The Immanence of Truths and the Absolutely Infinite in Spinoza, Cantor, and Badiou

Total Page:16

File Type:pdf, Size:1020Kb

The Immanence of Truths and the Absolutely Infinite in Spinoza, Cantor, and Badiou Filozofski vestnik | Volume XLI | Number 2 | 2020 | 341–360 | doi: 10.3986/fv.41.2.13 Jana Ndiaye Berankova* The Immanence of Truths and the Absolutely Infinite in Spinoza, Cantor, and Badiou The relationship between mathematics and ontology and the slogan “mathe- matics is ontology” has been a constant topic of investigation among think- ers who follow Alain Badiou’s philosophical project. In 2018, at the conference Thinking the Infinite at the National Gallery in Prague, Badiou was supposed to give a talk proving the logical necessity of mathematical ontology. Howev- er, instead of providing the final proof that some members of the public were asking for, he delivered a different talk reworked at the last minute. He elicited great perplexity in the room by retracting the slogan “mathematics is ontology” for being nothing but an advertising simplification of a necessarily complex problem.1 He observed that this clear and easily memorable slogan falls into the sphere of the doxa and cannot exhaust the nuanced relationship between the two fields. My intention in the present article will be to provide an interpre- tation of these puzzling remarks along with an exegesis of the mathematical concepts that appear in the recently published third volume of Being and Event: The Immanence of Truths. In this third volume, Badiou relies on the mathemat- ical theory of large cardinals, which addresses sets and classes so large that they can almost approximate the entire universe of numericity. He proposes a renewed theory of the absolute “substance” and of the attributes of the abso- lute. As abstract and complex as such thinking might seem, it builds upon prob- lems which appeared – although in their naïve and schematic form – already in the mathematico-philosophical considerations of Georg Cantor. By reading 341 Badiou’s and Cantor’s texts closely together, we might be able to comprehend the articulation of philosophy and mathematics and the role played by philo- sophical choices. 1 Alain Badiou, “Ontologie et mathématiques : Théorie des Ensembles, théorie des Catégo- ries, et théorie des Infinis, dans L’Être et l’événement, Logiques des mondes et L’imma- nence des vérités”. * Columbia University jana ndiaye berankova Mathematical ontology and its consequences Did Badiou truly disavow the relationship between ontology and mathematics, or more broadly, between philosophy and mathematics? My conviction is that the response to this question might not be scandalous at all: “the discourse of Prague” constitutes nothing but a clarification of the hierarchy between these two fields. Badiou posits that “the thinking of being is a thinking on different forms of the multiple.”2 He departs from the philosophical statement “being is the multiplicity-without-the-one.”3 This starting point is not a mathematical statement. It would thus be misleading to say that “ontology is mathematics” for the latter expression would imply that we can derive knowledge of being di- rectly from mathematics without passing through philosophical decisions and that mathematical inventions must have a direct and immediate effect on our understanding of Being. “Being is the multiplicity-without-the-one”4 is nothing but an initial philosophical decision; it is the philosopher’s choice: the phi- losopher chooses this position over another one by comparing their possible consequences. In other words, the decision situated at the beginning of any philosophical system is an initial “wager”, a “working hypothesis”, perhaps something like a philosophical “axiom”. Such an “axiom” can be legitimated only by the richness of its consequences. The dialogue between mathematics and philosophy can be portrayed as follows: “a philosopher outlines a certain idea, and then uses mathematics, wherein this idea can be verified, and in the end returns to philosophy.”5 It is the “very construction of the [philosophical] system [that] proves the statement. This means that this initial statement is a posteriori proven and vindicated thanks to the scope of its consequences. But we never have demonstrative certainty which would resemble mathematical formalism.”6 In the present volume, Badiou states similarly that “the alliance 342 organized between mathematics and philosophy becomes strong only when we observe its consequences.”7 In other words, mathematics is but philosophy’s methodological tool for verifying its initial philosophical hypotheses. The phi- 2 Interview with Alain Badiou on The Immanence of Truths, Paris, 13 February 2018. 3 See p. 22 in the present volume. 4 See p. 30 in the present volume. 5 Jana Beránková, “Communism is a New Idea, Interview with Alain Badiou by Jana Beránk- ová”, Contradictions 2 (2/2018), p. 118. 6 Ibid., 118. 