Earth Observation:Observation: Presentpresent Andand Futurefuture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mr. Jeffrey Manber Testimony.Pdf
Testimony of Mr. Jeffrey Manber Chief Executive Officer, Nanoracks LLC before the Senate Committee on Commerce, Science and Transportation Subcommittee on Aviation and Space Tuesday, November 5, 2019 Building NASA’s Workforce of the Future: STEM Engagement for a 21st Century Education Chairman Cruz, Ranking Member Sinema, and other distinguished members of the Aviation and Space Subcommittee, thank you for giving me the opportunity to return to this room to testify before you. I look forward to discussing how commercial access to the International Space Station has provided an unprecedented educational experience to over a million students across the United States. Let me begin today by explaining that I am here in two different capacities. I am, of course, representing Nanoracks as the CEO, but I am also Chairman of the Board for DreamUp, Nanoracks’ educational sister company. Once just a division in Nanoracks, we spun DreamUp out to be a standalone public benefit corporation because the business of providing educational access to space was, and remains today, strong and important. DreamUp’s sole focus is bringing space to the classroom, and the classroom to space. We opened the doors at Nanoracks in 2009 with the goal to make space accessible to everyone. I am proud to say today that the very first customers that brought Nanoracks into business were in fact, schools. Our very first experiments were small projects that were developed by middle school students. These kids quite literally held bake sales - not to sponsor their soccer team, or raise money for the school dance, but to send their very own science experiment to the International Space Station via a Nanoracks Space Act Agreement with NASA. -
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
Co-Creating and Directing Innovation Ecosystems? Nasas Changing Approach to Public-Private Partnerships in Low-Earth Orbit Mariana Mazzucato1,2 and Douglas K.R
CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Co-creating and directing Innovation Ecosystems? NASAs changing approach to public-private partnerships in low-earth orbit Mariana Mazzucato1,2 and Douglas K.R. Robinson 1,3 * 1 Institute for Innovation and Public Purpose, University College London, UK 2 Science Policy Research Unit (SPRU), University of Sussex, UK 3 Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), CNRS-INRA-ESIEE- UPEM, Université Paris-Est Marne-la-Vallée, France * Corresponding author : [email protected] Abstract A recent report from NASA’s office of the chief technologist positions a self-sustained “low-earth-orbit ecosystem” as a desirable objective for NASA’s human spaceflight policy and linking to its larger aims of deeper exploration of the solar system. The report follows a wave of mission shifts and space policy directives which emphasize that the private sector should be given more power and receive public agency financial support to stimulate space services. To understand how US space innovation activities are changing, and to be able to make assessments and policy recommendations, we use an innovation ecosystems approach to help understand the types of relationships between actors in low-earth-orbit and to determine the ramifications for US space policy. Our findings reveal four new forms of relationships between NASAA and other parties in the emerging innovation ecosystem and we discuss how these lead to policy challenges for NASA as a mission-oriented public agency with the new additional objective of creating an economic zone in orbit. 1. Introduction Historically, NASA’s mission-oriented programs for innovation have been driven by security concerns and by the need for maintaining technical leadership over other nations. -
Nanoracks External Platform (NREP) Interface Definition Document (IDD)
NanoRacks External Platform (NREP) Interface Definition Document (IDD) Doc No: NR-NREP-S0001 Revision: B © Copyright NanoRacks, LLC 2016. All Rights Reserved. NanoRacks External Platform IDD NREP Doc No: NR-NREP-S0001 Rev: B NanoRacks External Platform (NREP) IDD NREP Prepared by Steven Stenzel; Systems Engineer; Date Reviewed by Mark Rowley; Mechanical Design; Date Reviewed by Keith Tran; Operations Manager; Date Reviewed by Troy Guy; Avionics Manager; Date Reviewed by Bob Alexander; Safety; Date Reviewed by Susan Lufkin; Systems Engineer; Date Reviewed by Kirk Woellert; Payload Coordinator; Date Approved by Mike Lewis; Chief Technology Officer; Date NanoRacks External Platform IDD NREP Doc No: NR-NREP-S0001 Rev: B List of Revisions Revision Revision Date Revised By Revision Description - 3/16/2016 Steve Stenzel Initial Release A 4/20/2016 Steve Stenzel Update logo on cover page B 11/14/2016 C. Cummins Replace Proprietary Statement with a Copyright statement. NanoRacks External Platform IDD NREP Doc No: NR-NREP-S0001 Rev: B Table of Contents 1 Introduction 1 1.1 Purpose 1 1.2 Scope 1 1.3 Use 1 1.4 Exceptions 1 2 Acronyms, Definitions and Applicable Documents 2 3 NanoRacks NREP Overview 4 3.1 NREP Physical Descriptions 4 3.1.1 NREP-P Baseplate 4 3.1.2 NanoRacks External Plate - Payload 5 3.1.3 NREP Coordinate System 5 3.1.4 NREP General Dimensions 6 3.1.5 NREP Payload Configurations 6 3.1.6 NREP Baseplate Location Numbering System 7 3.2 NREP Operations Overview 10 3.2.1 Schedule 10 3.2.2 Ground Operations 11 3.2.2.1 Delivery to NanoRacks -
