Optical and Mechanical Properties of Highly Transparent Glass-Flake Composites

Total Page:16

File Type:pdf, Size:1020Kb

Optical and Mechanical Properties of Highly Transparent Glass-Flake Composites Article Optical and Mechanical Properties of Highly Transparent Glass-Flake Composites Benedikt Scharfe 1,2,*, Sebastian Lehmann 1 , Thorsten Gerdes 1 and Dieter Brüggemann 3 1 Chair of Ceramic Materials Engineering, Keylab Glasstechnology, University Bayreuth, 95447 Bayreuth, Germany; [email protected] (S.L.); [email protected] (T.G.) 2 Deggendorf Institute of Technology, TAZ Spiegelau, 94518 Spiegelau, Germany 3 Department of Engineering Thermodynamics and Transport Processes (LTTT), Centre of Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-8553-9799-611 Received: 29 October 2019; Accepted: 18 November 2019; Published: 21 November 2019 Abstract: In this paper, the dynamic mechanic and optical properties of composites made of Polyvinyl Butyral (PVB) and Micro Glass Flakes (MGF) with matching refractive indices (RIs) are investigated. The composite is produced by a slurry-based process using additional blade casting and lamination. It can be shown that a high degree of ordering of the MGF in the polymer matrix can be achieved with this method. This ordering, combined with the platelet-like structure of the MGF, leads to very efficient strengthening of the PVB with increasing content of the MGF. By carefully adjusting the RIs of the polymer, it is shown that haze is reduced to below 2%, which has not been achieved with irregular fillers or glass fibers. Keywords: Micro Glass Flakes; PVB; Glass Particles; Transparent Composite 1. Introduction Highly transparent polymers have a very broad application spectrum. Polycarbonate (PC) and polymethyl methacrylate (PMMA) are common examples for applications that require high stiffness like displays, windows or transparent electronic packaging [1]. Low-density polyethylene (LDPE) and polyethylene terephthalate (PET) is used in applications which require high flexibility like packaging and foils for food and beverages, as well as medical applications like tubing, pipes, and bottles [2]. Lesser known are Polyvinyl Butyral (PVB) and Ethylene Vinyl Acetate (EVA), which are utilized in laminated panes and windows as interlayer materials [3]. However, typical polymer properties like high thermal expansion, low stiffness, low thermal conductivity, and low wear and scratch resistance have led to different approaches to using fillers to create a transparent composite with enhanced properties [4–8]. Employing glass particles as filler material for transparent polymers with similar refractive indices (RIs) shows promising properties for the application in transparent components [9]. Glass beads in a polymer matrix lead to increased stiffness [10,11] and reduced thermal expansion [12,13]. In theory, perfectly matched RIs between matrix polymer and glass filler should result in an unobstructed transparency [14]. However, in reality, RI matching is far from simple, as impurities and cooling rates at production have a significant impact on the RIs. Also, the RIs of glass and polymers depend on temperature (thermo-optic coefficient) and measured wavelength (dispersion), which can be used for optical temperature sensors [15,16]. The RI of typical glasses increases with increasing temperature with a thermo-optic coefficient Dn /DT between 6.7 and 24.1 10 6/K4 [17]. However, the RI of rel − × − the most common transparent polymers decreases with increasing temperature with thermo-optic coefficients which are nearly two orders of magnitude higher ( 0.9 to 3.1 10 6/K4)[18]. − − × − J. Compos. Sci. 2019, 3, 101; doi:10.3390/jcs3040101 www.mdpi.com/journal/jcs J. Compos. Sci. 2019, 3, 101 2 of 17 J. Compos. Sci. 2019, 3, 101 2 of 17 with thermo-optic coefficients which are nearly two orders of magnitude higher (−0.9 to −3.1 × 10−6/K4) [18]. Extensive research has been conducted on optica opticall and mechanical properties of glass-reinforced polymers withwith similarsimilar RI RI using using PMMA PMMA and and glass glass fibers fibers [19 ][19] or epoxyor epoxy filled filled with with irregular-shaped irregular-shaped glass particlesglass particles [20]. The [20]. influence The influence of different of particledifferent sizes, particle filler sizes, contents filler and contents influence and of RIinfluence mismatch of was RI studied.mismatch All was studies studied. show All that studies transmission show that decreases transm withission increasing decreases filler with content, increasing even withfiller identicalcontent, RI.even