Abnormal Pygidial Spine in an Injured(?) Trilobite (Tricrepicephalus Texanus) from the Weeks Formation (Cambrian, Guzhangian), House Range, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Abnormal Pygidial Spine in an Injured(?) Trilobite (Tricrepicephalus Texanus) from the Weeks Formation (Cambrian, Guzhangian), House Range, Utah Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 71 ABNORMAL PYGIDIAL SPINE IN AN INJURED(?) TRILOBITE (TRICREPICEPHALUS TEXANUS) FROM THE WEEKS FORMATION (CAMBRIAN, GUZHANGIAN), HOUSE RANGE, UTAH JOHN R. FOSTER Utah Field House of Natural History State Park Museum, 496 East Main St., Vernal, Utah 84078, [email protected] Abstract—An essentially complete Tricrepicephalus texanus found in the Weeks Formation (Cambrian, Miaolingian, Guzhangian) at North Canyon, Utah, is missing the distal half of the left pygidial spine, which appears to have healed. This represents a rare instance of the loss of only a portion of a spine for a trilobite. The spine was likely broken during a failed predatory attack on the individual. In addition, a shortened T2 pleural spine and damaged librigena suggest the individual may have had multiple injuries. INTRODUCTION complete. The right pygidial spine is 11 mm long, but the broken The Weeks Formation is a middle-late Cambrian left spine preserves slightly over 5 mm of the originally proximal (Miaolingian, Guzhangian) stratigraphic unit restricted to half. The lateral edge of the distal tip of the shortened left spine the southern House Range of Millard County, Utah (Walcott, curves gently toward the medial edge, which, in contrast, is 1908; Robison, 1964; Hintze and Davis, 2002, 2003). It has nearly straight, suggesting that the original break may have been produced a wide variety of trilobites, unmineralized arthropods, diagonal across the spine from proximolateral to distomedial. sponges, worms, and other fossil taxa (Adrain et al., 2009; There is no extra mineralization or deformation indicative of a Lerosey-Aubril et al., 2012, 2018; Robison et al., 2015; Foster pathology or teratological origin for the shortened spine, and and Gaines, 2016). One of the less common trilobites is the the completeness of the rest of the exoskeleton suggests that the ptychopariid Tricrepicephalus texanus of the Cedaria Biozone. short spine is not a taphonomic modification. Tricrepicephalus was defined by Kobayashi (1935) based on the The specimen also has an abnormally short, apparently species Arionellus (Bathyurus) texanus Shumard, 1861 from broken right pleural spine on thoracic segment T2 (Fig. 1C). The Texas. A number of other species of Tricrepicephalus have been right T2 pleural spine has a blunt, shorter tip compared to the left described from elsewhere in North America (e.g., Resser, 1938; T2 pleural spine, which is intact. It is unclear if the T2 pleural Lochman and Duncan, 1944; Stitt and Perfetta, 2000), although spine break is a healed injury or, perhaps less likely, postmortem Pratt (1992) recognized only T. texanus and T. tripunctatus. The damage. Tips of the right pleural spines of T10 and T11 are also specimen described here, with an abnormal left pygidial spine broken off but are clearly unhealed and were probably a result and right T2 pleural spine, was found at the North Canyon of postmortem damage; the otherwise intact condition of the locality in the Weeks Formation of Utah in June 2016 (Quarry 1 carcass suggests this damage was probably not transport-related. in Lerosey-Aubril et al., 2018). The left librigena is damaged and only the proximal portion Institutional Abbreviations—FHPR, Utah Field House is preserved; the lateral portion of the plate, lateral border, and of Natural History State Park Museum, Vernal, Utah; KUIMP, genal spine are gone (Fig. 1). The remaining proximal part University of Kansas Invertebrate Paleontology Collection, of the librigenal is broken into several polygonal fragments Lawrence, Kansas; SUSA, Southeastern Utah Society of Arts but is otherwise articulated in life-position. This suggests the and Sciences, Moab Museum, Moab, Utah; USNM, National possibility of a lethal injury to the left librigena that removed the Museum of Natural History, Washington, D.C. border and spine and broke up the more proximal portion. Fieldwork sampling that produced this specimen (FHPR DESCRIPTION 16570) also recorded two isolated pygidia of Tricrepicephalus, The full trilobite specimen (FHPR 16570; formerly SUSA both with complete spines on each side. 3163, Foster and Hunt-Foster, 2016) is 53 mm long, with most INTERPRETATION elements of the skeleton intact except for the lateral part of the left librigenal and genal spine (Fig. 1). The specimen is a ventral Trilobite exoskeletal abnormalities may result from injuries view of the interior of the dorsal exoskeleton; the hypostome (mechanical damage from predation attempts or accidental self- appears to be approximately in place as well, suggesting it is a inflicted damage), teratological issues (developmental problems), carcass. When found, the specimen was covered entirely with or pathologies (disease or parasitic infections) (Bicknell et al., matrix, and it was exposed through air-abrasion preparation, so 2018; Bicknell and Pates, 2019). Non-lethal injuries