Sallcandace.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Sallcandace.Pdf CHEMICAL COMPOSITIONAL ANALYSIS OF POLYCHROME POTTERY IN THE NORTHERN CASAS GRANDES AREA (A.D. 1200–1450) _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri ______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ By CANDACE A. SALL Dr. Todd VanPool, Dissertation Supervisor December 2018 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled CHEMICAL CHARACTERIZATION OF POLYCHROME POTTERY IN THE NORTHERN CASAS GRANDES AREA (A.D. 1200–1450) presented by Candace A. Sall, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. __________________________________________ Michael J. O’Brien (co-chair) __________________________________________ Todd L. VanPool (co-chair) __________________________________________ Christine S. VanPool __________________________________________ Michael D. Glascock DEDICATION This dissertation is dedicated to my family. Joseph, my husband, never wavered in his support of my graduate work, be it excavating, researching, analyzing, or writing, and he was always there to take care of things at home. Our daughters, Izzy and Beth, were happy to come into the field with me, even though it was always hot! My parents always supported my education and their care kept me going, even after they passed away. My grandparents also helped make sure I had what I needed. My Mom was always my biggest cheerleader and I will always try to make her proud. ACKNOWLEDGMENTS My sincere thanks are given to many people. Michael J. O’Brien provided guidance since the day we met when I said I wanted to use science to understand the archaeological record. His support throughout this project was unwavering. Todd and Christine VanPool allowed me to come to the field with them and work at 76 Draw. Todd keeps the excavations running, and there are none better than Chris at reading excavations. Thank you to Todd for working with me on my first drafts. Mike Glascock trained me in NAA sample preparations and later in analyzing the data as a graduate student. He never let me lose sight of finishing this dissertation and he always inquired on how it was going. This research was funded by two grants: National Science Foundation grant 1621158 at the Archaeometry Lab at the University of Missouri Research Reactor funded NAA, and an additional grant to Todd VanPool from the University of Missouri Arts and Science Alumni Foundation also supported NAA. Thank you to the researchers that allowed me to use their comparative data from across southern New Mexico and western Texas: Katy Putsavage, Darrell Creel, Lori Reed, and Karl Laumbach. My thanks also go to fellow graduate students, especially Matt Boulanger, who showed me the finer points of NAA, and Kyle Waller, who kept me up to date on all the skeletal research in the Casas Grandes area. I also thank Kate Trusler, who helped me walk through all the final graduate school steps in order and as gracefully as possible. ii Table of Contents ACKNOWLEDGMENTS …………………………………………….…………………………………………………...ii LIST OF FIGURES…………………………………….………………………………………………………………….…..v LIST OF TABLES…………………………………….………………………………………………….……….…..….….vi ABSTRACT…………………………………….………………………………………………….…………………..…..…vii Chapter 1. INTRODUCTION………………………………………….………………….……………….………..…….1 2. BACKGROUND………………………………………….…………………….……………………..………9 Casas Grandes Medio Period (A.D. 1200–1450) Chihuahuan Polychrome Pottery Salado (A.D. 1250–1450) Salado Polychrome Pottery Animas Phase (A.D. 1200–1450) 76 Draw Other Settlements Used for Comparisons Pottery Production in the Casas Grandes and Salado Regions 3. MATERIALS AND METHODS………………………………………………..……….………..…….36 Neutron Activation Analysis The Samples Sample Preparation Multivariate Analysis Petrographic Analysis Chapter Summary 4. NAA AND PETROGRAPHIC ANALYSIS AND RESULTS………………………….…..……..53 NAA Compositional Results Group R1 Group R2 Group R3 Group G (Gila: Salado wares) Group P1 Group P2 iii Group P3 Group BMP1 Group BMP2 Group BMP3 Petrographic Analysis Interpreting NAA and Petrographic Results 5. DISCUSSION………………………………………….…………….…………………..………..…………83 Discussion Conclusions Future Work APPENDIX A. CLUSTER ANALYSIS OF DATASET………………….………………………….………93 B. MAHALANOBIS DISTANCES FOR NAA GROUPS…………………….….………96 C. ANALYSIS IDENTIFICATION NUMBERS WITH PROVENIENCE DESGINATION AND NAA GROUP………………….