave design experience. • A test-bed / prototype engine design and hardware project, conducted entirely in-house, was chosen as an effective way of accomplishing these objectives • Initially envisioned a test-bed for the Bantam Booster, low cost design with a 2 Year Development; eventually became a 60k engine design First and Only Large Rocket Engine Developed in-House at NASA 4 Background and Landscape System Req. -
발사체 소형엔진용 적층제조 기술 동향 Technology Trends
Journal of the Korean Society of Propulsion Engineers Vol. 24, No. 2, pp. 73-82, 2020 73 Technical Paper DOI: https://doi.org/10.6108/KSPE.2020.24.2.073 발사체 소형엔진용 적층제조 기술 동향 이금오 a, * ․ 임병직 a ․ 김대진 b ․ 홍문근 c ․ 이기주 a Technology Trends in Additively Manufactured Small Rocket Engines for Launcher Applications Keum-Oh Lee a, * ․ Byoungjik Lim a ․ Dae-Jin Kim b ․ Moongeun Hong c ․ Keejoo Lee a a Future Launcher R&D Program Office, Korea Aerospace Research Institute, Korea b Turbopump Team, Korea Aerospace Research Institute, Korea c Launcher Propulsion Control Team, Korea Aerospace Research Institute, Korea * Corresponding author. E-mail: [email protected] ABSTRACT Additively manufactured, small rocket engines are perhaps the focal activities of space startups that are developing low-cost launch vehicles. Rocket engine companies such as SpaceX and Rocket Lab in the United States, Ariane Group in Europe, and IHI in Japan have already adopted the additive manufacturing process in building key components of their rocket engines. In this paper on technology trends, an existing valve housing of a rocket engine is chosen as a case study to examine the feasibility of using additively manufactured parts for rocket engines. 초 록 저비용 발사체를 개발 중인 많은 스타트업들이 소형 로켓 엔진을 확보하기 위해 적층제조 기법을 개발 중이다. 또한, 미국의 SpaceX, Rocket Lab 등을 비롯하여, 유럽의 Ariane Group, 일본의 IHI와 같은 엔진 제작업체들은 로켓 엔진의 주요부품에 적층제조를 채택하여 생산하고 있다. 본 논문에서 는 적층제작기법의 타당성을 조사하기 위해서 기존 로켓 엔진의 밸브 하우징을 적층제조 하는 사례 연구 결과를 소개한다. Key Words: Additive Manufacturing(적층제조), 3D Printing(3D 프린팅), Liquid Rocket Engine(액체 로켓엔진), Thrust Chamber(연소기), Turbopump(터보펌프), Valve(밸브) 1. -
Los Motores Aeroespaciales, A-Z
Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales. -
Falcon 1 User's Guide
Falcon 1 Launch Vehicle Payload User’s Guide Rev 7 TABLE OF CONTENTS 1. Introduction 4 1.1. Revision History 4 1.2. Purpose 6 1.3. Company Description 6 1.4. Falcon Program Overview 6 1.5. Mission Management 7 2. Falcon 1 Launch Vehicles 8 2.1. Overview 8 2.1.1. Falcon 1 9 2.1.2. Falcon 1e 11 2.2. Availability 12 2.3. Reliability 13 2.4. Performance 15 2.5. Pricing 16 2.6. Standard Services 16 2.7. Non‐standard Services 16 2.8. Vehicle Axes/Attitude Definitions 17 3. Requirements & Environments 18 3.1. Mass Properties 18 3.2. Payload Interfaces 19 3.2.1. Falcon Payload Attach Fittings 19 3.2.2. Test Fittings and Fitcheck Policy 19 3.2.3. Electrical Design Criteria 19 3.3. Documentation Requirements 21 3.4. Payload Environments 23 3.4.1. Transportation Environments 23 3.4.2. Humidity, Cleanliness and Thermal Control 23 3.4.3. Payload Air Conditioning 24 3.4.4. Launch and Flight Environments 24 4. Facilities 32 4.1. Headquarters – Hawthorne, California 32 4.2. Washington, DC 32 4.3. Test Facility ‐ Central Texas 32 4.4. Launch Site – Kwajalein Atoll 33 4.4.1. Processing Services and Equipment 33 5. Launch Operations 36 5.1. Launch Control Organization 36 5.2. Mission Integration 37 5.2.1. Payload Transport to Launch Site 38 5.2.2. Payload Integration 38 5.2.3. Example Flight Profiles 41 D000973 Rev Falcon 1 User’s Guide ‐ D000973 Rev. 7 Page | 3 6. -