can be it is known that missing elements had not split off at discovery. identified by healing and scar formation (especially of U-, V-, Shafts of each pygidial spine are crushed, and the broken and W-shaped indentations of elements) and other deformities pieces at the thick spine bases reveal the original hollowness of normal elemental shape. Teratological abnormalities may be of the spines (Fig. 1B), a characteristic clear in specimens identified by additional or unusual spines or segments (or other from other formations that are preserved three dimensionally. elements), and pathologies are usually identified by atrophy or Three dimensionally preserved Tricrepicephalus specimens infected growth of elements (Bicknell et al., 2018; Bicknell and from limestones in other parts of North America indicate that Pates, 2019). the pygidial spines were hollow, round in cross-section, and The fact that the broken edge of the pygidial spine of FHPR projected posterodorsally from the pygidium (Lochman, 1936, 16570 is neither jagged nor flat suggests that the tip was partly 1941; Pratt, 1992). Those from the Weeks Formation are regenerated on the now-shorter spine during subsequent molts; flattened due to compaction. The now-shortened left pygidial taphonomic or other postmortem breakages would be unlikely to spine of FHPR 16570 has a tip surface that is rounded off produce the blunt, conical tip. Similarly, the tip does not appear asymmetrically and is slightly less smooth than the intact part indicative of a disease pathology. That the skeleton includes of the spine along the shaft. The right spine is fully intact and the hypostome and articulated right librigena suggests that the 72 FIGURE 1. Trilobite Tricrepicephalus texanus from the Weeks Formation, North Canyon, House Range, Millard County, Utah (FHPR 16570). A, As preserved, after air-abrasion preparation, ventral view of dorsal exoskeleton (left side of animal on right in photo), lighting from left in photo. Scale bar = 1 cm. B, Close up of pygidial spines showing complete right spine (on left in photo) with compacted hollow shaft base and shortened left pygidial spine with oblique healed repair surface (arrow), lighting from left. Scale bar = 1 cm. C, Close up of thoracic segments T1 (displaced slightly anteriorly under cranidium) through T8, showing broken right pleural spine of T2 (arrow). Scale bar = 1 cm. specimen is a carcass, and thus the broken spine is unlikely to injured and healed. Lochman (1941) illustrated a pygidium of be damage from the last molt (Owen, 1985). Other than a healed Tricrepicephalus from the Bonneterre Dolomite of Missouri break to the spine, the only other plausible cause of the shortened with an entirely missing left spine that broke and healed at the spine and blunt tip might be a developmental (teratalogical) base of the spine up against the body of the pygidium. In being anomaly resulting in a less sharp tip and a spine about half the short, blunt, and possibly partly regenerated, the short pygidial normal length. Such abnormalities are known from trilobites, spine of FHPR 16570 is similar to a broken and healed right though often in the thoracic segments (Pocock, 1974). genal spine in a specimen of the trilobite Cedaria minor from FHPR 16570’s shortened left pygidial spine shows no signs the Weeks Formation (KUIMP 259299) illustrated by Babcock of infected growth or clear teratology, but its apparently rounded (1993). The Weeks Tricrepicephalus specimen also differs from off new spine tip suggests repair of mechanical damage from an a pathological or teratological left pygidial spine illustrated by injury, most likely resulting from predation or damage during Lochman (1936), also from the Bonneterre Dolomite, with a molting. These two modes of injury can be difficult to distinguish curled distal tip (USNM 91866). (Brandt, 2002). Predation may be a preferred interpretation of Predation appears to have arisen very early in the history of injury in cases in which there is healing and multiple segments animals (Bengtson, 2002), and predation injuries are commonly are affected or there are “substantial single spine injuries” recognized on pleural lobes (particularly posteriorly), pygidia, (Bicknell et al., 2019). These two criteria appear to be met with and cephala of trilobites of various geologic ages (Ludvigsen, FHPR 16570, and in addition, injuries are the most common 1977; Conway Morris and Jenkins, 1985; Babcock, 1993, 2003, abnormalities for extant xiphosurids, which demonstrate some 2007; Owen and Tilsley, 1996); such injuries are expected on of the same types of injuries as trilobites (Bicknell and Pates, presumably defensive spines, but distinguishing these injured 2019). The abnormal pygidial spine of FHPR 16570 is therefore spines from those resulting from other causes can be difficult. interpreted here as resulting from the healing of a predation Though spines may have served several functions (Brandt, injury. 2002), the documentation of broken and healed pygidial spines DISCUSSION in several specimens of Tricrepicephalus indicates both the potentially defensive nature of the spines and the ability of the The blunt, rounded nature of the shortened spine in FHPR animals to survive attempted predation.