…………………..….………..102 D. SCATTERPLOTS OF RAMOS GROUPS: FE, EU, LA, CR, HF………………..105 E. RAW NAA DATA FROM 76 DRAW SAMPLES………………………………..…109 REFERENCES CITED………………….…………………………………….…………………..…………..121 VITA………………….…………………………………………………………………………..…..……………134 iv LIST OF FIGURES Figure Page 1.1 Map showing the Casas Grandes and Salado regions……………………………………..….……1 1.2 Map of study area with sites and towns………………..…………………………….…….……………6 2.1 Macaw pens with stone rings and plugs at Paquimé..…………………………….……..….……12 2.2 Ramos Polychrome jar.…………………………………………………………………………………..………15 2.3 Gila Polychrome bowl………………………………………………………………………………..…..………22 3.1 Diagram illustrating the process of neutron capture.…………………………………..…………37 3.2 Principal Components 1 and 3 with vectors..…………………………………………………….……45 3.3 Principal Components 1 and 4 with all 10 geochemical groups.………………………………47 3.4 Scatterplot comparing barium and arsenic of Ramos Polychrome groups………..…….48 4.1 Bar chart of variances explained by each principle component………………………………54 4.2 Principal Components scatterplot of Ramos Polychrome groups.……………..……..……58 4.3 Scatterplot of barium and arsenic for Ramos Polychrome groups.…………………………60 4.4 Principal Components scatterplot of Groups G, R1, R2, and R3.………………………..……62 4.5 Scatterplot of all plainware groups.………………………………………………………………….……64 4.6 Scatterplot of vanadium and calcium with plainware Groups 1–3.…………………………66 4.7 Principal Components scatterplot of plainware Groups 1–3.……………………………….…67 4.8 Scatterplot of ytterbium and barium with Groups P2–3 and BMP1–3.……………………68 4.9 Scatterplot of ytterbium and neodymium with Groups BMP1–3.……………………..……69 5.1 Ramos Polychrome group distribution areas.……………………………………………..….………85 5.2 Group G (Gila Polychrome) distribution area.…………………………………….………..…………87 v LIST OF TABLES Table Page 1.1 Dataset for this research by site number.…………………………………………………………………4 2.1 Polychrome pottery sherd counts at 76 Draw.……………………………………….………….……27 3.1 Elements counted in NAA at MURR.……………………………………………………….……..….……43 4.1 Sites and pottery types with site names/number.…………………………………………..………54 4.2 Eigenvalues for the first eight principle components.……………………………………..………55 4.3 Sites with sherd counts and clay sample by geochemical group.…………………….………57 4.4 Petrographic analysis of minerals by temper group and NAA group.…………..…….……74 vi ABSTRACT The northern area of the Casas Grandes Medio Period (A.D. 1200–1450) was not well known archaeologically. 76 Draw is on the border of the Casas Grandes and Salado (A.D. 1275–1450) regions and the nature of interaction and integration with both areas at this site was examined through excavation. 76 Draw, an Animas Phase settlement in Luna County, New Mexico, had both Ramos Polychrome vessels, a Casas Grandes polychrome type, and Gila Polychrome vessels, a Salado polychrome type, and neutron activation analysis was conducted to determine if both types were made at 76 Draw. The Ramos Polychrome pottery at the site came from three production locations based on the geochemical groups as well as petrographic analysis of some of the sherds. One of the production locations is at or near Paquimé and one might be at or near 76 Draw. The Gila Polychrome vessels came to 76 Draw from one production location in the Mimbres Valley north of the site. 76 Draw was integrated with Casas Grandes in Chihuahua, Mexico, as it was participating in the religious system that included the production and use of the iconographic Ramos Polychrome pottery. Evidence of roasting ovens, obsidian from southern sources, shell, and bird burial information from 76 Draw, along with Ramos Polychrome data, demonstrates that the Casas Grandes interaction sphere operates as far north as southern New Mexico. vii Chapter 1 Introduction This study seeks to define the nature of late prehistoric borderland dynamics in what is now southern New Mexico in an area where the Casas Grandes culture, centered in Chihuahua, Mexico, and the Salado culture, centered in Arizona, overlapped (Figure 1.1). Figure 1.1 Map showing the Casas Grandes and Salado regions. The Casas Grandes world encompasses a large area of the United States and Mexico, from southern New Mexico to central Chihuahua and from southwest Texas to southern Arizona and eastern Sonora. This area is delineated most easily by Medio 1 Period (A.D. 1200–1450) Chihuahuan polychrome pottery such as Ramos, Babícora, and Villa Ahumada Polychromes. These polychromes, with intricate red and black painted designs on a light-colored surface, have been noted for over a hundred years (Kidder 1916). They were made by farmers who lived in adobe houses. The largest city in the region, Paquimé (formally known as Casas Grandes) served as a ceremonial and economic center that exerted influence across the region and beyond (Di Peso et al. 1974; Schaafsma and Riley 1999a). Northwest of Paquimé, in east-central Arizona and west-central New Mexico, lived people who also were also farmers