On the X-34 FASTRAC – Memorandums of Misunderstanding
https://ntrs.nasa.gov/search.jsp?R=20160005660 2019-08-31T03:30:34+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server National Aeronautics and Space Administration NASA Case Study MSFC-CS1001-1 By Lakiesha V. Hawkins and Jim E. Turner Rev. 09/15/15 On the X-34 FASTRAC – Memorandums of Misunderstanding Engineers at MSFC designed, developed, and tested propulsion systems that helped launch Saturn I, IB, and V boosters for the Apollo missions. After the Apollo program, Marshall was responsible for the design and development of the propulsion elements for the Shuttle launch vehicle, including the solid rocket boosters, external tank and main engines. Each of these systems offered new propulsion technological challenges that pushed engineers and administrators beyond Saturn. The technical challenges presented by the development of each of these propulsion systems helped to establish and sustain a culture of engineering conservatism and was often accompanied by a deep level of penetrationi into contractors that worked on these systems. The FASTRAC Engine Project Figure 1 FASTRAC engine (NASA) In the middle of the 1990s NASA was pushing to lower the cost and development time of access to space. One of the targets to lower barriers to space access was the cost of propulsion systems. NASA sought to prove to itself and to the propulsion community that a new propulsion system could be built much cheaper and much faster than in the past. In fact, the propulsion community within NASA MSFC sought to go from a ‘clean sheet’ engine design to having the engine in a test stand in 2 years. -
Spacex Propulsion
SpaceX Propulsion Tom Markusic Space Exploration Technologies 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference July 28, 2010 Friday, August 6, 2010 SpaceX Propulsion Tom Markusic Space Exploration Technologies 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference July 28, 2010 Friday, August 6, 2010 Overview Inverse Hyperbolic Bessel Functions Friday, August 6, 2010 Near-term Propulsion Needs Friday, August 6, 2010 Near-term Propulsion Needs HLLV Propulsion • Merlin 2 uses scaled-up, flight proven Merlin 1 design J-2X • SpaceX can develop and flight qualify the Merlin 2 engine in ~3 years at a cost of ~$1B. Production: ~$50M/engine • J-2X development already in progress under Constellation program Merlin 2 J-2X Propellant LOX/RP LOX/LH2 Merlin 2 Thrust (vac) [klbf] 1,700 292 Isp (vac) [sec] 322 448 T/W [lbf/lbm] 150 55 Friday, August 6, 2010 Near-term Propulsion Needs HLLV Propulsion Solar Electric Propulsion for Cargo Tug • Merlin 2 uses scaled-up, flight • Cluster of ~5 high TRL thrusters proven Merlin 1 design NEXT process 100 kWe solar power J-2X • SpaceX can develop and flight Ion Thruster• Next generation tug uses single qualify the Merlin 2 engine in ~3 high power thruster, such as NASA years at a cost of ~$1B. 457M Production: ~$50M/engine • Third generation tug uses nuclear • J-2X development already in electric propulsion at megawatt progress under Constellation Busek BHT-20K levels NEXT BHT-20 457M Propellant Xenon Xenonk Xenon program Merlin 2 J-2X Hall Thruster Propellant LOX/RP LOX/LH2 Power [kWe] 7 20 96 Thrust (vac) [klbf]