Recommended publications
  • A New Middle Cambrian Trilobite with a Specialized Cephalon from Shandong Province, North China
    Editors' choice A new middle Cambrian trilobite with a specialized cephalon from Shandong Province, North China ZHIXIN SUN, HAN ZENG, and FANGCHEN ZHAO Sun, Z., Zeng, H., and Zhao, F. 2020. A new middle Cambrian trilobite with a specialized cephalon from Shandong Province, North China. Acta Palaeontologica Polonica 65 (4): 709–718. Trilobites achieved their maximum generic diversity in the Cambrian, but the peak of morphological disparity of their cranidia occurred in the Middle to Late Ordovician. Early to middle Cambrian trilobites with a specialized cephalon are rare, especially among the ptychoparioids, a group of libristomates featuring the so-called “generalized” bauplan. Here we describe an unusual ptychopariid trilobite Phantaspis auritus gen. et sp. nov. from the middle Cambrian (Miaolingian, Wuliuan) Mantou Formation in the Shandong Province, North China. This new taxon is characterized by a cephalon with an extended anterior area of double-lobate shape resembling a pair of rabbit ears in later ontogenetic stages; a unique type of cephalic specialization that has not been reported from other trilobites. Such a peculiar cephalon as in Phantaspis provides new insights into the variations of cephalic morphology in middle Cambrian trilobites, and may represent a heuristic example of ecological specialization to predation or an improved discoidal enrollment. Key words: Trilobita, Ptychopariida, ontogeny, specialization, Miaolingian, Paleozoic, Longgang, Asia. Zhixin Sun [[email protected]], Han Zeng [[email protected]], and Fangchen Zhao [[email protected]] (cor­ responding author), State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palae­ ontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
    [Show full text]
  • Exceptionally Preserved Fossil Assemblages Through Geologic Time and Space
    Gondwana Research 48 (2017) 164–188 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR Focus Review Exceptionally preserved fossil assemblages through geologic time and space A.D. Muscente a,⁎, James D. Schiffbauer b, Jesse Broce b, Marc Laflamme c, Kenneth O'Donnell d,ThomasH.Boage, Michael Meyer f, Andrew D. Hawkins g,JohnWarrenHuntleyb, Maria McNamara h, Lindsay A. MacKenzie i, George D. Stanley Jr. j, Nancy W. Hinman j, Michael H. Hofmann j, Shuhai Xiao g a Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA b Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA c Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada d AECOM, Germantown, MD 20876, USA e Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA f Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA g Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA h School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland i Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454, USA j Department of Geosciences, University of Montana, Missoula, MT 59812, USA article info abstract Article history: Geologic deposits containing fossils with remains of non-biomineralized tissues (i.e. Konservat-Lagerstätten) Received 23 February 2017 provide key insights into ancient organisms and ecosystems. Such deposits are not evenly distributed through Received in revised form 13 April 2017 geologic time or space, suggesting that global phenomena play a key role in exceptional fossil preservation.