7 See p. 22 in the present volume. the immanence of truths and the absolutely infinite in spinoza, cantor, and badiou losopher needs mathematics in order to build a method, and it is in this sense that a great part of ontology remains “mathematical”, and yet we cannot affirm that philosophical statements are deduced directly from mathematics. To the philosopher, mathematics is but a modality to develop his or her thought; the origin and the finality of thinking remains philosophical. In fact, ontology is grounded in philosophy, not in science. In Prague, Badiou merely clarified the hierarchy between these two fields by alluding to the ineluctable arbitrariness of philosophical decisions; in no manner did he reject the relationship between ontology and mathematics. Instead of “mathematics is ontology,” it might be more exact to say that “ontology uses mathematics as a methodological instru- ment for creating a possibility of our understanding of being.” Mathematics is a mere condition of philosophy along with politics, art, and love. The relationship between philosophy and mathematics is not that of “suture”: philosophy is not sutured to anything; it highlights the existence of truth procedures in its condi- tions (science qua mathematics being one of them). Note that in the above cited passages, the relationship between mathematics and philosophy is portrayed on the basis of inductive, not deductive, reason- ing. Here, the induction generates the possibility of building up a philosoph- ical system from mathematical grounds. As long as mathematics assists phi- losophers by successfully elucidating otherwise unsolvable problems, its use in ontology is legitimate. Such reasoning sounds surprisingly Gödelian, for it can call to mind the concluding paragraph of Kurt Gödel’s 1947 article “What is Cantor’s Continuum Problem?”: “There might exist axioms so abundant in their verifiable consequences, shedding so much light upon a whole field, and yielding such powerful methods for solving problems (and even solving them constructively, as far as that is possible) that, no matter whether or not they are intrinsically necessary, they would have to be accepted at least in the same 343 sense as any well-established physical theory.”8 Badiou – who valued Gödel’s article for the emphasis it placed on the role that mathematical intuition and axiomatic decisions play in solving mathematical problems9 – remarked that “Every thought – and therefore, mathematics – sets off decisions (intuitions) 8 Kurt Gödel, “What is Cantor’s Continuum Problem?”, in Collected Works, Vol. II, Publica- tions 1938–1974, Oxford University Press, Oxford 1990, p. 261. 9 See Badiou’s comments on Gödel’s article in Briefings on Existence: A Short Treatise on Transitory Ontology, State University of New York Press, Albany 2006, p. 92. jana ndiaye berankova from the standpoint of the undecidable (of nondeductible inference).”10 Ontolo- gy’s use of mathematics is nothing but an initial decision that can be justified a posteriori by the solutions it provides to otherwise unsolvable problems. Critics of Badiou’s mathematical ontology (some of whom are included in this volume) tend to see as deduction what in reality is inductive reasoning. The criticism usually follows this trajectory: If set theory is ontology (i.e. a rational discourse on being qua being defined as an inconsistent multiplicity without the one), could some other mathematical theory (e.g. category theory, mereol- ogy)11 be ontology too? Why should we privilege set theory, an obscure field of knowledge that seems to be but a burden to many working mathematicians? These questions are legitimate but also tautological. For had we departed from a different philosophical axiom, e.g. that “being is a pure multiplicity without the one,” a different mathematical or scientific theory might be much more suitable to our thinking. It is very likely possible to build ontology on a different basis than a set-theoretical basis. Any true criticism cannot dispense with the long and laborious task of system building. The usefulness of a given mathemati- cal theory for philosophical thought can only be seen after we have sketched and exhausted its consequences in the domain of philosophy. Thinking moves from ontology to mathematics and not vice versa. A correct reasoning cannot be “there is theory y in mathematics, therefore being must be x,” but rather: “being is x, therefore we should use mathematical theory y to develop our reflection.” And even this second reasoning can be vindicated only a posteriori depending on the fruitfulness of its consequences. Philosophy cannot have the certitude of a mathematical formalism; it is consistent but necessarily incomplete. It begins with an axiom and not with a totalising origin that would close its field of the possible. Philosophical axioms, the statements in which the long trajectory of 344 thought originates, can be verified only a posteriori, after accomplishing a cer- tain philosophical journey. Only by elaborating a different and similarly com- plex philosophical system grounded in a competing statement that “ontology is y” will it be possible to measure the richness of its consequences with those of Badiou’s set-theoretical ontology. Philosophical “working hypotheses” do not 10 Alain Badiou, Briefings on Existence: A Short Treatise on Transitory Ontology, State Univer- sity of New York Press, Albany 2006, p.