This with was identical traced back RI. This to the was wetting traced behavior back to of the the wetting filler, particularly behavior of when the usingfiller, moldingparticularly processes when orusing inhomogeneity molding processes in the RIor inhomogeneity within the particles in the or RI matrix. within However,the particles using or matrix. refractive However, index oilsusing in cuvettesrefractive as index a model oils matrixin cuvettes with as perfect a model wetting matrix behavior, with perfect it could wetting be shown behavior, that highit could transparency be shown canthat alsohigh be transparency achieved with can high alsofiller be achieved contents with [21]. high filler contents [21]. The aim of this study is to create a new type of transparent composite using Micro Glass Flakes (MGF)—a platelet-likeplatelet-like glassglass particleparticle withwith aa high high aspect aspect ratio. ratio. Micro Micro glass glass particles particles such such as as MGF MGF are are a verya very recent recent innovation innovation in glass in glass production. production. Despite Despite that, they that, have they already have gained already a broadgained application a broad spectrumapplication due spectrum to their chemicallydue to their inert chemically properties combinedinert properties with platelet-like combined morphology with platelet-like [22,23]. Theymorphology are most [22,23]. commonly They used are most as reflective commonly and eusedffect as pigments reflective in cosmeticand effect applications pigments in [24 cosmetic] and as fillerapplications material [24] to increaseand as filler the barriermaterial properties to increase of protectivethe barrier coatingsproperties [25 of]. protective coatings [25]. A method was developed to incorporate these glass flakesflakes in a model polymer via a slurry-based lab-scale castingcasting process process in in order order to increaseto increase the ordering the ordering of these of flakes. these Withflakes. this With combined this combined approach, usingapproach, platelets using in aplatelets highly orderedin a highly assembly, ordered the influenceassembly, ofthe residual influence RI mismatch of residual between RI mismatch particle andbetween matrix particle on the transparencyand matrix on and the haziness transparency of such aand structure haziness could of be such minimized, a structure as displayed could be in Figureminimized,1. At theas displayed same time, in glass Figure flakes 1. At with the a highsame aspect time, ratioglass couldflakes greatly with a improvehigh aspect the mechanicalratio could propertiesgreatly improve of the the composite mechanical in all properties in-plane directionsof the composite simultaneously. in all in-plane directions simultaneously. Figure 1. Schematics of the influence influence of glass fibers fibers and glass flakesflakes on transmittedtransmitted light in a matrix with a mismatch of refractive indices.indices. 2. Experimental 2.1. Materials 2.1. Materials 2.1.1. Micro Glass Flakes 2.1.1. Micro Glass Flakes Three different types of Micro Glass Flakes (MGF) were used in this study. Two of them are Three different types of Micro Glass Flakes (MGF) were used in this study. Two of them are commercially available from Glassflake Ltd® (GF100, GF001, Leeds, UK) [26] and one type was derived commercially available from Glassflake Ltd® (GF100, GF001, Leeds, UK) [26] and one type was by a laboratory flaker setup (GF-V8) with a boron-rich silicate glass composition (Figure2). They di ffer derived by a laboratory flaker setup (GF-V8) with a boron-rich silicate glass composition (Figure 2). in mean diameter, thickness and thus, in the aspect ratio, as well as the RI due to a different glass They differ in mean diameter, thickness and thus, in the aspect ratio, as well as the RI due to a different composition between the commercial MGF and from the laboratory flaker setup (Table1). glass composition between the commercial MGF and from the laboratory flaker setup (Table 1). J. Compos. Sci. 2019, 3, 101 3 of 17 J. Compos. Sci. 2019,, 33,, 101101 3 of 17 FigureFigure 2. Scanning 2. Scanning electron electron microscopy microscopy (SEM) (SEM) image image of commercial of commercial Micro Micro Glass Glass Flakes Flakes (MGF). (MGF). Table 1. Properties of Micro Glass Flakes used in this study. Table 1. Properties of Micro Glass Flakes used in this study. Type Mean Diameter (D50) Thickness Specific Density Type Mean Diameter (D50) Thickness Specific Density µ µ 3 GF100GF100 160 160 µmm 1.0–1.3 1.0–1.3 µm m 2.3 g/cm2.3 g3 /cm GF001 30 µm 0.9–1.3 