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • (Drumian, Miaolingian) Marjum Formation of Western Utah, USA
    First palaeoscolecid from the Cambrian (Drumian, Miaolingian) Marjum Formation of western Utah, USA WADE W. LEIBACH, RUDY LEROSEY-AUBRIL, ANNA F. WHITAKER, JAMES D. SCHIFFBAUER, and JULIEN KIMMIG Leibach, W.W., Lerosey-Aubril, R., Whitaker, A.F., Schiffbauer, J.D., and Kimmig, J. 2021. First palaeoscolecid from the Cambrian (Drumian, Miaolingian) Marjum Formation of western Utah, USA. Acta Palaeontologica Polonica 66 (X): xxx–xxx. The middle Marjum Formation is one of five Miaolingian Burgess Shale-type deposits in Utah, USA. It preserves a diverse non-biomineralized fossil assemblage, which is dominated by panarthropods and sponges. Infaunal components are particularly rare, and are best exemplified by the poorly diverse scalidophoran fauna and the uncertain presence of palaeoscolecids amongst it. To date, only a single Marjum Formation fossil has been tentatively assigned to the palaeoscolecid taxon Scathascolex minor. This specimen and two recently collected worm fragments were analysed in this study using scanning electron microscopy and energy dispersive X-ray spectrometry. The previous occurrence of a Marjum Formation palaeoscolecid is refuted based on the absence of sclerites in the specimen, which we tentatively assign to an unidentified species of Ottoia. The two new fossils, however, are identified as a new palaeoscolecid taxon, Arrakiscolex aasei gen. et sp. nov., characterized by the presence of hundreds of size-constrained (20–30 µm), smooth- rimmed, discoid plates on each annulus. This is the first indisputable evidence for the presence of palaeoscolecids in the Marjum biota, and a rare occurrence of the group in the Cambrian of Laurentia. Palaeoscolecids are now known from nine Cambrian Stage 3–Guzhangian localities in Laurentia, but they typically represent rare components of the biotas.
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • PHYLOGENY and DISTRIBUTION by LARS E
    [Papers in Palaeontology, 2019, pp. 1–17] CAMBRIAN RHYNCHONELLIFORM NISUSIOID BRACHIOPODS: PHYLOGENY AND DISTRIBUTION by LARS E. HOLMER1,2 , MOHAMMAD-REZA KEBRIA-EE ZADEH3, LEONID E. POPOV4, MANSOUREH GHOBADI POUR2,4,5,J.JAVIERALVARO 6, VACHIK HAIRAPETIAN7 and ZHIFEI ZHANG1 1Shaanxi Key Laboratory of Early Life & Environments, State Key Laboratory for Continental Dynamics, Northwest University, Xi’an, 710069, China 2Department of Earth Sciences, Palaeobiology, SE-752 36, Uppsala, Sweden; [email protected] 3Department of Geology, Payame Noor University, Semnan, Iran; [email protected] 4Department of Earth Sciences, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, UK; [email protected] 5Department of Geology, Faculty of Sciences, Golestan University, Gorgan, 49138-15739, Iran; [email protected] 6Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, Madrid, 28040, Spain; [email protected] 7Department of Geology, Khorasgan (Isfahan) Branch, Islamic Azad University, PO Box 81595-158, Isfahan, Iran; [email protected] Typescript received 18 July 2018; accepted in revised form 6 November 2018 Abstract: A comprehensive review and phylogenetic analy- an early separation of the lineages of spinose and non-spi- sis of genera and species presently assigned to the rhyn- nose nisusiids. The non-spinose nisusiids probably evolved chonelliform superfamily Nisusioidea and family Nisusiidae in Laurentia by the end of Cambrian Series 4. The new suggests that this short-lived but important group of bra- nisusiid genus Bellistrophia is described. The new species chiopods first appeared in peri-Gondwana during the second Nisusia multicostata represents the first documented rhyn- half of the Cambrian Series 2, before going extinct by the chonelliform (kutorginide) brachiopod from the Miaolingian end of Drumian times.
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]
  • Th TRILO the Back to the Past Museum Guide to TRILO BITES
    With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Carlo Kier The Back to the Past Museum Guide to Specimens amply represent famous trilobite localities around the world and typify forms from most of the Enrico Bonino Enrico 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation. Richard A. Robison Professor Emeritus University of Kansas TRILOBITES Enrico Bonino was born in the Province of Bergamo in 1966 and received his degree in Geology from the Depart- ment of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly inter- TRILOBITES ested in the life forms that developed during the Precambrian. Carlo Kier was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain.
