Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer Marco Matejcic1, Hiba A

Total Page:16

File Type:pdf, Size:1020Kb

Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer Marco Matejcic1, Hiba A Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Rare variants in the DNA repair pathway and the risk of colorectal cancer Marco Matejcic1, Hiba A. Shaban1, Melanie W. Quintana2, Fredrick R. Schumacher3,4, Christopher K. Edlund5, Leah Naghi6, Rish K. Pai7, Robert W. Haile8, A. Joan Levine8, Daniel D. Buchanan9,10,11, Mark A. Jenkins12, Jane C. Figueiredo13, Gad Rennert14, Stephen B. Gruber15, Li Li16, Graham Casey17, David V. Conti18†, Stephanie L. Schmit1,19† † These authors contributed equally to this work. Affiliations 1 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA 2 Berry Consultants, Austin, TX, 78746, USA 3 Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA 4 Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, USA 5 Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA 6 Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, NY 10467, USA 7 Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA 8 Department of Medicine, Research Center for Health Equity, Cedars-Sinai Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA 90048, USA 9 Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia 10 Victorian Comprehensive Cancer Centre, University of Melbourne, Centre for Cancer Research, Parkville, Victoria 3010, Australia 1 Downloaded from cebp.aacrjournals.org on September 29, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 11 Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria 3010, Australia 12 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia 13 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA 14 Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa 34362, Israel 15 Center for Precision Medicine, City of Hope, Duarte, CA 91010, USA 16 Department of Family Medicine, University of Virginia, Charlottesville, VA 22904, USA 17 Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA 18 Department of Preventive Medicine, Division of Biostatistics, University of Southern California, Los Angeles, CA 90033, USA 19 Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA Running title Rare exome-wide variation and colorectal cancer risk Keywords Colorectal cancer, rare variants, DNA repair pathway, exome-wide association analysis, genetic epidemiology 2 Downloaded from cebp.aacrjournals.org on September 29, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Financial support The Colon Cancer Family Registry (CCFR) was supported by the National Cancer Institute (NCI), of the National Institutes of Health (NIH) under award number U01 CA167551. Additional support for case ascertainment was provided from the Surveillance, Epidemiology, and End Results (SEER) Program of the NCI and the following U.S. state cancer registries: AZ, CO, MN, NC, NH; and by the Victoria Cancer Registry (Australia) and Ontario Cancer Registry (Canada). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Colon CFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government, any cancer registry, or the Colon CFR. The Kentucky Case-Control Study (KY) was supported by: Damon Runyon Cancer Research Foundation Clinical Investigator Award, CI-8 (Li Li); the Case Center for Transdisciplinary Research on Energetics and Cancer, U54 CA-116867-01 (Li Li); National Cancer Institute K22 Award, K22 CA120545-01 (Li Li); State of Ohio Biomedical Research and Technology Transfer Commission; and the National Cancer Institute Award R25 CA094186-06. The Molecular Epidemiology of Colorectal Cancer Study (MECC) was supported by the National Cancer Institute at the National Institutes of Health: R01 CA197350, R01 CA81488, P30 CA014089, U19 CA148107 (Stephen B. Gruber), P01 CA196569 and a generous gift from Daniel and Maryann Fong. This work was also supported by the National Human Genome Research Institute at the National Institutes of Health [T32 HG000040] and the National Institute of Environmental Health Sciences at the National Institutes of Health [T32 ES013678]. Corresponding author Stephanie Schmit, PhD, MPH Genomic Medicine Institute 3 Downloaded from cebp.aacrjournals.org on September 29, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cleveland Clinic 9500 Euclid Avenue / NE50 Cleveland, OH 44195 Phone: +1 216 444 3173 Email: [email protected] Conflict of interest disclosure The authors declare no potential conflicts of interest. Word count: 4,261 Total no. tables: 3 Total no. figures: 2 4 Downloaded from cebp.aacrjournals.org on September 29, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Background. Inherited susceptibility is an important contributor to colorectal cancer (CRC) risk and rare variants in key genes or pathways could account in part for the missing proportion of CRC heritability. Methods. We conducted an exome-wide association study including 2,327 cases and 2,966 controls of European ancestry from three large epidemiologic studies. Single variant associations were tested using logistic regression models adjusting for appropriate study-specific covariates. In addition, we examined the aggregate effects of rare coding variation at the gene and pathway levels using Bayesian model uncertainty techniques. Results. In an exome-wide gene-level analysis, we identified ST6GALNAC2 as the top associated gene based on the Bayesian Risk Index (BRI) method (summary Bayes Factor[BF]BRI= 2604.23). A rare coding variant in this gene, rs139401613, was the top associated variant (P=1.01x10-6) in an exome-wide single variant analysis. Pathway-level association analyses based on the integrative Bayesian Risk Index (iBRI) method found extreme evidence of association with the DNA repair pathway (BFiBRI=17852.4), specifically with the non-homologous end joining (NHEJ, BFiBRI=437.95) and nucleotide excision repair (NER, BFiBRI=36.96) subpathways. The iBRI method also identified RPA2, PRKDC, ERCC5, ERCC8 as the top associated DNA repair genes (summary BFiBRI≥10), with rs28988897, rs8178232, rs141369732, rs201642761 being the most likely associated variants in these genes, respectively. Conclusion. We identified novel variants and genes associated with CRC risk and provided additional evidence for a role of DNA repair in CRC tumorigenesis. Impact. This study provides new insights into the genetic predisposition to CRC which has potential for translation into improved risk prediction. 