µm 2.3 g/cm3 GF001 30 µm 0.9–1.3 µm 2.3 g/cm3 GF-V8 120 µm 2.0–5.0 µm 2.3 g/cm3 GF-V8 120 µm 2.0–5.0 µm 2.3 g/cm3 2.1.2. Polyvinyl Butyral (PVB) 2.1.2. Polyvinyl Butyral (PVB) Polyvinyl butyral (PVB) is considered to be an acetal and is formed from the reaction of an Polyvinyl butyral (PVB) is considered to be an acetal and is formed from the reaction of an aldehyde and alcohol. The general structure of PVB is shown in Figure3, whereby the shares of PVB, aldehyde and alcohol. The general structure of PVB is shownshown inin FigureFigure 3,3, wherebywhereby thethe sharesshares ofof PVB,PVB, polyvinyl alcohol (PVOH), and polyvinyl acetate segments are variable. Depending on the supposed polyvinyl alcohol (PVOH), and polyvinyl acetate segments are variable. Depending on the supposed application of the PVB, the relative amounts of these segments are controlled but they are generally application of the PVB, the relative amounts of these segments are controlled but they are generally randomly distributed through the molecular chain.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • 2 Types of Noncrystalline Polymers
    2 Types of Noncrystalline Polymers 1. Glassy polymer highly interpenetrated/entangled 2. Rubbery polymers random Gaussian coils Glass Transition Temperature εij Two viewpoints: • Increasing T: When kT > magnitude of εij, the thermal fluctuations can overcome local intermolecular bonds and the frozen (“glassy”) structure becomes “fluid-like”. • Decreasing T: As the temperature is lowered and T approaches Tg, the viscosity increases to ∞ and the material becomes “solid” Free Volume Theory of Tg Free volume, VF – extra space beyond what is present in an ordered crystalline packing (beyond the interstitial volume). VF(T) ≡ V(T) – V0(T) • V0 is occupied specific volume of atoms or molecules in the xline state and the spaces between them: ~ VXL. V(T) α • VF increases as T increases due to the Rate of cooling l difference in the thermal expansion V (T) αg XL coefficients (αg vs αl). FAST SLOW • V0(T) ≈ VXL(T) ↔ can take αg ≈αXL dV •V(T) = V (T ) + (T-T ) F T > T F F g g dT g Tg T • define fractional free volume, fF:Vf/V fF(T) = fF(Tg) + (T-Tg)αf αf = αl – αg Viewpoint: Tg occurs when available free volume drops below critical threshold for structural rearrangement [VITRIFICATION POINT], structure “jams up”. Tg Values of Amorphous Materials Table of representative amorphous solids, their bonding types, and their glass transition temperatures removed due to copyright restrictions. See Table 2.2 in Allen, S. M., and E.L. Thomas. The Structure of Materials. New York, NY: J. Wiley & Sons, 1999. Tg for Selected Polymers Glass Transition Temperature
    [Show full text]
  • Characteristics of Thermosetting Polymer Nanocomposites: Siloxane-Imide-Containing Benzoxazine with Silsesquioxane Epoxy Resins
    polymers Communication Characteristics of Thermosetting Polymer Nanocomposites: Siloxane-Imide-Containing Benzoxazine with Silsesquioxane Epoxy Resins Chih-Hao Lin 1 , Wen-Bin Chen 2, Wha-Tzong Whang 1 and Chun-Hua Chen 1,* 1 Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300093, Taiwan; [email protected] (C.-H.L.); [email protected] (W.-T.W.) 2 Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-3513-1287 Received: 16 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: A series of innovative thermosetting polymer nanocomposites comprising of polysiloxane-imide-containing benzoxazine (PSiBZ) as the matrix and double-decker silsesquioxane (DDSQ) epoxy or polyhedral oligomeric silsesquioxane (POSS) epoxy were prepared for improving thermosetting performance. Thermomechanical and dynamic mechanical characterizations indicated that both DDSQ and POSS could effectively lower the coefficient of thermal expansion by up to approximately 34% and considerably increase the storage modulus (up to 183%). Therefore, DDSQ and POSS are promising materials for low-stress encapsulation for electronic packaging applications. Keywords: polysiloxane-imide-containing benzoxazine; polyhedral oligomeric silsesquioxane epoxy; double-decker silsesquioxane epoxy; polymer nanocomposite 1. Introduction Compared with pristine polymer nanocomposites, hybrid organic–inorganic nanocomposites comprising of functional polymers as the matrix and nanoscale inorganic constituents have attracted greater interest in both academia and industry because of their tunable and generally more favorable thermal, mechanical, electrical, and barrier properties [1–3]. Upgrading current thermosetting polymers has become critical because of their utilization in various applications.