    [Show full text]
  • Chemostratigraphic Correlations Across the First Major Trilobite
    www.nature.com/scientificreports OPEN Chemostratigraphic correlations across the frst major trilobite extinction and faunal turnovers between Laurentia and South China Jih-Pai Lin 1*, Frederick A. Sundberg2, Ganqing Jiang3, Isabel P. Montañez4 & Thomas Wotte5 During Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the frst major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the frst appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions. Te international correlation of the traditional lower–middle Cambrian boundary has been exceedingly difcult primarily due to apparent diachroniety of the datum species used to defne the boundary refecting the endemic faunas.
    [Show full text]
  • Middle Cambrian Trilobites (Miaolingian, Ehmaniella Biozone) from the Telt Bugt Formation of Daugaard-Jensen Land, Western North Greenland
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 68 · 2020 Middle Cambrian trilobites (Miaolingian, Ehmaniella Biozone) from the Telt Bugt Formation of Daugaard-Jensen Land, western North Greenland JOHN S. PEEL Peel, J.S. 2020. Middle Cambrian trilobites (Miaolingian, Ehmaniella Biozone) from the Telt Bugt Formation of Daugaard-Jensen Land, western North Greenland. Bulletin of the Geological Society of Denmark, vol. 68, pp. 1–14. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2020-68-01 A small fauna of middle Cambrian trilobites is described from the upper Telt Bugt Geological Society of Denmark Formation of Daugaard-Jensen Land, western North Greenland, and the formation https://2dgf.dk is formally defined.Blainiopsis holtedahli and Blainiopsis benthami, originally described from the equivalent Cape Wood Formation of Bache Peninsula, Nunavut, Canada, are Received 9 October 2019 documented in an assemblage assigned to the Ehmaniella Biozone (Topazan Stage of Accepted in revised form North American usage), Miaolingian Series, Wuliuan Stage, of the international stan- 5 February 2020 dard. Two new species are proposed: Ehmaniella sermersuaqensis and Clappaspis tupeq. Published online 9 March 2020 Keywords: Laurentia, North Greenland, Cambrian, Miaolingian (Wuliuan), tri- © 2020 the authors. Re-use of material is lobites. permitted, provided this work is cited. Creative Commons License CC BY: John S. Peel [[email protected]], Department of Earth Sciences (Palaeobiology), https://creativecommons.org/licenses/by/4.0/ Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden. The first Cambrian fossils from the Nares Strait setti 1951; Cooper et al. 1952; Palmer & Halley 1979). region, the narrow waterway separating northern- Several of the lithostratigraphic and biostratigraphic most Greenland and Canada, were collected from problems recognised in Poulsen’s (1927) studies were Bache Peninsula (Fig.
    [Show full text]
  • Aquatic Stem Group Myriapods Close a Gap Between Molecular Divergence Dates and the Terrestrial Fossil Record
    Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record Gregory D. Edgecombea,1, Christine Strullu-Derriena,b, Tomasz Góralc,d, Alexander J. Hetheringtone, Christine Thompsonf, and Markus Kochg,h aDepartment of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; bInstitut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d’Histoire Naturelle, 75005 Paris, France; cImaging and Analysis Centre, The Natural History Museum, London SW7 5BD, United Kingdom; dCentre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; eDepartment of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom; fDepartment of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom; gSenckenberg Society for Nature Research, Leibniz Institution for Biodiversity and Earth System Research, 60325 Frankfurt am Main, Germany; and hInstitute for Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany Edited by Conrad C. Labandeira, Smithsonian Institution, National Museum of Natural History, Washington, DC, and accepted by Editorial Board Member David Jablonski February 24, 2020 (received for review November 25, 2019) Identifying marine or freshwater fossils that belong to the stem (2–5). Despite this inferred antiquity, there are no compelling groups of the major terrestrial arthropod radiations is a long- fossil remains of Myriapoda until the mid-Silurian and no hexa- standing challenge. Molecular dating and fossils of their pancrus- pods until the Lower Devonian. In both cases, the oldest fossils tacean sister group predict that myriapods originated in the can be assigned to crown group lineages (Diplopoda in the case of Cambrian, much earlier than their oldest known fossils, but Silurian myriapods and Collembola in the case of Hexapoda) and uncertainty about stem group Myriapoda confounds efforts to the fossils have morphological characters shared by extant species resolve the timing of the group’s terrestrialization.
    [Show full text]