Recommended publications
  • Polychrome: Qualitative Palettes with Many Colors
    Package ‘Polychrome’ July 16, 2021 Title Qualitative Palettes with Many Colors Version 1.3.1 Date 2021-07-16 Author Kevin R. Coombes, Guy Brock Description Tools for creating, viewing, and assessing qualitative palettes with many (20-30 or more) colors. See Coombes and colleagues (2019) <doi:10.18637/jss.v090.c01>. Maintainer Kevin R. Coombes <[email protected]> Depends R (>= 3.5.0) Imports colorspace, scatterplot3d, methods, graphics, grDevices, stats, utils Suggests RColorBrewer, knitr, rmarkdown, ggplot2 License Apache License (== 2.0) LazyLoad yes LazyData no URL http://oompa.r-forge.r-project.org/ VignetteBuilder knitr NeedsCompilation no Repository CRAN Date/Publication 2021-07-16 15:20:02 UTC R topics documented: alphabet . .2 colorDeficit . .3 colorsafe . .4 createPalette . .5 Dark24 . .6 distances . .7 getLUV . .8 1 2 alphabet glasbey . .9 invertColors . 10 iscc ............................................. 11 isccNames . 12 memberPlot . 13 palette.viewers . 14 palette36 . 16 palettes . 16 sky-colors . 18 sortByHue . 19 Index 21 alphabet A 26-Color Palette Description A palette composed of 26 distinctive colors with names corresponding to letters of the alphabet. Usage data(alphabet) Format A character string of length 26. Details A character vector containing hexadecimal color representations of 26 distinctive colors that are well separated in the CIE L*u*v* color space. Source The color palette was generated using the createPalette function with three seed colors: ebony ("#5A5156"), iron ("#E4E1E3"), and red ("#F6222E"). The colors were then manually assigned names begining with different letters of the English alphabet. See Also createPalette Examples data(alphabet) alphabet colorDeficit 3 colorDeficit Converting Colors to Illustrate Color Deficient Vision Description Function to convert any palette to one that illustrates how it would appear to a person with a color deficit.
    [Show full text]
  • Federal Wage System Glossary of Printing Terms for the 4400 Job Family
    Glossary of Printing Terms for the 4400 Job Family TS-45 October 1981 Federal Wage System Glossary of Printing Terms for the 4400 Job Family The terms and definitions contained in this glossary are intended to facilitate the application of published job grading standards to occupations in the Printing Family. The glossary does not represent a comprehensive listing of technical terms and processes common to printing occupations. Additional information may be found in dictionaries, and technical publications such as agency guides, trade magazines, and technical manuals. Aluminum Plate. A thin sheet of aluminum used in lithography for some press plates; image applied photographically; used for both surface-type and deep-etch offset plates. Aperture. A small opening in a plate or sheet. In cameras, the aperture is usually variable in the form of an iris diaphragm and regulates the amount of light which passes through the lens. The working aperture is the diameter of that part of the lens actually used. Asphaltum. A bituminous mixture used as an acid resist or protectant in photomechanics. In lithography, used to make printing image on press plate permanently ink-receptive. Autoscreen (Film). A photographic film embodying the halftone screen; exposed to a continuous-tone image, produces a dot pattern automatically just as if a halftone screen had been used in the camera. Backing-Up. Printing the other side, of a printed sheet. Back Pressure. The squeeze pressure between the blanket (offset) cylinder and the impression cylinder; sometimes called "impression pressure." Base Color. A first color used as a background on which other colors are printed.