5 Downloaded from cebp.aacrjournals.org on September 29, 2021. © 2021 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Introduction Inherited genetic factors play an important role in the etiology of colorectal cancer (CRC) (1). Genome-wide association studies (GWAS) in CRC have identified approximately 140 common risk loci predominantly in European and East Asian populations (2-4). However, risk variants, both high- and low-penetrance, collectively account for only a small proportion of the estimated familial risk (3). Part of the unexplained proportion of CRC heritability may be attributable to rare variants in genes/pathways with established or suspected roles in colorectal carcinogenesis, such as DNA repair, TGF-β signaling, vitamin D, and folate metabolism (5-8). Rare variants by definition occur with a <1% frequency in the population and therefore large sample sizes are required to detect rare risk variants with modest effect sizes. Yet, next-generation sequencing approaches have enabled successful identification of population-specific rare variants and assessed their contributions to CRC risk. A recent exome sequencing study of early-onset CRC cases identified rare, highly penetrant pathogenic variants in 16% of cases, including novel variants in POT1, POLE2, and MRE11 (9). Whole-genome sequencing of sporadic CRC cases identified
Recommended publications
  • Comparative Oncogenomics Identifies Tyrosine Kinase FES As a Tumor Suppressor in Melanoma
    RESEARCH ARTICLE The Journal of Clinical Investigation Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma Michael Olvedy,1,2 Julie C. Tisserand,3 Flavie Luciani,1,2 Bram Boeckx,4,5 Jasper Wouters,6,7 Sophie Lopez,3 Florian Rambow,1,2 Sara Aibar,6,7 Bernard Thienpont,4,5 Jasmine Barra,1,2 Corinna Köhler,1,2 Enrico Radaelli,8 Sophie Tartare-Deckert,9 Stein Aerts,6,7 Patrice Dubreuil,3 Joost J. van den Oord,10 Diether Lambrechts,4,5 Paulo De Sepulveda,3 and Jean-Christophe Marine1,2 1Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium. 2Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium. 3INSERM, Aix Marseille University, CNRS, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France. 4Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium. 5Laboratory for Translational Genetics, and 6Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven, Belgium. 7Laboratory of Computational Biology, and 8Mouse Histopathology Core Facility, VIB Center for Brain & Disease Research, Leuven, Belgium. 9Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, U1065, Université Côte d’Azur, Nice, France. 10Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium. Identification and functional validation of oncogenic drivers are essential steps toward
    [Show full text]
  • Broad and Thematic Remodeling of the Surface Glycoproteome on Isogenic
    bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Broad and thematic remodeling of the surface glycoproteome on isogenic cells transformed with driving proliferative oncogenes Kevin K. Leung1,5, Gary M. Wilson2,5, Lisa L. Kirkemo1, Nicholas M. Riley2,4, Joshua J. Coon2,3, James A. Wells1* 1Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA Departments of Chemistry2 and Biomolecular Chemistry3, University of Wisconsin- Madison, Madison, WI, 53706, USA 4Present address Department of Chemistry, Stanford University, Stanford, CA, 94305, USA 5These authors contributed equally *To whom correspondence should be addressed bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here We apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK and AKT.
    [Show full text]
  • A Sleeping Beauty Mutagenesis Screen Reveals a Tumor Suppressor
    A Sleeping Beauty mutagenesis screen reveals a tumor PNAS PLUS suppressor role for Ncoa2/Src-2 in liver cancer Kathryn A. O’Donnella,b,1,2, Vincent W. Kengc,d,e, Brian Yorkf, Erin L. Reinekef, Daekwan Seog, Danhua Fanc,h, Kevin A. T. Silversteinc,h, Christina T. Schruma,b, Wei Rose Xiea,b,3, Loris Mularonii,j, Sarah J. Wheelani,j, Michael S. Torbensonk, Bert W. O’Malleyf, David A. Largaespadac,d,e, and Jef D. Boekea,b,i,2 Departments of aMolecular Biology and Genetics, iOncology, jDivision of Biostatistics and Bioinformatics, and kPathology and bThe High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; cMasonic Cancer Center, dDepartment of Genetics, Cell Biology, and Development, eCenter for Genome Engineering, and hBiostatistics and Bioinformatics Core, University of Minnesota, Minneapolis, MN 55455; fDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and gLaboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 Edited by Harold Varmus, National Cancer Institute, Bethesda, MD, and approved March 23, 2012 (received for review September 21, 2011) The Sleeping Beauty (SB) transposon mutagenesis system is a pow- alterations have been documented in liver cancer, the key genetic erful tool that facilitates the discovery of mutations that accelerate alterations that drive hepatocellular transformation remain tumorigenesis. In this study, we sought to identify mutations that poorly understood. Nevertheless, a unifying feature of human cooperate with MYC, one of the most commonly dysregulated HCC is amplification or overexpression of the MYC oncogene (8, genes in human malignancy.