Recommended publications
  • Structural Reflection and the Ultimate L As the True, Noumenal Universe Of
    Scuola Normale Superiore di Pisa CLASSE DI LETTERE Corso di Perfezionamento in Filosofia PHD degree in Philosophy Structural Reflection and the Ultimate L as the true, noumenal universe of mathematics Candidato: Relatore: Emanuele Gambetta Prof.- Massimo Mugnai anno accademico 2015-2016 Structural Reflection and the Ultimate L as the true noumenal universe of mathematics Emanuele Gambetta Contents 1. Introduction 7 Chapter 1. The Dream of Completeness 19 0.1. Preliminaries to this chapter 19 1. G¨odel'stheorems 20 1.1. Prerequisites to this section 20 1.2. Preliminaries to this section 21 1.3. Brief introduction to unprovable truths that are mathematically interesting 22 1.4. Unprovable mathematical statements that are mathematically interesting 27 1.5. Notions of computability, Turing's universe and Intuitionism 32 1.6. G¨odel'ssentences undecidable within PA 45 2. Transfinite Progressions 54 2.1. Preliminaries to this section 54 2.2. Gottlob Frege's definite descriptions and completeness 55 2.3. Transfinite progressions 59 3. Set theory 65 3.1. Preliminaries to this section 65 3.2. Prerequisites: ZFC axioms, ordinal and cardinal numbers 67 3.3. Reduction of all systems of numbers to the notion of set 71 3.4. The first large cardinal numbers and the Constructible universe L 76 3.5. Descriptive set theory, the axioms of determinacy and Luzin's problem formulated in second-order arithmetic 84 3 4 CONTENTS 3.6. The method of forcing and Paul Cohen's independence proof 95 3.7. Forcing Axioms, BPFA assumed as a phenomenal solution to the continuum hypothesis and a Kantian metaphysical distinction 103 3.8.
    [Show full text]
  • A Cardinal Sin: the Infinite in Spinoza's Philosophy
    Macalester College DigitalCommons@Macalester College Philosophy Honors Projects Philosophy Department Spring 2014 A Cardinal Sin: The nfinitI e in Spinoza's Philosophy Samuel H. Eklund Macalester College, [email protected] Follow this and additional works at: http://digitalcommons.macalester.edu/phil_honors Part of the Philosophy Commons Recommended Citation Eklund, Samuel H., "A Cardinal Sin: The nfinitI e in Spinoza's Philosophy" (2014). Philosophy Honors Projects. Paper 7. http://digitalcommons.macalester.edu/phil_honors/7 This Honors Project is brought to you for free and open access by the Philosophy Department at DigitalCommons@Macalester College. It has been accepted for inclusion in Philosophy Honors Projects by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. A Cardinal Sin: The Infinite in Spinoza’s Philosophy By: Samuel Eklund Macalester College Philosophy Department Honors Advisor: Geoffrey Gorham Acknowledgements This thesis would not have been possible without my advisor, Professor Geoffrey Gorham. Through a collaborative summer research grant, I was able to work with him in improving a vague idea about writing on Spinoza’s views on existence and time into a concrete analysis of Spinoza and infinity. Without his help during the summer and feedback during the past academic year, my views on Spinoza wouldn’t have been as developed as they currently are. Additionally, I would like to acknowledge the hard work done by the other two members of my honors committee: Professor Janet Folina and Professor Andrew Beveridge. Their questions during the oral defense and written feedback were incredibly helpful in producing the final draft of this project.
    [Show full text]
  • On the Infinite in Leibniz's Philosophy
    On the Infinite in Leibniz's Philosophy Elad Lison Interdisciplinary Studies Unit Science, Technology and Society Ph.D. Thesis Submitted to the Senate of Bar-Ilan University Ramat-Gan, Israel August 2010 This work was carried out under the supervision of Dr. Ohad Nachtomy (Department of Philosophy), Bar-Ilan University. Contents א.……………………………….…………………………………………Hebrew Abstract Prologue…………………………………………………………...………………………1 Part A: Historic Survey Methodological Introduction…………………………………………………………..15 1. Aristotle: Potential Infinite………………………………………………………….16 2. Thomas Aquinas: God and the Infinite………………………………………..…….27 3. William of Ockham: Syncategorematic and Actual Infinite……………………..….32 4. Rabbi Abraham Cohen Herrera: Between Absolute Unity and Unbounded Multitude………………………………………………………………………..….42 5. Galileo Galilei: Continuum Constructed from Infinite Zero's………………………49 6. René Descartes: Infinite as Indefinite…………………………………………….…58 7. Pierre Gassendi: Rejection of the Infinite…………………………………………...69 8. Baruch Spinoza: Infinite Unity…………………………………………………...…73 9. General Background: Leibniz and the History of the Infinite……………………....81 Summary…………………………………………………………………………….…94 Part B: Mathematics Introduction…………………………………………………………………………….99 1. 'De Arte Combinatoria' as a Formal Basis for Thought: Retrospective on Leibniz's 1666 Dissertation………………………………………………………………....102 2. Leibniz and the Infinitesimal Calculus……………………………………….……111 2.1. Mathematical Background: Mathematical Works in 16th-17th Centuries…..111 2.2. Leibniz's Mathematical Development…………………………………….…127
    [Show full text]
  • Cantor on Infinity in Nature, Number, and the Divine Mind
    Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304.
