Australian ANTARCTIC Magazine ISSUE 17 2009 Australian ANTARCTIC Magazine ISSUE 17 2009

Total Page:16

File Type:pdf, Size:1020Kb

Australian ANTARCTIC Magazine ISSUE 17 2009 Australian ANTARCTIC Magazine ISSUE 17 2009 AUStraLian ANTARCTIC MAGAZinE ISSUE 17 2009 AUStraLian ANTARCTIC MAGAZinE ISSUE 17 2009 CONTENTS The Australian Antarctic Division, a Division of the SCIENCE Department of the Environment, Water, Heritage and the Arts, leads Australia’s Antarctic program and seeks Managing human impacts 1 to advance Australia’s Antarctic interests in pursuit Penguins in press 2 of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Australian Evolution in the Antarctic 4 government activity in Antarctica, providing transport Adélie penguin population dynamics: 18 years in a colony 6 and logistic support to Australia’s Antarctic research program, maintaining four permanent Australian Darkness sheds light on krill reproduction 9 research stations, and conducting scientific research Predicting the location of vulnerable marine ecosystems 10 programs both on land and in the Southern Ocean. Seeking answers to fishy questions 12 Australia’s four Antarctic goals are: Seabird saving device wins award 15 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Award for zooplankton website 15 • To protect the Antarctic environment; Australian Antarctic Science Season 2009–10 16 • To understand the role of Antarctica in Science dives into dirty issue 20 the global climate system; and Southern Ocean Research Partnership 22 • To undertake scientific work of practical, economic and national significance. Grey-headed albatross receives greater protection 22 Australian Antarctic Magazine seeks to inform the Cameras to spy on petrels 23 Australian and international Antarctic community Seeing through deep ice 24 about the activities of the Australian Antarctic program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position TECHNOLOGY of the Australian Government. Marine animals downsize in sea change 25 Australian Antarctic Magazine is produced twice a year Building technology in Antarctica 26 (June and December). All text and images published in the magazine are copyright of the Commonwealth Water finally flows at Davis 27 of Australia, unless otherwise stated. Editorial Freezing the natural moment 28 enquiries, including requests to reproduce material, or contributions, should be addressed to: Three-dimensional medicine 29 The Editor Subantarctic resupply a LARC 29 Australian Antarctic Magazine Australian Antarctic Division 203 Channel Highway PEOPLE Kingston, 7050 Antarctic Medal winner flying high 30 Tasmania, Australia. Mathematics and conservation combine for a Eureka moment 32 Australian Antarctic Division Telephone: (03) 6232 3209 (International 61 3 6232 3209) IN BRIEF 34 Email: [email protected] Facsimile: (03) 6232 3288 FREEZE FRAME 37 (International 61 3 6232 3288) Editor: Wendy Pyper Editorial Advisory Committee: Sally Chambers, John Gunn Production: Jonothan Davis, Jessica Fitzpatrick, FRONT COVER: ALISON LESTER AND PEARL NABEGEYO Glenn Jacobson, Mathew Oakes Australian Antarctic Arts Fellow, Alison Lester, asked school children around Graphic Design: Red Jelly Australia to draw their visions of her Antarctic adventure in 2005. Pearl Nabegeyo ot LM from Gunbalanya in east Arnhem Land sent Alison a 2 cm high drawing of an I ISSN 1445-1735 (print version) W emperor penguin and chick. Alison enlarged the image on watercolour paper and Australian Antarctic Magazine can be viewed online: says ‘I painted the dark indigo of an Antarctic sky and swirled snow across it in ichard <http://www.aad.gov.au/magazine>. spirals that echoed indigenous dot painting’. R AAD9614rj AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 17: 2009 S IP LL HI P Ice breaking off ice cliffs in Geoffrey Bay at Casey. N IA MANAGING HUmaN IMPACts A number of scientific This issue of the Australian Antarctic Magazine fishery in Australia’s Exclusive Economic Zone looks at some of the different ways species or (page 12). As well as enabling CCAMLR to set research projects conducted ecosystems can be used to help understand and sustainable catch limits for the fishery, the work manage human impacts on a number of scales. is revealing some interesting facts about this in Antarctica focus on This includes, on page 20, an environmental mysterious monster of the deep. particular species or assessment of the sewage outfall at Australia’s Davis station. Various biological, physico- This issue also focuses on some of the ecosystems that can act as chemical and ecotoxicological studies on new technology making Antarctic work and microbial communities and invertebrates life easier. Casey and Davis stations are early warning systems for such as worms, crustaceans and algae, will undergoing significant infrastructure environmental change as a help scientists determine the effect, if any, improvements, with