    [Show full text]
  • Contents 1 Properties of Optical Systems
    Contents 1 Properties of Optical Systems ............................................................................................................... 7 1.1 Optical Properties of a Single Spherical Surface ........................................................................... 7 1.1.1 Planar Refractive Surfaces .................................................................................................... 7 1.1.2 Spherical Refractive Surfaces ................................................................................................ 7 1.1.3 Reflective Surfaces .............................................................................................................. 10 1.1.4 Gaussian Imaging Equation ................................................................................................. 11 1.1.5 Newtonian Imaging Equation.............................................................................................. 13 1.1.6 The Thin Lens ...................................................................................................................... 13 1.2 Aperture and Field Stops ............................................................................................................ 14 1.2.1 Aperture Stop Definition ..................................................................................................... 14 1.2.2 Marginal and Chief Rays ...................................................................................................... 14 1.2.3 Vignetting ...........................................................................................................................
    [Show full text]
  • Coating System Guide for Chemical & Petrochemical Plants
    Coating System Guide for Chemical & Sponsored by Petrochemical Plants Photo: Devoe High Performance Coatings Systems are alphabetized by first coat. Exterior Plant Exposure I Epoxy (1-2 coats)/Urethane I Epoxy/Epoxy 100% Solids Andek Corporation (101-250 g/L) A.W. Chesterton/ARC Composites (<100 g/L) Moderate to Severe Chemical, Coatings For Industry, Inc. (251-340 g/L) Blome International (<100 g/L) Complementary Coatings/DBA Insl-X (251-340 g/L) Corro-Shield International, Inc. Weathering, & UV Corchem Corporation (101-250 g/L) Denso North America Steel Coronado Paint (251-340 g/L) Duromar, Inc. (<100 g/L) Dampney Co., Inc. ENECON Corporation (<100 g/L) Endura Manufacturing Co. Ltd. (101-250 g/L) Gemite Products Inc. (<100 g/L) I Alkyd/Acrylic/Acrylic Devoe Coatings (AkzoNobel) (341-450 g/L) Euronavy Sauereisen, Inc. Diamond Vogel Paint Company (251-340 g/L) Gulf Coast Paint Mfg., Inc. (101-250 g/L) Mascoat Products (<100 g/L) Heresite Protective Coatings, Inc. (341-450 g/L) PolySpec L.P. / THIOKOL (<100 g/L) Highland International, Inc. QUESTMARK FLOORING ITW Futura Coatings (101-250 g/L) Superior Epoxies & Coatings (<100 g/L) KCC Corrosion Control Co., Ltd. Watson Coatings, Inc. Micor Company, Inc. (341-450 g/L) PPG Protective & Marine Coatings (<100 g/L) I Alkyd/Alkyd/Alkyd Richard’s Paint Mfg. Co., Inc. (341-450 g/L) Tnemec Company, Inc. Rust-Oleum Corporation (101-250 g/L) Watson Coatings, Inc. Sherwin-Williams (101-250 g/L) Wolverine Coatings Corporation Specialty Polymer Coatings, Inc. I Calcium Sulphonate I Epoxy/Epoxy Flake Filled/Epoxy Flake Filled Termarust Technologies (101-250 g/L) Tnemec Company, Inc.
    [Show full text]
  • 25 Geometric Optics
    CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light.