    [Show full text]
  • Cantor-Von Neumann Set-Theory Fa Muller
    Logique & Analyse 213 (2011), x–x CANTOR-VON NEUMANN SET-THEORY F.A. MULLER Abstract In this elementary paper we establish a few novel results in set the- ory; their interest is wholly foundational-philosophical in motiva- tion. We show that in Cantor-Von Neumann Set-Theory, which is a reformulation of Von Neumann's original theory of functions and things that does not introduce `classes' (let alone `proper classes'), developed in the 1920ies, both the Pairing Axiom and `half' the Axiom of Limitation are redundant — the last result is novel. Fur- ther we show, in contrast to how things are usually done, that some theorems, notably the Pairing Axiom, can be proved without invok- ing the Replacement Schema (F) and the Power-Set Axiom. Also the Axiom of Choice is redundant in CVN, because it a theorem of CVN. The philosophical interest of Cantor-Von Neumann Set- Theory, which is very succinctly indicated, lies in the fact that it is far better suited than Zermelo-Fraenkel Set-Theory as an axioma- tisation of what Hilbert famously called Cantor's Paradise. From Cantor one needs to jump to Von Neumann, over the heads of Zer- melo and Fraenkel, and then reformulate. 0. Introduction In 1928, Von Neumann published his grand axiomatisation of Cantorian Set- Theory [1925; 1928]. Although Von Neumann's motivation was thoroughly Cantorian, he did not take the concept of a set and the membership-relation as primitive notions, but the concepts of a thing and a function — for rea- sons we do not go into here. This, and Von Neumann's cumbersome nota- tion and terminology (II-things, II.I-things) are the main reasons why ini- tially his theory remained comparatively obscure.
    [Show full text]
  • Lost in the Labyrinth: Spinoza, Leibniz and the Continuum Lost in the Labyrinth: Spinoza, Leibniz and the Continuum
    LOST IN THE LABYRINTH: SPINOZA, LEIBNIZ AND THE CONTINUUM LOST IN THE LABYRINTH: SPINOZA, LEIBNIZ AND THE CONTINUUM By PATRICK RIESTERER, B.A. A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment ofthe Requirements For the Degree Master ofArts McMaster University © Copyright by Patrick Riesterer, August 2006 MASTER OF ARTS (2006) McMaster University (Philosophy) Hamilton, Ontario TITLE: Lost in the Labyrinth: Spinoza, Leibniz and the Continuum AUTHOR: Patrick Riesterer, B.A. (Trinity Western University) SUPERVISOR: Professor Richard Arthur NUMBER OF PAGES: vi, 110 ii Abstract In this thesis, I address the extent ofSpinoza's influence on the development of Leibniz's response to the continuum problem, with particular emphasis on his relational philosophy oftime and space. I expend the first chapter carefully reconstructing Spinoza's position on infinity and time. We see that Spinoza developed a threefold definition ofinfinity to explain the difference between active substance and its passive modes. Spinoza advances a syncategorematic interpretation ofinfinity, and founds a causal theory oftime directly on this conception ofinfinity. In the second chapter, I examine the changes Leibniz's understanding ofthe continuum problem underwent during 1676 and immediately thereafter. During this period, Leibniz's interacted extensively with Spinoza's ideas. We see that several fundamental features ofLeibniz's philosophy oftime take shape at this time. Leibniz adopts a Spinozistic definition ofdivine eternity and immensity, he reevaluates several analogies in an attempt to understand how the attributes ofa substance interrelate, and he develops the notion ofthe law of the series that will become an essential feature ofmonadic appetition. Leibniz synthesizes several ofthese discoveries into a first philosophy ofmotion.