Space Policy Directive 1 New Shepard Flies Again 5
BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S. -
View / Download
www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers. -
13Th International Conference on Cyber Conflict: Going Viral 2021
2021 13th International Conference on Cyber Confict: Going Viral T. Jančárková, L. Lindström, G. Visky, P. Zotz (Eds.) 2021 13TH INTERNATIONAL CONFERENCE ON CYBER CONFLICT: GOING VIRAL Copyright © 2021 by NATO CCDCOE Publications. All rights reserved. IEEE Catalog Number: CFP2126N-PRT ISBN (print): 978-9916-9565-4-0 ISBN (pdf): 978-9916-9565-5-7 COPYRIGHT AND REPRINT PERMISSIONS No part of this publication may be reprinted, reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the NATO Cooperative Cyber Defence Centre of Excellence ([email protected]). This restriction does not apply to making digital or hard copies of this publication for internal use within NATO, or for personal or educational use when for non-proft or non-commercial purposes, providing that copies bear this notice and a full citation on the frst page as follows: [Article author(s)], [full article title] 2021 13th International Conference on Cyber Confict: Going Viral T. Jančárková, L. Lindström, G. Visky, P. Zotz (Eds.) 2021 © NATO CCDCOE Publications NATO CCDCOE Publications LEGAL NOTICE: This publication contains the opinions of the respective authors only. They do not Filtri tee 12, 10132 Tallinn, Estonia necessarily refect the policy or the opinion of NATO Phone: +372 717 6800 CCDCOE, NATO, or any agency or any government. NATO CCDCOE may not be held responsible for Fax: +372 717 6308 any loss or harm arising from the use of information E-mail: [email protected] contained in this book and is not responsible for the Web: www.ccdcoe.org content of the external sources, including external websites referenced in this publication. -
Spacex CRS-4 National Aeronautics and Fourth Commercial Resupply Services Flight Space Administration
SpaceX CRS-4 National Aeronautics and Fourth Commercial Resupply Services Flight Space Administration to the International Space Station September 2014 OVERVIEW The Dragon spacecraft will be filled with more than 5,000 pounds of supplies and payloads, including critical materials to support 255 science and research investigations that will occur during Expeditions 41 and 42. Dragon will carry three powered cargo payloads in its pressurized section and two in its unpressurized trunk. Science payloads will enable model organism research using rodents, fruit flies and plants. A special science payload is the ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction. Several new technology demonstrations aboard will enable bone density studies, test how a small satellite moves and positions itself in space using new thruster technology, and use the first 3-D printer in space for additive manufacturing. The mission also delivers IMAX cameras for filming during four increments and replacement batteries for the spacesuits. After four weeks at the space station, the spacecraft will return with about 3,800 pounds of cargo, including crew supplies, hardware and computer resources, science experiments, space station hardware, and four powered payloads. DRAGON CARGO LAUNCH ITEMS RETURN ITEMS TOTAL CARGO: 4885 lbs / 2216 kg 3276 lbs / 1486 kg · Crew Supplies 1380 lbs / 626 kg 132 lbs / 60 kg Crew care packages Crew provisions Food · Vehicle Hardware 403 lbs / 183 kg 937 lbs / 425 kg Crew Health Care System hardware Environment Control & Life Support equipment Electrical Power System hardware Extravehicular Robotics equipment Flight Crew Equipment Japan Aerospace Exploration Agency equipment · Science Investigations 1644 lbs / 746 kg 2075 lbs / 941 kg U.S. -
Volume Xiv • Issue Iii
Z cgai.ca CANADA’S CYBER SECURITY STRATEGY [P.12] PEACEKEEPING, PREPARE FOR WAR [P.16] DispatchThe FALL 2016 • VOLUME XIV • ISSUE III [P.6] FEATURED ARTICLE Source: Macleans ARE CANADA’S DIGITAL SECURITY POLICIES BEING DECIDED IN WASHINGTON? [P.10] September 2016 The Dispatch | 1 Published by the Canadian Global Affairs Institute Contributing Fellows: John Adams Jack Granatstein David Perry Stuart Beare Marius Grinius George Petrolekas David Bercuson Stéphanie von Hlatky Joël Plouffe Serge Bertrand Rolf Holmboe Andrew Rasiulis Jean-Christophe Boucher Rob Huebert Roy Rempel David Carment Thomas Juneau Colin Robertson Anthony Cary Tom Keenan Stephen Saideman Mark Collins Ferry de Kerckhove Hugh Segal Barry Cooper Whitney Lackenbauer Elinor Sloan Daryl Copeland Julian Lindley-French Gary Soroka Glenn Davidson Candice Malcolm Hugh Stephens Mike Day Randolph Mank Alan Stephenson Neil Desai Kyle Matthews Charity Weeden Paul Dewar David McLaughlin Chris Westdal Paul Durand Eric Miller Frédérick Gagnon Robert Muggah Prepared for the Canadian Global Affairs Institute 1600, 530 – 8th Avenue S.W. Calgary, Alberta T2P 3S8 www.cgai.ca ©2016 Canadian Global Affairs Institute| ISBN: 978-1-988493-04-6 2 | The Dispatch Volume XIV • Issue III September 2016 The Dispatch | 3 • Message from the Editor by DAVID BERCUSON COVER STORY Brexit, the Anglosphere and Canada by JULIAN LINDLEY-FRENCH The Obama Moment—Defence Spending Does Matter, eh! by ALAN STEPHENSON Are Canada’s Digital Security Policies Being Decided in Washington? by NEIL DESAI Canada’s Cyber Security -