energy efficiency and of sewage on the environment and inform flexibility critical requirements (page 26). result of human activities. the installation of an effective replacement Antarctic doctors are also benefiting from a wastewater treatment system for the station. new three-dimensional ultrasound machine (page 29), while a new reverse osmosis plant Taking a slightly different tack, scientists Due to their significant appetite for krill, Adélie is allowing Davis expeditioners to enjoy an are building up a picture of the relationships penguins, for example, have played a major experience most people take for granted – between organisms’ life history characteristics role in helping scientists develop a system to daily showers (page 27). (e.g. reproduction and life span) and their monitor the potential impacts of the Southern environment, to predict whether they are Finally, we celebrate the achievements of two Ocean krill fishery for almost 20 years (page 6). vulnerable to bottom fishing in the Southern talented and dedicated individuals: Antarctic More recently, this research has revealed Ocean (page 10). Maps of geophysical features, Medal winner David Pullinger, whose work as a the close relationship between the sea ice ocean depth and currents are also being used helicopter pilot has supported scientific research environment and the birds’ breeding success and to predict the location of environments likely in Antarctica for 20 years (page 30); and Eureka survival, which also makes them a potentially to support vulnerable organisms. Through the Prize winner and mathematician, Dr Ian Ball, useful ‘indicator’ of the impacts of climate Commission for the Conservation of Antarctic whose Marxan software is contributing to marine change, before more widespread effects unfold. Marine Living Resources (CCAMLR), the work is and land conservation planning around the world Such indicator species provide important helping to safeguard these ‘vulnerable marine (page 32). ecosystems’ by preventing fishing in susceptible information for conservation and management areas until appropriate management actions Enjoy your reading. in Antarctica and elsewhere. Their study also are established. provides a window of opportunity to initiate management measures that help protect other To avoid a repeat of past mistakes, scientists species or ecosystems from the consequences are conducting detailed scientific research of human activities, or to manage or reduce the on the biology, distribution and movement of WENDY PYPER impacts on them. Patagonian toothfish to ensure a sustainable Editor 1 AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 17: 2009 ER I V Only groups of penguins with chicks, such as this population I L O at Auster Rookery, can be classified as a ‘breeding colony’. E IQU REDER F PeNGUINS IN Press Penguin research made the colonies there are in the Australian Antarctic this study Dr Wienecke recommends a change Territory (AAT), with estimates of 13, 15 and to the listing status of emperor penguins by scientific spotlight this 17 colonies. In addition, some reported colony the International Union for the Conservation of sightings have never been confirmed. Nature, from ‘of least concern’ to ‘data deficient’. year, as Australian Antarctic To try and reduce the uncertainty over the ‘As we have no firm understanding of the Division scientists clarified number of emperor penguin colonies in the number of existing breeding colonies, we AAT, Dr Wienecke collated observations from cannot estimate the size or trends of the global how many emperor penguin expedition narratives, log book entries, population of emperor penguins. We need to published literature, maps, photographs and explore the coastline of the AAT in detail to help colonies call the Australian satellite images, from the 1950s to today. resolve this,’ she says. She then excluded sightings of birds without Antarctic Territory home, The application of remote sensing technology chicks, airborne sightings not confirmed by may prove an efficient and effective way to and revealed some good a ground visit, and sightings that were never confirmed on subsequent visits. do this. Recently, the British Antarctic Survey news on the resurgence of used satellite images of the Antarctic coastline ‘When emperor penguins are observed in to identify likely emperor penguin colonies, king penguins on Macquarie January/February, there is a possibility that based on faecal stains. Ground visits or high they have gathered at a moult location, which is resolution images can now be used to confirm Island, after their encounter not necessarily the same as their breeding site,’ these sightings. Dr Wienecke says. with near-extinction. ‘This is an exciting new development that has ‘Even
Recommended publications
  • Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
    Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion.