    [Show full text]
  • A Mathematical Model of Divine Infinity
    A Mathematical Model of Divine Infinity Prof. Eric Steinhart, Department of Philosophy, William Paterson University, Wayne NJ 07470. Email: <[email protected]>, <[email protected]>. Published in 2009 in Theology and Science 7 (3), 261 – 274. ABSTRACT: Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. That series rises to an absolutely infinite degree of that perfection. God has that absolutely infinite degree. We focus on the perfections of knowledge, power, and benevolence. Our model of divine infinity thus builds a bridge between mathematics and theology. KEYWORDS: God; mathematics; perfection; infinity; Cantor; transfinite recursion. 1. Introduction All will agree that science makes extensive use of mathematics. At least in physics, scientific progress seems to go hand in hand with increasing formalization. More sophisticated physical theories are also more highly mathematical. And the correlation of progress with increasing formalization also appears sciences like chemistry and biology as well. Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. Nevertheless, mathematics has seen little application in theology.
    [Show full text]
  • Two Pictures of the Iterative Hierarchy
    TWO PICTURES OF THE ITERATIVE HIERARCHY by Ida Marie Myrstad Dahl Thesis for the degree of Master in Philosophy Supervised by Professor Øystein Linnebo Fall 2014 Department of Philosophy, Classics, History of Arts and Ideas University of Oslo Two pictures of the iterative hierarchy ©2014 Two pictures of the iterative hierarchy Ida Marie Myrstad Dahl http://www.duo.uio.no Print: OKPrintShop iii Contents Acknowledgements . v Abstract . vi Introduction 1 1 The iterative conception of set 4 1.1 What it is . 4 1.2 Why the iterative conception? . 8 2 Actualism and potentialism on the iterative conception 15 2.1 The actualist picture . 16 2.2 The potentialist picture . 19 3 From the ancient to the contemporary concept of infinity 24 3.1 Aristotle on infinity . 24 3.2 Three important developments . 30 3.3 Cantor’s theory of the infinite . 31 3.4 A tension between actualism and potentialism . 34 4 Two tenable pictures? 40 4.1 (1) An actual conception . 41 4.2 (2) An intuitive conception . 47 4.3 (3) Explaining paradox . 50 4.4 Two tenable interpretations . 53 Conclusion 56 iv Acknowledgements I owe special thanks to Øystein Linnebo, for helpful supervision of my project, but also for introducing me to the philosophical ideas about the infinite in a phi- losophy of language seminar, at the University of Oslo, autumn, 2012. His ideas and teaching has been of great inspiration. Also, attending the PPP-seminars (Plurals, Predicates and Paradox), led by Linnebo, in 2013, was of great interest, and helped me single out the topic I wanted to write about.
    [Show full text]
  • Paul M. Livingston
    C ABSTRACT: C R R I Partially following Gilles Deleuze, I articulate six criteria for a strong I S variety of critique: one which affirms the power of thought in going all S I I How do we S the way to the limit of existing societies, situations, institutions and S practices. The form of this strong critique is a complex unity of thought & & and life that can be indicated, as I argue, on the basis of a twofold C C R condition: a contemporary repetition of the classical structuralism R I that Deleuze develops in the 1967 article “How do we recognize I recognize strong T T I structuralism?” and a formally based reflection on the properly infinite I Q dimension of structure and sense. I develop the implications of this Q U U E strong critique under contemporary conditions, distinguishing it E from various alternative current forms of sociopolitical critique and critique? # # 3 non-critique. In particular I argue that through its articulation of the 3 consequences of constitutive paradox, the structure of the situationally undecidable, and the ineffectivity characteristic of the constitution of sense, strong critique offers appropriate forms of response in thought and action to the structural problems and antagonisms characteristic of contemporary global capitalism. Keywords: Paul M. Critique, Deleuze, infinite, paradoxico-critical, undecidable, ineffective Livingston In his 1965 short monograph Nietzsche, Gilles Deleuze indicates the complex condition of a strong variety of critique: The philosopher of the future is the explorer of ancient worlds, of peaks and caves, who creates only inasmuch as he recalls something that has been essentially forgotten.