    [Show full text]
  • Historic Ceramics
    TEXAS HISTORICAL COMMISSION A STEWARD’S ILLUSTRATED KEY TO HISTORIC CERAMICS REVISED EDITION, 2006* *This guide is a revision of “A Steward’s Key to Historic Ceramics,” prepared by Dan Potter, Roland Pantermuehl and Anne Fox, in support of the 1997 Texas Archeological Stewardship Network workshop training segment entitled “Understanding Historic Period Artifact Assemblages,” conducted by Anne Fox, Center for Archaeological Research, The University of Texas at San Antonio MAJOLICA TEXAS HISTORICAL COMMISSION Unnamed Early 19th century Majolicas Guanajuato Polychrome Age Range: 1830+ (Mexico/New Spain origin) Age Range: 1790 - 1830 The colors are the key, especially the orange San Augustine Blue-on-white Age Range: 1700 - 1730 Has pale blue loops on the reverse side. Tumacacori II Polychrome Age Range: 1810 - 1840 Monterey Polychrome Age Range: 1790 - 1830 Occurs late at the San Antonio missions Tumacacori III Polychrome Age Range: 1830 - 1860 MAJOLICA (cont.) TEXAS HISTORICAL COMMISSION Faience Ware (French origin) Puebla Blue-on-White (Mexico/New Spain origin) Age Range: 18th century Age Range: 1675 - 1800; Most common Spanish Colonial type in Texas. Puebla Blue-on-White Early 18th century San Elizario (Mexico/New Spain origin) Age Range: 1750 - 1800 Huejotzingo Brown/black accents on Puebla Blue-on-White 18th century Puebla Blue White-cup Early 18th century Puebla Blue-on-White II Late 18th century San Luis Polychrome Puebla Blue-on-White Age Range: Early 18th century 1666 - 1720 (possible Mexico City origin) Puebla Blue-on-White Early
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 97. NUMBER 1 PRELIMINARY REPORT ON THE SMITHSONIAN INSTITUTION-HARVARD UNIVERSITY ARCHEOLOGICAL EXPEDITION TO NORTHWESTERN HONDURAS, 1936 (With 16 Plates) BY WILLIAM DUNCAN STRONG Anthropologist, Bureau of American Ethnology ALFRED KIDDER II Peabody Museum, Harvard University AND A. J. DREXEL PAUL, JR. Peabody Museum, Harvard University (Publication 344S) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JANUARY 17, 1938 ^'ytk w •, bo a. -x: tn>: .S U I- rt y ll < t^ z in tn LJ u IT Q. SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 97, NUMBER 1 PRELIMINARY REPORT ON THE SMITHSONIAN INSTITUTION-HARVARD UNIVERSITY ARCHEOLOGICAL EXPEDITION TO NORTHWESTERN HONDURAS, 1936 (With 16 Plates) BY WILLIAM DUNCAN STRONG Anthropologist, Bureau of American Ethnology ALFRED KIDDER II Peabody Museum, Harvard University AND A. J. DREXEL PAUL, JR. Peabody Museum, Harvard University (PUBLICATIOK 3445) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JANUARY 17, 1938 BALTIMORE, UD., U. B, A. CONTENTS PAGE Introduction i Brief geographic setting 2 Ethnic and linguistic background 8 Early historic contacts in northwestern Honduras 19 Archeological explorations 27 Chamelecon River 27 Naco 27 Las Vegas 34 Tres Piedras 35 Other sites 2>7 Ulua and Comayagua Rivers 39 Las Flores Bolsa 39 Santa Rita (farm 17 ) 45 Playa de los Muertos (farm 11) 62 Other sites 76 North end of Lake Yojoa 76 Aguacate and Aguatal 80 La Ceiba 90 Site I 91 Site 2 94 Site 3 99 Causeway and " canal " near Jaral 100 Pyramids and stone statues near Los Naranjos 102 Excavations on the northern border of Los Naranjos 105 The older horizon at Los Naranjos iii Other sites 115 Summary and tentative conclusions 118 Literature cited 125 Explanation of plates 127 ILLUSTRATIONS PLATES PAGE 1.