    [Show full text]
  • Predicting Polymers' Glass Transition Temperature by a Chemical
    polymers Article Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model Guang Chen 1 , Lei Tao 1 and Ying Li 1,2,* 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; [email protected] (G.C.); [email protected] (L.T.) 2 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] Abstract: We propose a chemical language processing model to predict polymers’ glass transition temperature (Tg) through a polymer language (SMILES, Simplified Molecular Input Line Entry System) embedding and recurrent neural network. This model only receives the SMILES strings of a polymer’s repeat units as inputs and considers the SMILES strings as sequential data at the character level. Using this method, there is no need to calculate any additional molecular descriptors or fingerprints of polymers, and thereby, being very computationally efficient. More importantly, it avoids the difficulties to generate molecular descriptors for repeat units containing polymerization point ‘*’. Results show that the trained model demonstrates reasonable prediction performance on unseen polymer’s Tg. Besides, this model is further applied for high-throughput screening on an unlabeled polymer database to identify high-temperature polymers that are desired for applications in extreme environments. Our work demonstrates that the SMILES strings of polymer repeat units can be used as an effective feature representation to develop a chemical language processing model for predictions of polymer Tg. The framework of this model is general and can be used to construct structure–property relationships for other polymer properties. Citation: Chen, G.; Tao, L.; Li, Y.
    [Show full text]
  • List of Materials
    List of materials Material EN Material DE cutting engraving marking CO2 Fiber Flexx CO2 Fiber Flexx CO2 Fiber Flexx Metal Aluminum Aluminium Aluminum, anodized Aluminium, eloxiert Chromium Chrom Precious metal Edelmetall Metal foils up to 0.5mm Metallfolie bis zu 0,5mm (Aluminum, Brass, (Aluminium, Messing, Copper, precious metal) Kupfer, Edelmetall) Stainless steel Edelstahl Stainless steel Edelstahl (Thermark®) (Thermark®) Metal, painted Metall, lackiertes Brass Messing Copper Kupfer Titanium Titan Plastic Acrylonitrile butadiene Acrylnitril-Butadien- styrene (ABS) Styrol-Copolymer (ABS) Acrylic/PMMA Acryl/PMMA (Plexiglas, Altuglas, (Plexiglas®, Altuglas®, LaminatePerspex) LaminatePerspex®) Rubber Gummi Polyamide (PA) Polyamid (PA) Polybutylene Polybutylenterephthalat terephthalate (PBT) (PBT) Polycarbonate (PC) Polycarbonat (PC) Polyethylene (PE) Polyethylen (PE) Polyester (PES) Polyester (PES) Polyethylene Polyethylenterephthalat terephthalate (PET) (PET) Polyimide (PI) Polyimid (PI) Polyoxymethylene Polyoxymethylen (POM) -Delrin® (POM) - Delrin® Polypropylene (PP) Polypropylen (PP) Polyphenylene sulfide Polyphenylensulfid (PPS) (PPS) Polystyrene (PS) Polystyrol (PS) Polyurethane (PUR) Polyurethan (PUR) Foam Schaumstoff Miscellanious Wood Holz Mirror Spiegel Stone Stein Paper (white) Papier (weiß) Paper (colored) Papier (färbig) Food Lebensmittel Leather Leder
    [Show full text]
  • Colorless and Transparent High – Temperature-Resistant Polymer Optical Films – Current Status and Potential Applications in Optoelectronic Fabrications
    Chapter 3 Colorless and Transparent high – Temperature-Resistant Polymer Optical Films – Current Status and Potential Applications in Optoelectronic Fabrications Jin-gang Liu, Hong-jiang Ni, Zhen-he Wang, Shi-yong Yang and Wei-feng Zhou Additional information is available at the end of the chapter http://dx.doi.org/10.5772/60432 Abstract Recent research and development of colorless and transparent high-temperature- resistant polymer optical films (CHTPFs) have been reviewed. CHTPF films possess the merits of both common polymer optical film and aromatic high-temperature- resistant polymer films and thus have been widely investigated as components for microelectronic and optoelectronic fabrications. The current paper reviews the latest research and development for CHTPF films, including their synthesis chemistry, manufacturing process, and engineering applications. Especially, this review focuses on the applications of CHTPF films as flexible substrates for optoelectrical devices, such as flexible active matrix organic light-emitting display devices (AMOLEDs), flexible printing circuit boards (FPCBs), and flexible solar cells. Keywords: colorless polymer films, high temperature, synthesis, flexible substrates 1. Introduction Various polymer optical films have been widely applied in the fabrication of optoelectronic devices [1]. Recently, with the ever-increasing demands of high reliability, high integration, high wiring density, and high signal transmission speed for optoelectronic fabrications, the service temperatures of polymer optical films have dramatically increased [2, 3]. For instance, © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • 3 About the Nature of the Structural Glass Transition: an Experimental Approach
