Peculiar Galaxies James L Higdon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Large Scale Universe As a Quasi Quantum White Hole
International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience. -
Astronomical Evidence for an Alternative to Dark Matter?
Astronomical Evidence for an Alternative to Dark Matter? by Alphonsus J. Fagan St. John's NL, Canada Abstract Unexplained gravitational potentials in deep space have been generally attributed to dark matter. This paper explores an alternative that unites the concepts of dark matter and dark energy, and is rooted in the idea that space is a tangible ‘substance’ that is being created at different rates at different locations. The concept of congenital gravitational structure ('structural gravity') is introduced and the possibility that antimatter experiences anti-gravity is discussed. Among other things, the conjectures predict the phenomenon of 'inverse gravitational lensing' and possible examples are identified — in particular as associated with the peculiar galaxy known as Hoag's Object. The conjectures also offer possible explanations for a number of poorly understood phenomena, including: the antimatter cloud; dark matter halos; the vacuum catastrophe; counter-rotating galaxies; the Hubble radius; and, large scale cosmic features. Although the ideas are mainly discussed at a conceptual level, the proposed model also makes a number of testable predictions. Keywords: cosmology; modified gravity; time; dark energy; dark matter; antimatter; diffuse x-ray background; ring galaxies; Hoag's Object; vacuum catastrophe; cosmic horizon Author’s Note: The ideas presented herein are a condensed form of a larger model presented in a (2020) book “Mind Openers 2.0: A Conceptual Reinterpretation of Modern Physics”: currently available at Mind Openers 2.0 on Amazon 1. Introduction 1.1 Unexplained Gravity As first pointed out by Fritz Zwicky in the 1930s, and later confirmed by Vera Rubin and Kent Ford in the 1960s and 70s, the amount of ordinary matter in galaxies and intergalactic gas and dust, does not provide sufficient gravitational potential to account for galactic rotation curves, or the velocities of galaxies within clusters. -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Stacking Emission Lines from Distant Galaxies
DF A study of galaxy evolution: stacking emission lines from distant galaxies JEAN-BAPTISTE JOLLY Department of Space Earth and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Thesis for the degree of Licentiate of Engineering A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly DF Department of Space Earth and Environment Division of Astronomy and Plasma Physics Chalmers University of Technology Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly © Jean-Baptiste Jolly, 2019. Division of Astronomy and Plasma Physics Department of Space Earth and Environment Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Contact information: Jean-Baptiste Jolly Onsala Space Observatory Chalmers University of Technology SE–439 92 Onsala, Sweden Phone: +46 (0)31 772 55 44 Email: [email protected] Cover image: This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hub- ble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky. Credit: NASA, ESA and the HST Frontier Fields team (STScI) Printed by Chalmers Reproservice Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly Department of Space Earth and Environment Chalmers University of Technology Abstract To draw up a thorough description of galaxy evolution exhaustive observations are needed, of distant but mainly of faint galaxies. -
The Evolution of Galaxy Morphology
The Morphological Evolution of Galaxies Roberto G. Abraham Sidney van den Bergh Dept. of Astronomy & Dominion Astrophysical Observatory Astrophysics Herzberg Institute of Astrophysics University of Toronto National Research Council of Canada 60 St. George Street Victoria, British Columbia Toronto, Ontario M5S 3H8, V9E 2E7, Canada Canada ABSTRACT Many galaxies appear to have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology started to deviate significantly (and systematically) from that of nearby galaxies at redshifts, z, as low as z = 0.3. This corresponds to a time ~3.5 Gyr in the past, which is only ~25% of the present age of the Universe. Beyond z = 0.5 (5 Gyr in the past) spiral arms are less well-developed and more chaotic, and barred spiral galaxies may become rarer. By z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble’s traditional “tuning fork” system is meaningless. On the other hand, some characteristics of galaxies do not seem to have changed much over time. The co-moving space density of luminous disk galaxies has not changed significantly since z = 1, indicating that while the general appearance of these objects has continuously changed with cosmic epoch, their overall numbers have been conserved. Attempts to explain these results with hierarchical models for the formation of galaxies have met with mixed success. denoted Sa, Sb, and Sc (SBa, SBb, SBc in of Hubble’s classification system are Introduction the case of barred spirals). A final “catch- based on the idea that most matter in the all” category for irregular galaxies is also Universe is not in stellar or gaseous form, Nearby galaxies are usually classified on included. -