    [Show full text]
  • Color and the Industrial Arts Laboratory
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 4-12-1962 Color and the Industrial Arts Laboratory James E. Thompson Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Thompson, James E., "Color and the Industrial Arts Laboratory" (1962). Plan B Papers. 204. https://thekeep.eiu.edu/plan_b/204 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. COLOR AND THE INJ.;USTRIAL ARTS LABORATORY by James E. Thompson for Induatrtal Arts 580 EASTERN ILLINOIS UNIVERSITY Apr'1 12, 1962 CO LOR IN THE' INi/l!STRL4.L AR'I'S LABORATORY by James E'. Thompson An extended paper written in partial julfillment of the requirements for the degree of .MA.STER OF SCii,NCE IN EDUCATION EASTERN ILLINDIS 'fNIVE'ESITY April 12, 1962 Approved: tlla:z.A. U:L Head of Department iJa te,~12 '/ d..~V .4pproved: Instructor TABLE OF CONTENTS Page INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • l Chapter I. HISTORY.. • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 II. SCIENCE AND CO.LOR.................... 7 III. THE INDUSTRJAL ARTS LABORATORY....... 11 IV. COLOR IN ACTION •••••••••••••••••••••• 17 v. S UAtfllAltY. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 24 SELECTE'D BIBLIOGRAPHY........................ 26 1 Introduction The intent of this paper is to reveal information concerning color and its particular tnfluence on indus­ trial arts. General comments on standards for a func­ tional industrial arts laboratory are stated so as to create a better understanding of the industrial arts laboratory.
    [Show full text]
  • Colour and Technology in Historic Decorated Glazes and Glasses Glòria Molina I Giralt
    Colour and Technology in historic decorated glazes and glasses Glòria Molina i Giralt Departament de Física i Enginyeria Nuclear Programa de Doctorat en Física Aplicada I Computacional Colour and Technology in historic decorated glazes and glasses Glòria Molina Giralt Directores: Trinitat Pradell i Cara Judit Molera i Marimon Barcelona, Febrer 2014 Tesi presentada per obtenir el Títol de Doctora per la Universitat Politècnica de Catalunya 1 Volum -1- Colour and Technology in historic decorated glazes and glasses Glòria Molina i Giralt Pels meus pares I pel meu amor, Xavi -2- Colour and Technology in historic decorated glazes and glasses Glòria Molina i Giralt Abstract Historical decorated glass and glazed ceramics are studied with the object to determine the technology of production and to relate it with the optical properties (colour, shine, opacity). Four different case of study are investigated: production technology and replication of lead antimonate yellow glass from New Kingdom Egypt and the Roman Empire, technology of production of polychrome lustre, analyses of Syrian lustre pottery (12th–14th centuries AD) and study of color and dichroism of silver stained glasses. These different coloured glazes or glasses have in common to be produced by the presence of micro or nanoparticles embedded into the glaze which give their special optical effect. Chemical and microstructural analyses are performed using a selection of complementary Microscopic and Spectroscopic techniques that are the most adequate for the analyses of each decoration. Physical optical properties are also modeled and measured by means of UV-Vis spectroscopy. The composition and structure of the different phases formed during the processing of the decorations in historical times is obtained with the object to learn about their stability and processing conditions and to relate them to their optical properties.
    [Show full text]
  • Gem Corundum Deposits of Madagascar: a Review
    Ore Geology Reviews 34 (2008) 134–154 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Gem corundum deposits of Madagascar: A review Amos Fety Michel Rakotondrazafy a, Gaston Giuliani b,c,⁎, Daniel Ohnenstetter c, Anthony E. Fallick d, Saholy Rakotosamizanany a, Alfred Andriamamonjy a, Théogène Ralantoarison a, Madison Razanatseheno a, Yohann Offant e, Virginie Garnier b, Henri Maluski f, Christian Dunaigre g, Dietmar Schwarz g, Voahangy Ratrimo a a Faculté des Sciences, Département des Sciences de La Terre, Université d'Antananarivo, Ambohitsaina, BP 906, Antananarivo 101, Madagascar b Institut de Recherche pour le Développement, DME, UR154 LMTG, Toulouse, France c Centre de Recherches Pétrographiques et Géochimiques/Centre National de la Recherche Scientifique, BP 20, 54501- Vandœuvre-lès-Nancy, France d Scottish Universities Environmental Research Centre, East Kilbride, Rankine Avenue, Glasgow G75 0QF, Scotland, UK e Cerege, Europole Méditerranéen de l'Arbois, BP 80, 13545- Aix-en-Provence, France f Laboratoire de Géochronologie, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France g Gübelin Gemmological Laboratory, Maihofstrasse, 102, CH-6000 Lucerne 9, Switzerland ARTICLE INFO ABSTRACT Article history: Madagascar is one of the most important gem-producing countries in the world, including ruby and Received 2 March 2006 sapphires. Gem corundum deposits formed at different stages in the geological evolution of the island and in Accepted 24 May 2007 contrasting environments. Four main settings are identified: (1) Gem corundum formed in the Precambrian Available online 18 April 2008 basement within the Neoproterozoic terranes of southern Madagascar, and in the volcano-sedimentary series of Beforona, north of Antananarivo.
