Neural Networks As Universal Approximators, and the Issue of Depth 3 2.1 the Perceptron Revisited
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Convert Truth Table to Boolean Expression
Convert Truth Table To Boolean Expression Gustave often dozings hydrostatically when neap Caspar libelled readably and Frenchify her mare's-tails. Weidar enlarges consumedly while oven-ready Byron allaying penetratingly or matriculating contagiously. Micah hark her tart calumniously, she thresh it commensurately. Input boolean expressions can have iframes disabled in use boolean truth table to convert truth tables into one convenient source from. This page an example, are converted into single output line argument to convert a boolean function as the truth table lists all possible. This is converted to follow up for example to a bar, we occasionally miss an arrow at boolean. Converting Truth Tables into Boolean Expressions Boolean. So that we know that is either nand gates instead of expression to relate outputs are the faster than by. Truth table Rosetta Code. And a sale group- eliminating algorithm to headquarters the superintendent of enable input. The and converting from my two. Tutorial Performing Boolean Algebra inside an FPGA using Look-Up Tables LUTs. DeMorgan's Laws tell us how to negate a boolean expression and what it. Creating expressions. Gives a nested table that truth values of expr with the outermost level on possible combinations of the ai. Truth Table from All Boolean Functions of 2 Variables y 0. Algebra simplifications methods: converting truth table to these symbols, we have already. Boolean function CircuitVerse. S1 S2 Light he is living truth abuse for the logical connective. Boolean Functions and Truth Tables The meaning or braid of a logical expression tout a Boolean function from the set is possible assignments of truth values for. -
Boolean Algebra
Boolean Algebra Definition: A Boolean Algebra is a math construct (B,+, . , ‘, 0,1) where B is a non-empty set, + and . are binary operations in B, ‘ is a unary operation in B, 0 and 1 are special elements of B, such that: a) + and . are communative: for all x and y in B, x+y=y+x, and x.y=y.x b) + and . are associative: for all x, y and z in B, x+(y+z)=(x+y)+z, and x.(y.z)=(x.y).z c) + and . are distributive over one another: x.(y+z)=xy+xz, and x+(y.z)=(x+y).(x+z) d) Identity laws: 1.x=x.1=x and 0+x=x+0=x for all x in B e) Complementation laws: x+x’=1 and x.x’=0 for all x in B Examples: • (B=set of all propositions, or, and, not, T, F) • (B=2A, U, ∩, c, Φ,A) Theorem 1: Let (B,+, . , ‘, 0,1) be a Boolean Algebra. Then the following hold: a) x+x=x and x.x=x for all x in B b) x+1=1 and 0.x=0 for all x in B c) x+(xy)=x and x.(x+y)=x for all x and y in B Proof: a) x = x+0 Identity laws = x+xx’ Complementation laws = (x+x).(x+x’) because + is distributive over . = (x+x).1 Complementation laws = x+x Identity laws x = x.1 Identity laws = x.(x+x’) Complementation laws = x.x +x.x’ because + is distributive over . -
Multiplicative Complexity of Boolean Functions
Multiplicative Complexity of Boolean Functions Meltem S¨onmezTuran National Institute of Standards and Technology, Gaithersburg, MD WPI ECE Online Graduate Seminar Lecture March 17 2021 In this presentation, ... • Overview - Computer Security Division of NIST • Circuit Complexity Problem • Multiplicative Complexity • Three results • Multiplicative Complexity of Boolean functions with n ≤ 6 • Boolean functions with Multiplicative Complexity 1,2,3 and 4 • Multiplicative Complexity of Symmetric Boolean Functions • Research Directions 1 National Institute of Standards and Technology • Non-regulatory federal agency within U.S. Department of Commerce. • Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988. • Headquarters in Gaithersburg, Maryland, and laboratories in Boulder, Colorado. • Employs around 6,000 employees and associates. Computer Security Division (CSD) conducts research, development and outreach necessary to provide standards and guidelines, mechanisms, tools, metrics and practices to protect nation's information and information systems. 