    [Show full text]
  • Gödel's Cantorianism
    Gödel’s Cantorianism Claudio Ternullo KGRC, University of Vienna* “My theory is rationalistic, idealistic, optimistic, and theological”. Gödel, in Wang (1996), p. 8 “Numeros integros simili modo atque totum quoddam legibus et relationibus compositum efficere” Cantor, De transformatione formarum ternariarum quadraticarum, thesis III, in Cantor (1932), p. 62 1. Introductory remarks There is no conclusive evidence, either in his published or his unpublished work, that Gödel had read, meditated upon or drawn inspiration from Cantor’s philosophical doctrines. We know about his philosophical “training”, and that, since his youth, he had shown interest in the work of such philosophers as Kant, Leibniz and Plato. It is also widely known that, from a certain point onwards in his life, he started reading and absorbing Husserl’s thought and that phenomenology proved to be one of the most fundamental influences he was to subject himself to in the course of the development of his ideas. 1 But we do not know about the influence of Cantor’s thought. In Wang’s book containing reports of the philosophical conversations the author had with Gödel, one can find only a few remarks by Gödel concerning Cantor’s philosophical conceptions. Not much material do we get from the secondary literature either. For instance, if one browses through the indexes of Dawson’s fundamental biography of Gödel (Dawson 1997), or those of Wang’s three ponderous volumes (1974, 1987, 1996) one finds that all mentions of Cantor in those works either refer to specific points of Cantorian set theory, as discussed by the authors of these books, or, more specifically, to Gödel’s paper on Cantor’s continuum problem, 2 wherein * The writing of this article has been supported by the JTF Grant ID35216 (research project “The Hyperuniverse.
    [Show full text]
  • Set Theory: Taming the Infinite
    This is page 54 Printer: Opaque this CHAPTER 2 Set Theory: Taming the Infinite 2.1 Introduction “I see it, but I don’t believe it!” This disbelief of Georg Cantor in his own creations exemplifies the great skepticism that his work on infinite sets in- spired in the mathematical community of the late nineteenth century. With his discoveries he single-handedly set in motion a tremendous mathematical earthquake that shook the whole discipline to its core, enriched it immea- surably, and transformed it forever. Besides disbelief, Cantor encountered fierce opposition among a considerable number of his peers, who rejected his discoveries about infinite sets on philosophical as well as mathematical grounds. Beginning with Aristotle (384–322 b.c.e.), two thousand years of West- ern doctrine had decreed that actually existing collections of infinitely many objects of any kind were not to be part of our reasoning in philosophy and mathematics, since they would lead directly into a quagmire of logical con- tradictions and absurd conclusions. Aristotle’s thinking on the infinite was in part inspired by the paradoxes of Zeno of Elea during the fifth century b.c.e. The most famous of these asserts that Achilles, the fastest runner in ancient Greece, would be unable to surpass a much slower runner, provided that the slower runner got a bit of a head start. Namely, Achilles would then first have to cover the distance between the starting positions, dur- ing which time the slower runner could advance a certain distance. Then Achilles would have to cover that distance, while the slower runner would again advance, and so on.
    [Show full text]
  • SET THEORY Andrea K. Dieterly a Thesis Submitted to the Graduate
    SET THEORY Andrea K. Dieterly A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS August 2011 Committee: Warren Wm. McGovern, Advisor Juan Bes Rieuwert Blok i Abstract Warren Wm. McGovern, Advisor This manuscript was to show the equivalency of the Axiom of Choice, Zorn's Lemma and Zermelo's Well-Ordering Principle. Starting with a brief history of the development of set history, this work introduced the Axioms of Zermelo-Fraenkel, common applications of the axioms, and set theoretic descriptions of sets of numbers. The book, Introduction to Set Theory, by Karel Hrbacek and Thomas Jech was the primary resource with other sources providing additional background information. ii Acknowledgements I would like to thank Warren Wm. McGovern for his assistance and guidance while working and writing this thesis. I also want to thank Reiuwert Blok and Juan Bes for being on my committee. Thank you to Dan Shifflet and Nate Iverson for help with the typesetting program LATEX. A personal thank you to my husband, Don, for his love and support. iii Contents Contents . iii 1 Introduction 1 1.1 Naive Set Theory . 2 1.2 The Axiom of Choice . 4 1.3 Russell's Paradox . 5 2 Axioms of Zermelo-Fraenkel 7 2.1 First Order Logic . 7 2.2 The Axioms of Zermelo-Fraenkel . 8 2.3 The Recursive Theorem . 13 3 Development of Numbers 16 3.1 Natural Numbers and Integers . 16 3.2 Rational Numbers . 20 3.3 Real Numbers .
    [Show full text]