    [Show full text]
  • East Antartic Landfast Sea-Ice Distribution and Variability
    EAST ANTARCTIC LANDFAST SEA-ICE DISTRIBUTION AND VARIABILITY by Alexander Donald Fraser, B.Sc.-B.Comp., B.Sc. Hons Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy Institute for Marine and Antarctic Studies University of Tasmania May, 2011 I declare that this thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Signed: Alexander Donald Fraser Date: This thesis may be reproduced, archived, and communicated in any ma- terial form in whole or in part by the University of Tasmania or its agents. The publishers of the papers comprising Appendices A and B hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed: Alexander Donald Fraser Date: ABSTRACT Landfast sea ice (sea ice which is held fast to the coast or grounded icebergs, also known as fast ice) is a pre-eminent feature of the Antarctic coastal zone, where it forms an important interface between the ice sheet and pack ice/ocean to exert a ma- jor influence on high-latitude atmosphere-ocean interaction and biological processes.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Radio Echo Sounding Data Analysis of the Shackleton Ice Shelf Stefano Urbini1,*, Lili Cafarella1, Achille Zirizzotti1, Ignazio E
    ANNALS OF GEOPHYSICS, 53, 2, APRIL 2010; doi: 10.4401/ag-4563 Radio echo sounding data analysis of the Shackleton Ice Shelf Stefano Urbini1,*, Lili Cafarella1, Achille Zirizzotti1, Ignazio E. Tabacco2, Carla Bottari1, James A. Baskaradas1, Neal Young3 1 Istituto Nazionale di Geofisica e Vulcanologia, sezione di Roma, Italy 2 Università degli Studi di Milano, Dipartimento Scienze della Terra, Milano, Italy 3 Australian Antarctic Division, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Australia Article history Received October 9, 2009; accepted July 5, 2010. Subject classification: Ice, Ice dynamics, Geomorphology, Instrument and techniques, General or miscellaneous ABSTRACT decades and the dramatic changes that have occurred in West Antarctica have led to open questions about the current In this study, our initial results are presented for the interpretation of the status of the East Antarctic ice shelves and their calving [see radio echo sounding data collected over the Shackleton Ice Shelf and for example, Skvarca et al. 1999, Scambos et al. 2000, adjacent ice sheet (East Antarctica) during the 2003/2004 Australian- Scambos et al. 2003]. Italian expedition. The Shackleton Ice Shelf is one of the larger ice shelves The Shackleton Ice Shelf is one of the larger ice shelves of the East Antarctic Ice Sheet. The radar survey provided data relating to of the East Antarctic Ice Sheet, and it is located between the ice thickness and bed morphology of the outlet glaciers, and thickness of Mirny (66˚33´ S, 93˚01´ E) and Casey (66˚17´ S, 110˚32´ E) their floating portions. The glacier grounding lines were determined by stations of Queen Mary Land (Figure 1).
    [Show full text]
  • In Shackleton's Footsteps
    In Shackleton’s Footsteps 20 March – 06 April 2019 | Polar Pioneer About Us Aurora Expeditions embodies the spirit of adventure, travelling to some of the most wild and adventure and discovery. Our highly experienced expedition team of naturalists, historians and remote places on our planet. With over 27 years’ experience, our small group voyages allow for destination specialists are passionate and knowledgeable – they are the secret to a fulfilling a truly intimate experience with nature. and successful voyage. Our expeditions push the boundaries with flexible and innovative itineraries, exciting wildlife Whilst we are dedicated to providing a ‘trip of a lifetime’, we are also deeply committed to experiences and fascinating lectures. You’ll share your adventure with a group of like-minded education and preservation of the environment. Our aim is to travel respectfully, creating souls in a relaxed, casual atmosphere while making the most of every opportunity for lifelong ambassadors for the protection of our destinations. DAY 1 | Wednesday 20 March 2019 Ushuaia, Beagle Channel Position: 21:50 hours Course: 84° Wind Speed: 5 knots Barometer: 1007.9 hPa & falling Latitude: 54°55’ S Speed: 9.4 knots Wind Direction: E Air Temp: 11°C Longitude: 67°26’ W Sea Temp: 9°C Finally, we were here, in Ushuaia aboard a sturdy ice-strengthened vessel. At the wharf Gary Our Argentinian pilot climbed aboard and at 1900 we cast off lines and eased away from the and Robyn ticked off names, nabbed our passports and sent us off to Kathrine and Scott for a wharf. What a feeling! The thriving city of Ushuaia receded as we motored eastward down the quick photo before boarding Polar Pioneer.