2 CSD Publications • Federal Information Processing Standards (FIPS): Specify approved crypto standards. • NIST Special Publications (SPs): Guidelines, technical specifications, recommendations and reference materials, including multiple sub-series. • NIST Internal or Interagency Reports (NISTIR): Reports of research findings, including background information for FIPS and SPs. • NIST Information Technology Laboratory (ITL) Bulletins: Monthly overviews of NIST's security and privacy publications, programs and projects. 3 Standard Development Process • International \competitions": Engage community through an open competition (e.g., AES, SHA-3, PQC, Lightweight Crypto). • Adoption of existing standards: Collaboration with accredited standards organizations (e.g., RSA, HMAC). • Open call for proposals: Ongoing open invitation (e.g., modes of operations). • Development of new algorithms: if no suitable standard exists (e.g., DRBGs). -
CS228 Logic for Computer Science 2020 Lecture 7: Conjunctive
CS228 Logic for Computer Science 2020 Lecture 7: Conjunctive Normal Form Instructor: Ashutosh Gupta IITB, India Compile date: 2020-02-01 cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 1 Removing ⊕, ), and ,. We have seen equivalences that remove ⊕, ), and , from a formula. I (p ) q) ≡ (:p _ q) I (p ⊕ q) ≡ (p _ q) ^ (:p _:q) I (p , q) ≡ :(p ⊕ q) In the lecture, we will assume you can remove them at will. Commentary: Note that removal of ⊕ and , blows up the formula size. Their straight up removal is not desirable. cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 2 Topic 7.1 Negation normal form cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 3 Negation normal form(NNF) Definition 7.1 A formula is in NNF if : appears only in front of the propositional variables. Theorem 7.1 For every formula F , there is a formula F 0 in NNF such that F ≡ F 0. Proof. Due to the equivalences, we can always push : under the connectives I Often we assume that the formulas are in NNF. I However, there are negations hidden inside ⊕, ), and ,. Sometimes, the symbols are also expected to be removed while producing NNF Exercise 7.1 Write an efficient algorithm to convert a propositional formula to NNF? Commentary: In our context, we will not ask one to remove e ⊕, ), and , during conversion to NNF. cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 4 Example :NNF Example 7.1 Consider :(q ) ((p _:s) ⊕ r)) ≡ q ^ :((p _:s) ⊕ r) ≡ q ^ (:(p _:s) ⊕ r) ≡ q ^ ((:p ^ ::s) ⊕ r) ≡ q ^ ((:p ^ s) ⊕ r) Exercise 7.2 Convert the following formulas into NNF I :(p ) q) I :(:((s ):(p , q))) ⊕ (:q _ r)) Exercise 7.3 Remove ), ,, and ⊕ before turning the above into NNF. -
Algorithm for Two-Level Simplification (Example)
CSE 370 Spring 2006 Administrivia Introduction to Digital Design Homework 3 due Friday Lecture 8: Introduction to Verilog Last Lecture Design Examples a K-maps Minimization Algorithm Today Introduction to Verilog Algorithm for two-level simplification Algorithm for two-level Algorithm: minimum sum-of-products expression from a Karnaugh map simplification (example) A A A Step 1: choose an element of the ON-set X101 X101 X101 Step 2: find "maximal" groupings of 1s and Xs adjacent to that 0111 0111 0111 element D D D consider top/bottom row, left/right column, and corner 0XX0 0XX0 0XX0 adjacencies C C C this forms prime implicants (number of elements always a power 0101 0101 0101 of 2) B B B 2 primes around A'BC'D' 2 primes around ABC'D Repeat Steps 1 and 2 to find all prime implicants A A A Step 3: revisit the 1s in the K-map X101 X101 X101 if covered by single prime implicant, it is essential, and 0111 0111 0111 participates in final cover D D D 1s covered by essential prime implicant do not need to be 0XX0 0XX0 0XX0 revisited C C C Step 4: if there remain 1s not covered by essential prime implicants 0101 0101 0101 B B B select the smallest number of prime implicants that cover the 3 primes around AB'C'D' 2 essential primes minimum cover (3 primes) remaining 1s Visit All in the On Set? Activity List all prime implicants for the following K-map: A A 00X001X0 X0X0 0111X1 01X1 CD’ D BC BD AB AC’D D CD’ BC BD AB AC’D 010X11X0 0XX0 C C 00X10111 X111 B B CD’ BD AC’D CD’ BD AC’D Which are essential prime implicants? CD’ BD AC’D CD’ BD AC’D What -