Mission Overview
CRS Orb-1 Mission Mission Overview Overview Under the Commercial Resupply Services (CRS) contract with NASA, Orbital will provide approximately 20 metric tons of cargo to the International Space Station over the course of eight missions. Orb-1 is the first of those missions. The Orb-1 mission builds on the successful Commercial Orbital Transportation Services (COTS) demonstration mission conducted from September 18 to October 23, 2013. The Orb-1 flight will carry substantially more cargo (1465 kg vs. 700 kg) than the COTS mission, including several time-sensitive payloads and Cygnus’ first powered payload, the Commercial Generic Bioprocessing Apparatus (CGBA) from Bioserve. Mission Overview, Cont. Antares® The configuration of the Antares launch vehicle for the Orb-1 Mission is much the same as the two previous Antares flights with a CASTOR 30B second stage motor instead of the CASTOR 30 used previously. The first stage includes a core that contains the tanks for the liquid oxygen and kerosene, the first stage avionics, and two AJ26 rocket engines. The second stage consists of the CASTOR® 30B solid rocket motor, an avionics section containing the flight computer and guidance/ navigation/control functions, an interstage that connects the solid rocket motor to the first stage, the Cygnus spacecraft, and a fairing that encloses and protects the Cygnus spacecraft during ascent. Continued on Next Page Mission Overview, Cont. Cygnus™ The Cygnus spacecraft is composed of two elements, the Service Module (SM) and the Pressurized Cargo Module (PCM). The SM provides the propulsion, power, guidance, navigation and control, and other “housekeeping” services for the duration of the mission. -
NANORACKS, LLC 555 Forge River Rd., Suite 120 Webster, TX 77598 4369 Phone: 832-632-7754 Fax: 832-575-4767
NANORACKS, LLC 555 Forge River Rd., Suite 120 Webster, TX 77598 4369 Phone: 832-632-7754 Fax: 832-575-4767 www.nanoracks.com Contract Administrator: Christopher Cummins Email Address: [email protected] Business Size: Small For more information on ordering from Federal Supply Schedules click on the FSS Schedules button at fss.gsa.gov. TABLE OF CONTENTS COMPANY OVERVIEW ...............................................................................................................3 CUSTOMER INFORMATION .......................................................................................................5 GSA PRICELIST .............................................................................................................................8 SERVICE DESCRIPTIONS ..........................................................................................................13 NanoRacks, LLC 47QRAA18D004R 2 About NanoRacks NanoRacks was founded on the vision of building a business ecosystem in space. Our company has been integrating customer payloads for the International Space Station since our first launch in 2010. As of February 2018, we have integrated and operated over 600 payloads on 32 launches to the Space Station, including Shuttle, Antares/Cygnus, Atlas V/Cygnus, Falcon/Dragon, HTV, ATV, and Soyuz. To date, we have also deployed over 200 satellites into low-Earth orbit. NanoRacks comes with a team that has real hands on experience with payloads ranging from professional grade research to DOD to high school experiments. NanoRacks -
Nanoracks Completes First Mission on India's Polar Satellite Launch
NanoRacks Completes First Mission on India’s Polar Satellite Launch Vehicle, Launches Spire’s 100th Satellite NanoRacks, the world’s leading commercial space station company, completed its first CubeSat deployment mission on India Space Research Organization’s (ISROs) Polar Satellite Launch Vehicle (PSLV). This mission was brokered on behalf of Spire, which now has four more of their LEMUR 3U CubeSats in orbit. Notably, this mission included the launch of Spire’s 100th Lemur satellite. “Congratulations to Spire on this incredible achievement,” says NanoRacks Payloads Director, Conor Brown. “Spire has been with us from the beginning, not just as a customer but as a partner, working alongside us to pioneer new capabilities across platforms on the Space Station, Cygnus, and now finally on the PSLV. Spire’s diversified launch approach and willingness to embrace new technologies continues to foster the marketplace and we couldn’t be more excited to have deployed the 100th satellite!” NanoRacks announced sun synchronous polar orbit launch opportunities after receiving significant customer demand and strong feedback for the customer support that the Company offers. Polar orbit offerings come in addition to NanoRacks’ proven success in small satellite deployments, having deployed over 230 satellites to date. Spire’s CubeSats offer data and analytics for parts of the world where collecting data is notoriously difficult, tracking ships, planes, and weather in remote regions which often go unmonitored. To date, of the 100 satellites Spire has launched, 37 were on NanoRacks missions from the Space Station, the Cygnus Spacecraft, and now PSLV. “Spire is excited to share this milestone with NanoRacks,” says Jenny Barna, Spire’s Director of Launch.