    [Show full text]
  • Maverick Mountain Series and Roosevelt Red Ware Origins
    Maverick Mountain Series and Roosevelt Red Ware Origins PATRICK D. LYONS, ARIZONA STATE MUSEUM AND ARCHAEOLOGY SOUTHWEST The Maverick Mountain Series of pottery types derives its name from the Maverick Mountain phase Kayenta enclave at Point of Pines, in the mountains of east-central Arizona. Roosevelt Red Ware was named for the Roosevelt Lake area, where archaeologists once thought the group of pottery types now known as Pinto, Gila, and Tonto Polychrome (the “Salado polychromes”) had developed. The origin of both groups of types, however, can be traced to Tsegi Orange Ware and Tusayan White Ware, the painted pottery traditions of far northeastern Arizona and southeastern Utah. This three-way connec- tion is clearly evident at Point of Pines, where some of the earliest, most securely dated specimens of Maverick Mountain Series and Roosevelt Red Ware types were found in association with perforated plates (Kayenta pottery making tools), utility ware and painted pottery made in the Kayenta region, and a D-shaped kiva. The Maverick Mountain Series and Roosevelt Red Ware quickly spread far beyond the Arizona mountains, however, and local production of both groups of types occurred throughout the southern Southwest. Tsegi Orange Ware was tempered with crushed Tusayan White Ware potsherds or a mixture of sherds and sand or crushed rock. Although some were unpainted, most Tsegi Orange Ware vessels were deco- rated with black, black and red, or black, red, and white paint. The black paint is rich in manganese and the other pigments are clays with abundant iron (red) or lacking iron (white). The majority of Tusayan White Ware vessels were tempered with sand, although some exhibit volcanic ash temper, and a small minority were tempered with crushed sherds.
    [Show full text]
  • A Comparison of the Polychrome Geometric Patterns Painted on Egyptian “Palace Façades” / False Doors with Potential Counterparts in Mesopotamia
    A comparison of the polychrome geometric patterns painted on Egyptian “palace façades” / false doors with potential counterparts in Mesopotamia Lloyd D. Graham Abstract: In 1st Dynasty Egypt (ca. 3000 BCE), mudbrick architecture may have been influenced by existing Mesopotamian practices such as the complex niching of monumental façades. From the 1st to 3rd Dynasties, the niches of some mudbrick mastabas at Saqqara were painted with brightly-coloured geometric designs in a clear imitation of woven reed matting. The possibility that this too might have drawn inspiration from Mesopotamian precedents is raised by the observation of similar geometric frescoes at the Painted Temple in Tell Uqair near Baghdad, a Late Uruk structure (ca. 3400-3100 BCE) that predates the proposed timing of Mesopotamian influence on Egyptian architecture (Jemdet Nasr, ca. 3100-2900 BCE). However, detailed scrutiny favours the idea that the Egyptian polychrome panels were an indigenous development. Panels mimicking reed mats, animal skins and wooden lattices probably proved popular on royal and religious mudbrick façades in Early Dynastic Egypt because they emulated archaic indigenous “woven” shelters such as the per-nu and per-wer shrines. As with Mesopotamian cone mosaics – another labour-intensive technique that seems to have mimicked textile patterns – the scope of such panels became limited over time to focal points in the architecture. In Egyptian tombs, the adornment of key walls and funerary equipment with colourful and complex geometric false door / palace façade composites (Prunkscheintüren) continued at least into the Middle Kingdom, and the template persisted in memorial temple decoration until at least the late New Kingdom.