Combinational Logic Circuits
CHAPTER 4 COMBINATIONAL LOGIC CIRCUITS ■ OUTLINE 4-1 Sum-of-Products Form 4-10 Troubleshooting Digital 4-2 Simplifying Logic Circuits Systems 4-3 Algebraic Simplification 4-11 Internal Digital IC Faults 4-4 Designing Combinational 4-12 External Faults Logic Circuits 4-13 Troubleshooting Prototyped 4-5 Karnaugh Map Method Circuits 4-6 Exclusive-OR and 4-14 Programmable Logic Devices Exclusive-NOR Circuits 4-15 Representing Data in HDL 4-7 Parity Generator and Checker 4-16 Truth Tables Using HDL 4-8 Enable/Disable Circuits 4-17 Decision Control Structures 4-9 Basic Characteristics of in HDL Digital ICs M04_WIDM0130_12_SE_C04.indd 136 1/8/16 8:38 PM ■ CHAPTER OUTCOMES Upon completion of this chapter, you will be able to: ■■ Convert a logic expression into a sum-of-products expression. ■■ Perform the necessary steps to reduce a sum-of-products expression to its simplest form. ■■ Use Boolean algebra and the Karnaugh map as tools to simplify and design logic circuits. ■■ Explain the operation of both exclusive-OR and exclusive-NOR circuits. ■■ Design simple logic circuits without the help of a truth table. ■■ Describe how to implement enable circuits. ■■ Cite the basic characteristics of TTL and CMOS digital ICs. ■■ Use the basic troubleshooting rules of digital systems. ■■ Deduce from observed results the faults of malfunctioning combina- tional logic circuits. ■■ Describe the fundamental idea of programmable logic devices (PLDs). ■■ Describe the steps involved in programming a PLD to perform a simple combinational logic function. ■■ Describe hierarchical design methods. ■■ Identify proper data types for single-bit, bit array, and numeric value variables. -
Algebraic and Logic Solving Methods for Cryptanalysis Jan Horácek
DISSERTATION Algebraic and Logic Solving Methods for Cryptanalysis Submitted to the Faculty of Computer Science and Mathematics of the University of Passau in Partial Fulfillment of the Requirements for the Degree of Doctor of Natural Sciences Jan Hor´aˇcek Advisor: Prof. Dr. Martin Kreuzer Chair of Symbolic Computation, University of Passau External Referee: Prof. Dr. Armin Biere Institute for Formal Models and Verification, Johannes Kepler University Linz Passau, June 2019 Abstract Algebraic solving of polynomial systems and satisfiability of propositional logic for- mulas are not two completely separate research areas, as it may appear at first sight. In fact, many problems coming from cryptanalysis, such as algebraic fault attacks, can be rephrased as solving a set of Boolean polynomials or as deciding the satisfiability of a propositional logic formula. Thus one can analyze the security of cryptosystems by ap- plying standard solving methods from computer algebra and SAT solving. This doctoral thesis is dedicated to studying solvers that are based on logic and algebra separately as well as integrating them into one such that the combined solvers become more powerful tools for cryptanalysis. This disseration is divided into three parts. In this first part, we recall some theory and basic techniques for algebraic and logic solving. We focus mainly on DPLL-based SAT solving and techniques that are related to border bases and Gr¨obnerbases. In particular, we describe in detail the Border Basis Algorithm and discuss its specialized version for Boolean polynomials called the Boolean Border Basis Algorithm. In the second part of the thesis, we deal with connecting solvers based on algebra and logic. -
1 Compositions and Clones of Boolean Functions 5