    [Show full text]
  • A Glaciochemical Study of the Mill Island Ice Core
    i A GLACIOCHEMICAL STUDY OF THE MILL ISLAND ICE CORE by Mana Inoue, B.Eng, B.AntStd. Hons Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy Institute for Marine and Antarctic Studies University of Tasmania August, 2015 ii I declare that this thesis contains no material which has been ac- cepted for a degree or diploma by the University or any other institution, except by way of background information and duly ac- knowledged in the thesis, and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Signed: Mana Inoue Date: 12 January 2016 iii This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 Signed: Mana Inoue Date: 12 January 2016 iv ABSTRACT The IPCC 5th Assessment Report states that there are insufficient South- ern Hemisphere climate records to adequately assess climate change in much of this region. Ice cores provide excellent archives of past climate, as they con- tain a rich record of past environmental tracers archived in trapped air and precipitation. However Antarctic ice cores, especially those from East Antarc- tica, are limited in quantity and spatial coverage. To help address this, a 120 m ice core was drilled on Mill Island, East Antarctica (65◦ 30' S, 100◦ 40' E). Mill Island is one of the most northerly ice coring sites in East Antarctica, and is located in a region with sparse ice core data.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Article Is Available On- Mand of Charles Wilkes, USN
    The Cryosphere, 15, 663–676, 2021 https://doi.org/10.5194/tc-15-663-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration Bertie W. J. Miles1, Jim R. Jordan2, Chris R. Stokes1, Stewart S. R. Jamieson1, G. Hilmar Gudmundsson2, and Adrian Jenkins2 1Department of Geography, Durham University, Durham, DH1 3LE, UK 2Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK Correspondence: Bertie W. J. Miles ([email protected]) Received: 16 June 2020 – Discussion started: 6 July 2020 Revised: 9 November 2020 – Accepted: 10 December 2020 – Published: 11 February 2021 Abstract. After Totten, Denman Glacier is the largest con- 1 Introduction tributor to sea level rise in East Antarctica. Denman’s catch- ment contains an ice volume equivalent to 1.5 m of global sea Over the past 2 decades, outlet glaciers along the coast- level and sits in the Aurora Subglacial Basin (ASB). Geolog- line of Wilkes Land, East Antarctica, have been thinning ical evidence of this basin’s sensitivity to past warm periods, (Pritchard et al., 2009; Flament and Remy, 2012; Helm et combined with recent observations showing that Denman’s al., 2014; Schröder et al., 2019), losing mass (King et al., ice speed is accelerating and its grounding line is retreating 2012; Gardner et al., 2018; Shen et al., 2018; Rignot et al., along a retrograde slope, has raised the prospect that its con- 2019) and retreating (Miles et al., 2013, 2016).
    [Show full text]
  • Subglacial and Submarine Volcanism in Iceland
    Mars Polar Science 2000 4078.pdf SUBGLACIAL AND SUBMARINE VOLCANISM IN ICELAND. S. P. Jakobsson, Icelandic Inst. of Natural His- tory, P. O. Box 5320, 125 Reykjavik, Iceland Introduction: Iceland is the largest landmass ex- mounds, ridges and tuyas [5]. The thickness of basal posed along the Mid-Ocean Ridge System. It has been basaltic pillow lava piles often exceeds 60-80 meters constructed over the past 16 Ma by basaltic to silicic and a 300 m thick section has been reported. Pillow volcanic activity occurring at the Mid-Atlantic Ridge, lavas may also form lenses or pods at a higher level in and is topographically elevated because of the abundant the volcanoes. igneous material produced in association with the Ice- It has been suggested that at a water depth less than land hot spot, the center of which is thought to be lo- approximately 100-150 m, basaltic phreatic explosions cated beneath Vatnajokull glacier [1]. The axial rift produce hydroclastites. It appears feasible to subdivide zones which run through Iceland from southwest to the hyaloclastites of the Icelandic ridges and tuyas, ge- northeast are in direct continuation of the crestal zones netically into two main types. A substantial part of the of the Mid Atlantic Ridge and are among the most ac- base of the submarine Surtsey tuya is poorly bedded, tive volcanic zones on Earth. unsorted, hydroclastite, which probably was quenched Subglacial Volcanism: Volcanic accumulations of and rapidly accumulated below the seawater level with- hyaloclastites which are deposits formed by the intru- out penetrating the surface [6]. Only 1-2 % of the vol- sion of lava beneath water or ice and the consequent ume of extruded material in the 1996 Gjalp eruption fell shattering into small angular vitric particles, combined as air-fall tephra, the bulk piled up below the ice [4].