    [Show full text]
  • The Gamut: a Journal of Ideas and Information, No. 23, Spring 1988
    Cleveland State University EngagedScholarship@CSU The Gamut Archives Publications Spring 1988 The Gamut: A Journal of Ideas and Information, No. 23, Spring 1988 Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/gamut_archives Part of the Arts and Humanities Commons, Life Sciences Commons, and the Physical Sciences and Mathematics Commons How does access to this work benefit ou?y Let us know! Recommended Citation Cleveland State University, "The Gamut: A Journal of Ideas and Information, No. 23, Spring 1988" (1988). The Gamut Archives. 21. https://engagedscholarship.csuohio.edu/gamut_archives/21 This Book is brought to you for free and open access by the Publications at EngagedScholarship@CSU. It has been accepted for inclusion in The Gamut Archives by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. First Prize $1 ,000 Three Second Prizes of $250 each The four winning entries will be published in The Gamut in 1989. MANUSCRIPT REQUIREMENTS Entry should be ashort story between 1000 and 5000 words long . Entries must be original , previously unpublished , and not under consideration elsewhere . Each entry should be typed (or printed in near letter quality) , with a dark ribbon , double spaced . Clear photocopies are acceptable . Pages should be numbered , with author's name or short title on each sheet. A cover sheet should include the title, number of words, and author's name , address , phone number, and social security number. ENTRY FEE Each entry must be accompanied by afee of $5 .00 . Make checks payable to The Gamut. One entry fee is waived for each subscriber to The Gamut.
    [Show full text]
  • Polychrome: Creating and Assessing Qualitative Palettes with Many Colors
    bioRxiv preprint doi: https://doi.org/10.1101/303883; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. JSS Journal of Statistical Software MMMMMM YYYY, Volume VV, Code Snippet II. http://www.jstatsoft.org/ Polychrome: Creating and Assessing Qualitative Palettes With Many Colors Kevin R. Coombes Guy Brock Zachary B. Abrams The Ohio State University The Ohio State University The Ohio State University Lynne V. Abruzzo The Ohio State University Abstract Although R includes numerous tools for creating color palettes to display continuous data, facilities for displaying categorical data primarily use the RColorBrewer package, which is, by default, limited to 12 colors. The colorspace package can produce more colors, but it is not immediately clear how to use it to produce colors that can be reliably distingushed in different kinds of plots. However, applications to genomics would be enhanced by the ability to display at least the 24 human chromosomes in distinct colors, as is common in technologies like spectral karyotyping. In this article, we describe the Polychrome package, which can be used to construct palettes with at least 24 colors that can be distinguished by most people with normal color vision. Polychrome includes a variety of visualization methods allowing users to evaluate the proposed palettes. In addition, we review the history of attempts to construct qualitative color palettes with many colors. Keywords: color, palette, categorical data, spectral karyotyping, R.
    [Show full text]
  • Spectral and 3D Cultural Heritage Documentation Using a Modified Camera
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2, 2018 ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy SPECTRAL AND 3D CULTURAL HERITAGE DOCUMENTATION USING A MODIFIED CAMERA E. K. Webb 1,2 *, S. Robson 3, L. MacDonald 3, D. Garside 3, R. Evans1 1 University of Brighton, Brighton, UK – (e.webb2, R.P.Evans)@brighton.ac.uk 2 Smithsonian’s Museum Conservation Institute, Suitland, Maryland, USA 3 Dept. of Civil, Environmental and Geomatic Engineering, University College London, London, UK – (s.robson, ucfslwm)@ucl.ac.uk, [email protected] Technical Commission II, WG II/8 KEY WORDS: Spectral imaging, image-based 3D reconstruction, cultural heritage, camera characterisation, image quality ABSTRACT: Spectral and 3D imaging techniques are used for museum imaging and cultural heritage documentation providing complementary information to aid in documenting the condition, informing the care, and increasing our understanding of objects. Specialised devices for spectral and 3D imaging may not be accessible for many heritage institutions, due to cost and complexity, and the modification of a consumer digital camera presents the potential of an accessible scientific tool for 2D and 3D spectral imaging. Consumer digital cameras are optimised for visible light, colour photography, but the underlying sensor is inherently sensitive to near ultraviolet, visible, and near infrared radiation. This research presents the characterisation of a modified camera to investigate the impact of the modification on the spectroradiometric and geometric image quality with the intention of the device being used as a scientific tool for cultural heritage documentation.
    [Show full text]