Galaxies Through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars
Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz arXiv:1910.09849v1 [astro-ph.GA] 22 Oct 2019 Faculty of Physical Sciences University of Iceland 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics PhD Committee Prof. Páll Jakobsson (supervisor) Assoc. Prof. Jesús Zavala Prof. Emeritus Einar H. Guðmundsson Opponents Prof. J. Xavier Prochaska Dr. Valentina D’Odorico Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, July 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics Copyright © Kasper Elm Heintz 2019 All rights reserved Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Dunhagi 107, Reykjavik Iceland Telephone: 525-4000 Bibliographic information: Kasper Elm Heintz, 2019, Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars, PhD disserta- tion, Faculty of Physical Sciences, University of Iceland, 71 pp. ISBN 978-9935-9473-3-8 Printing: Háskólaprent Reykjavik, Iceland, July 2019 Contents Abstract v Útdráttur vii Acknowledgments ix 1 Introduction 1 1.1 The nature of GRBs and quasars 1 1.1.1 GRB optical afterglows...................................2 1.1.2 Late-stage emission components associated with GRBs..............3 1.1.3 Quasar classification and selection............................4 1.1.4 GRBs and quasars as cosmic probes..........................5 1.2 Damped Lyman-α absorbers 7 1.2.1 Gas-phase abundances and kinematics........................ 10 1.2.2 The effect of dust..................................... -
Quantum Relativity Enhanced by Friedmann and Lemaître and Called the “FLRW” Or “Lambda-CDM” Model of the Universe
Abstract The original Robertson-Walker (R&W) solution to a homogenous and isotropic universe was Quantum Relativity enhanced by Friedmann and Lemaître and called the “FLRW” or “Lambda-CDM” model of the universe. Lambda stands for dark energy (cosmological constant), CDM stands for cold dark matter. (From small to all) However, the R&W solution does not abide by Noether’s laws of energy conservation, leading cosmologists to state that: “energy conservation is a local statement”. The R&W solution needs = repair for Noether’s demands on energy and momentum conservation. This repair involves the reinterpretation of time in the cosmic past and the introduction of three- Repairing Robertson-Walker’s Solution instead of the two-dimensional curvature as described in the original R&W solution. The repair also involves the extension of the principle of “comoving coordinates” as introduced by R&W. The comoving coordinates of R&W explain an expanding universe within which distances between Quantum Relativity (for Space-time) galaxies remain the same in coordinates, while the unit meter [m] expands. The authors extend the unit meter [m] expansion to the units second [s], kilogram [kg], and + Coulomb [C], the S-MKC system, in order to ensure an invariant speed of light “c” and an invariant Newton constant “G”. By keeping the constants of nature and the laws of nature invariant to location and time, we ensure adhering to Noether’s laws of energy-momentum conservation and Merging with Bohr’s quantum theory to the perfect cosmological principle. The unit second expansion by the cosmic-factor “λ” (λ = H.t, in which “H” is the Hubble constant) Quantum Relativity (for Quanta) explains the cosmic inflation of redshift plus one (z + 1). -
Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies
UC Irvine UC Irvine Electronic Theses and Dissertations Title Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies Permalink https://escholarship.org/uc/item/0fv151p6 Author Davis, Darren Robert Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Darren Robert Davis Dissertation Committee: Professor Wayne Hayes, Chair Professor Deva Ramanan Professor Aaron Barth 2014 c 2014 Darren Robert Davis TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE xi ABSTRACT OF THE DISSERTATION xiii 1 Introduction 1 1.1 Background . 1 1.2 Uses of Spiral Structure Information . 3 1.3 Primary Contributions . 7 2 Related Work 10 2.1 Morphological Classification . 10 2.2 Bulge, Disk, and Bar Fitting . 12 2.3 Spiral Arm Pitch Angle Measurement . 13 2.4 Automated Fitting of Restricted Spiral Models . 15 2.5 Human-Interactive Detailed Spiral Fitting . 17 2.6 Large-Scale Manual Determination of Spiral Galaxy Structure . 19 2.7 An Unfulfilled Need for Automated Fitting of General Spiral Structure . 20 3 Extracting Spiral Arm-Segment Structure 22 3.1 Representing Arm-Segment Structure . 22 3.2 Image Brightness Transformation . 31 3.3 Image Standardization . 35 3.4 Foreground Star Removal . 41 3.5 Orientation Field Generation . 48 3.5.1 Determining the Orientation Field Vectors . 49 3.5.2 Enhancing Sensitivity to Spiral Arms via the Unsharp Mask . -