    [Show full text]
  • Paleoceanography
    PUBLICATIONS Paleoceanography RESEARCH ARTICLE Sea surface temperature control on the distribution 10.1002/2014PA002625 of far-traveled Southern Ocean ice-rafted Key Points: detritus during the Pliocene • New Pliocene East Antarctic IRD record and iceberg trajectory-melting model C. P. Cook1,2,3, D. J. Hill4,5, Tina van de Flierdt3, T. Williams6, S. R. Hemming6,7, A. M. Dolan4, • Increase in remotely sourced IRD 8 9 10 11 9 between ~3.27 and ~2.65 Ma due E. L. Pierce , C. Escutia , D. Harwood , G. Cortese , and J. J. Gonzales to cooling SSTs 1 2 • Evidence for ice sheet retreat in the Grantham Institute for Climate Change, Imperial College London, London, UK, Now at Department of Geological Sciences, Aurora Basin during interglacials University of Florida, Gainesville, Florida, USA, 3Department of Earth Sciences and Engineering, Imperial College London, London, UK, 4School of Earth and Environment, University of Leeds, Leeds, UK, 5British Geological Survey, Nottingham, UK, 6Lamont-Doherty Earth Observatory, Palisades, New York, USA, 7Department of Earth and Environmental Sciences, Columbia Supporting Information: 8 • Readme University, Lamont-Doherty Earth Observatory, Palisades, New York, USA, Department of Geosciences, Wellesley College, • Text S1 and Tables S1–S3 Wellesley, Massachusetts, USA, 9Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain, 10Department of Geology, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 11Department of Paleontology, GNS Science, Lower Hutt, New Zealand Correspondence to: C. P. Cook, c.cook@ufl.edu Abstract The flux and provenance of ice-rafted detritus (IRD) deposited in the Southern Ocean can reveal information about the past instability of Antarctica’s ice sheets during different climatic conditions.
    [Show full text]
  • Australian Antarctic Magazine
    AusTRALIAN MAGAZINE ISSUE 23 2012 7317 AusTRALIAN ANTARCTIC ISSUE 2012 MAGAZINE 23 The Australian Antarctic Division, a Division of the Department for Sustainability, Environment, Water, Population and Communities, leads Australia’s CONTENTS Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having PROFILE ‘Antarctica valued, protected and understood’. It does Charting the seas of science 1 this by managing Australian government activity in Antarctica, providing transport and logistic support to SEA ICE VOYAGE Australia’s Antarctic research program, maintaining four Antarctic science in the spring sea ice zone 4 permanent Australian research stations, and conducting scientific research programs both on land and in the Sea ice sky-lab 5 Southern Ocean. Search for sea ice algae reveals hidden Antarctic icescape 6 Australia’s four Antarctic goals are: Twenty metres under the sea ice 8 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Pumping krill into research 9 • To protect the Antarctic environment; Rhythm of Antarctic life 10 • To understand the role of Antarctica in the global SCIENCE climate system; and A brave new world as Macquarie Island moves towards recovery 12 • To undertake scientific work of practical, economic and national significance. Listening to the blues 14 Australian Antarctic Magazine seeks to inform the Bugs, soils and rocks in the Prince Charles Mountains 16 Australian and international Antarctic community Antarctic bottom water disappearing 18 about the activities of the Australian Antarctic Antarctic bioregions enhance conservation planning 19 program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of Antarctic ice clouds 20 the Australian Government.
    [Show full text]
  • Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’S Foreword
    Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’s Foreword Australia has inherited a proud legacy from Sir Douglas Significant progress has already been made by the Mawson and the generations of Australian Antarctic Government on improving aviation access to Antarctica. expeditioners who have followed in his footsteps - a We have undertaken C-17A trial flights to provide an option legacy of heroism, scientific endeavour and environmental for a new heavy-lift cargo capability. Work will continue stewardship. across Government to further build support for the Australian Antarctic programme. Mawson’s legacy has forged, for all Australians, a profound and significant connection with Antarctica. The Australian The Government’s investment in Antarctic capability, in Antarctic Territory occupies a unique place in our national support of Antarctic science, represents a step change in identity. our Antarctic programme and will equip us to be a partner of choice in East Antarctica and to work even more closely Australia’s Antarctic science programme is one of our most with other countries within the Antarctic Treaty system. iconic and enduring national endeavours. Antarctica is of great importance to Australians, and Antarctic science will A strong and effective Antarctic Treaty system is in continue to be one of our national priorities. Australia’s national interest. The Government will use our international engagement to build and maintain strong and Antarctica is an extreme and hostile environment. Modern effective relationships with other nations in support of the and effective Antarctic operations and logistics capabilities Antarctic Treaty system.
    [Show full text]