Cambridge University Press 978-0-521-84752-0 - Boolean Models and Methods in Mathematics, Computer Science, and Engineering Edited by Yves Crama and Peter L. Hammer Excerpt More information Part I Algebraic Structures © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84752-0 - Boolean Models and Methods in Mathematics, Computer Science, and Engineering Edited by Yves Crama and Peter L. Hammer Excerpt More information 1 Compositions and Clones of Boolean Functions Reinhard Poschel¨ and Ivo Rosenberg 1.1 Boolean Polynomials The representations of Boolean functions are frequently based on the fundamental operations {∨, ∧, }, where the disjunction x ∨ y represents the logical OR, the conjunction x ∧ y represents the logical AND and is often denoted by x · y or simply by the juxtaposition xy, and x stands for the negation, or complement, of x and is often denoted by x. This system naturally appeals to logicians and, for some reasons, also to electrical engineers, as illustrated by many chapters of this volume and by the monograph [7]. Its popularity may be explained by the validity of many identities or laws: for example, the associativity, commutativity, idempotence, distributive, and De Morgan laws making B :=B; ∨, ∧, , 0, 1 a Boolean algebra, where B ={0, 1}; in fact, B is the least nontrivial Boolean algebra. It is natural to ask whether there is a system of basic Boolean functions other than {∨, ∧, }, but equally powerful in the sense that each Boolean function may be represented over this system. To get such a system, we introduce the following binary (i.e., two-variable) Boolean function +˙ defined by setting x+˙ y = 0ifx = y and x+˙ y = 1ifx = y; its truth table is xyx+˙ y 00 0 01 1 10 1 11 0 Clearly x+˙ y = 1 if and only if the arithmetical sum x + y is odd, and for this reason +˙ is also referred to as the sum mod 2. -
Combinatorics in Algebraic and Logical Cryptanalysis Monika Trimoska
Combinatorics in Algebraic and Logical Cryptanalysis Monika Trimoska To cite this version: Monika Trimoska. Combinatorics in Algebraic and Logical Cryptanalysis. Cryptography and Security [cs.CR]. Université de Picardie - Jules Verne, 2021. English. tel-03168389 HAL Id: tel-03168389 https://hal.archives-ouvertes.fr/tel-03168389 Submitted on 13 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Th`ese de Doctorat Mention Informatique pr´esent´ee`al'Ecole´ Doctorale en Sciences, Technologie, Sant´e(ED 585) `al'Universit´ede Picardie Jules Verne par Monika Trimoska pour obtenir le grade de Docteur de l'Universit´ede Picardie Jules Verne Combinatorics in Algebraic and Logical Cryptanalysis Soutenue le 14 janvier 2021 apr`esavis des rapporteurs, devant le jury d'examen : Antoine Joux, Professeur Pr´esident Pierrick Gaudry, Directeur de Recherche Rapporteur Laurent Simon, Professeur Rapporteur Martin R. Albrecht, Professeur Examinateur Laure Brisoux Devendeville, Ma^ıtrede Conf´erences Examinateur Gilles Dequen, Professeur Directeur de th`ese Sorina Ionica, Ma^ıtrede Conf´erences Co-encadrant Cette th`esea ´et´eeffecut´eedans le cadre du projet CASSPair. Le projet CASSPair est cofinanc´epar l'Union europ´eenneavec le Fonds europ´eende d´eveloppement r´egional. -
2020-CS228-CNF-Slides
CS228 Logic for Computer Science 2020 Lecture 7: Conjunctive Normal Form Instructor: Ashutosh Gupta IITB, India Compile date: 2020-08-21 cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 1 Normal forms I Grammar of propositional logic is too complex. I If one builds a tool, one will prefer to handle fewer connectives and simpler structure I We transform given formulas into normal forms before handling them. Commentary: Building a software for handling formulas with the complexity is undesirable. We aim to reduce the complexity by applying transformations to obtain a normalized form. The normalization results in standardization and interoperability of tool. cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 2 Removing ⊕, ), and ,. Please note the following equivalences that remove ⊕, ), and , from a formula. I (p ) q) ≡ (:p _ q) I (p ⊕ q) ≡ (p _ q) ^ (:p _:q) I (p , q) ≡ :(p ⊕ q) For the ease of presentation, we will assume you can remove them at will. Commentary: Removing ) is common and desirable. The removal of ⊕ and ,, however, blows up the formula size. Their straight up removal is not desirable. We can avoid the blow up in some contexts. However, in our presentation we will skip the issue. cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 3 Topic 7.1 Negation normal form cbna CS228 Logic for Computer Science 2020 Instructor: Ashutosh Gupta IITB, India 4 Negation normal form(NNF) Definition 7.1 A formula is in NNF if : appears only in front of the propositional variables. -