Dark Energy Camera Captures Detailed View of Striking Peculiar Galaxy 31 August 2021
Dark Energy Camera captures detailed view of striking peculiar galaxy 31 August 2021 that hide the bright center of the galaxy. This dust is the result of a past galactic collision, in which a giant elliptical galaxy merged with a smaller spiral galaxy. As well as large amounts of gas and dust, Centaurus A's dust lane contains widespread star formation, as indicated by the red clouds of hydrogen and by the large number of faint blue stars visible at each end of the dust lane. The proximity and brightness of Centaurus A—it is one of the closest giant galaxies to Earth—make it one of the best-studied objects in the southern The galaxy Centaurus A, which lies over 12 million light- hemisphere night sky. Since its discovery in 1826, years away in the direction of the southern-hemisphere scientists have studied the galaxy exhaustively with constellation Centaurus (The Centaur), is the leading many different kinds of telescopes, revealing a light of this striking image. This image provides a variety of intriguing features. Radio telescopes spectacular view of the luminous glow of stars and dark reveal a colossal jet of matter spewing outward tendrils of dust that hide the bright center of the galaxy. from the heart of the galaxy. This jet is accelerated This dust is the result of a past galactic collision, in to almost half the speed of light by a supermassive which a giant elliptical galaxy merged with a smaller black hole at the center of Centaurus A, and its spiral galaxy. As well as large amounts of gas and dust, Centaurus A’s dust lane contains widespread star bright emissions at radio wavelengths make this formation, as indicated by the red clouds of hydrogen galaxy one of the most prominent radio sources in and by the large numbers of faint blue stars visible at the night sky. -
190 Index of Names
Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea -
Ω Cen 127 M96 = NGC 3377 116 582
INDEX OF OBJECTS Palomar 3 95 Palomar 4 95 Palomar 5 95 CLUSTERS OF GALAXIES Palomar 14 95 85 203 Abell Palomar 15 95 Abell 262 203 47 Tue 155 Abell 1060 203 Abell 1367 181 GALAXIES Abell 1795 189. 203 A0136-080 5, 315 Abell 2029 203 AM2020-5050 315 Abell 2199 203 Arp 220 432 Abell 2256 169-170 Abell 2319 203 Carina 145-147, 158-159, 247-249 Abell 2626 203 Cygnus A 208 AWM 4 167. 169 DDO 127 139, 141-142, 147-148, 152 AWM 7 169. 208 DDO 154 141 Cancer 59 Draco 5, 144-147, 149, 153-155, Canes-Venatici/Ursa Major complex 157-159, 247-249 115 ESO 415-G26 315 Centaurus 110, 168 ESO 474-G20 314 Coma 1, 15, 87, 97, 101, 112, 115, Fornax 5, 144-147, 158-159, 249, 165, 169, 181, 186-187, 283, 351 403, 408 Galaxy, The (Milky Way) 2, 16-20, DC1842-63 59-60 23-25, 33, 36, 39-41, 43-44, 46- Hercules 59 47, 49-50, 87-88, 95, 111, 119, Hickson 88 51-52 122, 127-130, 136, 197, 207, Local Group 43, 50, 100, 115, 250, 213, 237, 248-250, 289, 294-295, 253, 322, 331, 350, 362, 402, 297-298, 301, 322, 327, 331, 435, 439, 539, 541 356, 391, 397-398, 407, 411-413, MKW 4 169 433. 436, 473, 494, 496, 499, MKW 9 169 519, 525, 530-531, 535-536, 540, M96 Group 116 542, 551, 553, 555, 557 Pegasus I 59, 167 Hickson 88a 51-52 Perseus 15, 105, 186, 189, 197, IC 724 59 206-207, 313 IC 2233 416, 418 Sculptor Group 132 Magellanic Clouds 408 Virgo 97-104, 107-108, 110, 115, M31 49-50, 86-87, 127-128, 146, 162, 168, 175, 203, 216, 248, 249-250, 275, 297, 331, 334, 257, 322, 332, 350. -
Bibcode Main Author Title Full Author List 2015A&A...573L...4L Liseau, R
BibCode Main Author Title Full Author list 2015A&A...573L...4L Liseau, R. ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm Liseau, R.; Vlemmings, W.; Bayo, A.; Bertone, E.; Black, J. H.; del Burgo, wavelength C.; Chavez, M.; Danchi, W.; De la Luz, V.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Justtanont, K.; Krivov, A.; Marshall, J. P.; Mora, A.; Montesinos, B.; Nyman, L. -A.; Olofsson, G.; Sanz-Forcada, J.; Thébault, P.; White, G. J. 2015A&A...575A..19R Riviere-Marichalar, P. Herschel-PACS observations of [OI] and H<SUB>2</SUB>O in Chamaeleon II Riviere-Marichalar, P.; Bayo, A.; Kamp, I.; Vicente, S.; Williams, J. P.; Barrado, D.; Eiroa, C.; Duchêne, G.; Montesinos, B.; Mathews, G.; Podio, L.; Dent, W. R. F.; Huélamo, N.; MerÃ-n, B. 2015A&A...575A..51L Liu, C. Quest for the lost siblings of the Sun Liu, C.; Ruchti, G.; Feltzing, S.; MartÃ-nez-Barbosa, C. A.; Bensby, T.; Brown, A. G. A.; Portegies Zwart, S. F. 2015A&A...574A.114V Varenius, E. Subarcsecond international LOFAR radio images of the M82 nucleus at 118 MHz and 154 MHz Varenius, E.; Conway, J. E.; MartÃ--Vidal, I.; Beswick, R.; Deller, A. T.; Wucknitz, O.; Jackson, N.; Adebahr, B.; Pérez-Torres, M. A.; Chyży, K. T.; Carozzi, T. D.; Moldón, J.; Aalto, S.; Beck, R.; Best, P.; Dettmar, R. - J.; van Driel, W.; Brunetti, G.; Brüggen, M.; Haverkorn, M.; Heald, G.; Horellou, C.; Jarvis, M. J.; Morabito, L. K.; Miley, G. K.; Röttgering, H.