    3 About the Nature of the Structural Glass Transition: An Experimental Approach J. K. Kr¨uger1,2, P. Alnot1,3, J. Baller1,2, R. Bactavatchalou1,2,3,4, S. Dorosz1,3, M. Henkel1,3, M. Kolle1,4,S.P.Kr¨uger1,3,U.M¨uller1,2,4, M. Philipp1,2,4,W.Possart1,5, R. Sanctuary1,2, Ch. Vergnat1,4 1 Laboratoire Europ´een de Recherche, Universitaire Sarre-Lorraine-(Luxembourg) [email protected] 2 Universit´edu Luxembourg, Laboratoire de Physique des Mat´eriaux,162a, avenue de la Fa¨ıencerie, L-1511 Luxembourg, Luxembourg 3 Universit´eHenriPoincar´e, Nancy 1, Boulevard des Aiguillettes, Nancy, France 4 Universit¨atdes Saarlandes, Experimentalphysik, POB 151150, D-66041 Saarbr¨ucken, Germany 5 Universit¨at des Saarlandes, Werkstoffwissenschaften, POB 151150, D-66041 Saarbr¨ucken, Germany Abstract. The nature of the glassy state and of the glass transition of structural glasses is still a matter of debate. This debate stems predominantly from the kinetic features of the thermal glass transition. However the glass transition has at least two faces: the kinetic one which becomes apparent in the regime of low relaxation frequencies and a static one observed in static or frequency-clamped linear and non-linear susceptibilities. New results concerning the so-called α-relaxation process show that the historical view of an unavoidable cross-over of this relaxation time with the experimental time scale is probably wrong and support instead the existence of an intrinsic glass transition. In order to prove this, three different experimental strategies have been applied: studying the glass transition at extremely long time scales, the investigation of properties which are not sensitive to the kinetics of the glass transition and studying glass transitions which do not depend at all on a forced external time scale.
    [Show full text]
  • Mechanical and Electrical Studies of Silicone Modified Polyurethane
    Polymer Journal, Vol. 36, No. 10, pp. 848—855 (2004) Mechanical and Electrical Studies of Silicone Modified Polyurethane–Epoxy Intercrosslinked Networks y Arun ANAND PRABU and Muthukaruppan ALAGAR Department of Chemical Engineering, Anna University, Chennai-600 025, India (Received May 27, 2004; Accepted July 20, 2004; Published October 15, 2004) ABSTRACT: A series of intercrosslinked networks (ICNs) based on silicone modified polyurethane (PU)–epoxy resins were developed. In this study, epoxy resin (diglycidyl ether of bisphenol-A) was modified with PU prepolymer and hydroxyl-terminated polydimethylsiloxane (HTPDMS) using -aminopropyl triethoxysilane ( -APS) as silane cross linker and dibutyltindilaurate (DBTL) as catalyst to form ICNs. Aromatic polyamine adduct (A), diethylenetri- amine (B) and polyamidoamine (C) were used as epoxy curatives. The final products were obtained in the form of tough films. Changes in chemical structure during ICN formation, mechanical and electrical properties were investigated us- ing FT-IR spectra, tensile, impact and dielectric testing. The mechanical properties were enhanced with incorporation of PU (10 wt %) and silicone (10 wt %) due to the toughening of brittle epoxy matrices. Electrical properties showed a marginally decreasing trend with the incorporation of PU (0–20 wt %) influenced by the polar urethane linkages where- as silicone incorporation (10 wt %) showed an enhancement due to the presence of inorganic –Si–O–Si– linkage. Among the systems studied, the silicone (10 wt %) modified PU (10 wt %)–epoxy cured with ‘‘A’’ exhibited excellent mechanical and electrical characteristics and can be used as coatings and composites for industrial, electrical and ma- rine components. [DOI 10.1295/polymj.36.848] KEY WORDS Intercrosslinked Network / Epoxy / Polyurethane / Silicone / Coatings / Composites / Numerous polymeric resins based on epoxy, unsat- used in epoxy and polyurethane synthesis.
    [Show full text]