Final Book -Architecture.Pdf
1 BHARATHIDASAN UNIVERSITY (Re-accredited with ‘A’ Grade by NAAC) CENTRE FOR DISTANCE EDUCATION PALKALAIPERUR, TIRUCHIRAPPALLI – 24 MCA / PGDCA I - Semester Computer Organization and Architecture CORE COURSE III (Full Package) Copy right reserved For Private Circulation only 2 Chairman: Dr. V.M Muthukumar Vice-Chancellor Bharathidasan University Tiruchirappalli – 620 024. Co-Ordinator: Dr. R.Babu Rajendren Registrar i/c Centre for Distance Education Bharathidasan University Tiruchirappalli – 620 024. Course Director: Dr.V.Vinod Kumar Director i/c Centre for Distance Education Bharathidasan University Tiruchirappalli – 620 024. The Syllabus Revised from 2017-18 onwards Lesson Writer: Dr. J.Sai Geetha Asst. Professor Department of Computer Science Nehru Memorial College Puthanampatti Tituchirappalli – 621 007. 3 CORE COURSE III COMPUTER ORGANIZATION AND ARCHITECTURE Objective: To understand the principles of digital computer logic circuits and their design. To understand the working of a central processing unit architecture of a computer Unit I Number Systems – Decimal, Binary, Octal and Hexadecimal Systems – Conversion from one system to another – Binary Addition, Subtraction, Multiplication and Division – Binary Codes– 8421, 2421, Excess-3, Gray, BCD – Alphanumeric Codes – Error Detection Codes. Unit II Basic Logic Gates – Universal Logic – Boolean Laws and Theorems – Boolean Expressions – Sum of Products – Product of Sums – Simplification of Boolean Expressions –Karnaugh Map Method (up to 4 Variables) – Implementation of Boolean Expressions using Gate Networks. Unit III Combinational Circuits – Multiplexers – Demultiplexers – Decoders – Encoders – Arithmetic Building Blocks – Half and Full Adders – Half and Full Subtractors – Parallel adder –2’s Complement Adder – Subtractor – BCD Adder. Unit IV Sequential Circuits – Flip Flops – RS, Clocked RS, D, JK, T and Master- Slave Flip Flops –Shift Register – Counters – Asynchronous, MOD-n and Synchronous Counters – BCD Counter –Ring Counter. -
'N' VARIABLES - a NOVEL APPROACH Dr.V.D.Ambeth Kumar1 and Gokul Amuthan .S2 1
STATIC STRUCTURE SIMPLIFICATION OF BOOLEAN FUNCTION FOR 'N' VARIABLES - A NOVEL APPROACH Dr.V.D.Ambeth Kumar1 and Gokul Amuthan .S2 1. Asso.Professor, Department of CSE, Panimalar Engineering College, Chennai, India-600123. 2. UG Student, Department of CSE, Panimalar Engineering College, Chennai, India-600123. Email: [email protected] ABSTRACT Digital Systems have a prominent role in everyday life that we refer to the present technological period as the digital age.[1] Digital Systems implement digital circuits which are mostly combination of digital gates. These gates can be represented in an understandable form called Boolean expressions. These expressions formed vary for each circuit. Hence for building an efficient circuit the Boolean expression should be minimized. To achieve this, we use, Karnaugh map (K-map) and Quine-McCluskey (QM) methods which are well known methods to simplify Boolean expression. The K-map until now is introduced to solve up to 6 variable and QM which can solve ‘n’ variables, yet it involve a serious of steps and does not provide a visual way to minimising the expression. The following paper implements the idea of K-map to reduce the expression except that it could solve ‘n’ variables as QM method. The method Divide and Conquer Karnaugh map (DC-K-map) implements 4 variable K-map in a redundant way to reduce the expression for variables greater than 7. Keywords: Karnaugh map, Boolean functions, Quine-McCluskey Method, Grouping and Simplification. 1. INTRODUCTION In 1854, George Boole introduced a systematic treatment of logic and developed for this purpose an algebraic system now called as Boolean Algebra[12].