    [Show full text]
  • Oncogenomics: Clinical Pathogenesis Approach
    International Journal of Genetics, ISSN: 0975–2862, Volume 1, Issue 2, 2009, pp-25-43 Oncogenomics: Clinical pathogenesis approach Gupta G. 1, Gupta N. 2, Trivedi S. 3, Patil P. 5, Gupta M. 2, Jhadav A. 4, Vamsi K.K.6, Khairnar Y. 4, Boraste A. 4, Mujapara A.K. 7, Joshi B.8 1S.D.S.M. College Palghar, Mumbai 2Sindhu Mahavidyalaya Panchpaoli Nagpur 3V.V.P. Engineering College, Rajkot, Gujrat 4Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India 5Dr. D. Y. Patil ACS College, Pimpri, Pune 6Rai foundations College CBD Belapur Navi Mumbai 7Sir PP Institute of Science, Bhavnagar 8Rural College of Pharmacy, D.S Road, Bevanahalli, Banglore Abstract - Oncogenomics is new research sub-field of genomics, which applies high throughput technologies to characterize genes associated with cancer and synonymous with cancer genomics. The goal of oncogenomics is to identify new oncogenes or tumor suppressor genes that may provide new insights into cancer diagnosis, predicting clinical outcome of cancers, and new targets for cancer therapies. Oncoproteomics is the term used to describe the application of proteomic technologies in oncology and parallels the related field of oncogenomics. It is now contributing to the development of personalized management of cancer. Genomics has generated a wealth of data that is now being used to identify additional molecular alterations associated with cancer development. Mapping these alterations in the cancer genome is a critical first step in dissecting oncological pathways. Keywords - Biomarkers, Drug development, Drug resistance, Gene therapy, Oncogenomics Introduction Oncogenomics applies high throughput technologies to characterize genes associated transducing cellular signals of cell growth or with cancer and is used to identify new death.
    [Show full text]
  • Oncogenomics
    Oncogene (2002) 21, 7901 – 7911 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites Hua Qian1,4, Ting Wang1, Louie Naumovski2, Charles D Lopez3 and Rainer K Brachmann*,1,5 1Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Box 8069, St Louis, Missouri, MO 63110, USA; 2Division of Hematology, Oncology and Stem Cell Transplantation, Stanford University, 269 Campus Drive, CCSR Room 1215, Stanford, California, CA 94305, USA; 3Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Baird Hall Room 3030, Portland, Oregon, OR 97201, USA The tumor suppressor protein p53, once activated, can and/or apoptosis (Prives and Hall, 1999; Vogelstein et cause either cell cycle arrest or apoptosis through al., 2000). Direct target genes of p53 have one or more transactivation of target genes with p53 DNA binding p53 DNA binding site(s) (DBS) very similar to the p53 sites (DBS). To investigate the role of p53 DBS in the consensus DBS that consists of two copies of the 10 regulation of this profound, yet poorly understood base pair (bp) motif 5’-PuPuPuC(A/T)(T/A)GPyPyPy- decision of life versus death, we systematically studied 3’ separated by 0 – 13 bp (el-Deiry et al., 1992; Funk et all known and potential p53 DBS. We analysed the DBS al., 1992). However, only one p53 DBS, Type IV separated from surrounding promoter regions in yeast Collagenase, is a perfect match for the p53 consensus and mammalian assays with and without DNA damage.
    [Show full text]
  • Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
    Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones).
    [Show full text]
  • BRCA1, BRCA2 and Beyond: an Update on Hereditary Cancer Keynote Speaker and Basser Global Prize Awardee: Steven Narod, MD, FRCPC, FRSC
    5TH ANNUAL SCIENTIFIC SYMPOSIUM BRCA1, BRCA2 and Beyond: An Update on Hereditary Cancer Keynote Speaker and Basser Global Prize Awardee: Steven Narod, MD, FRCPC, FRSC THURSDAY, MAY 4, 2017 FRIDAY, MAY 5, 2017 Smilow Center for Translational Research Auditorium/Commons (enter through Perelman Center for Advanced Medicine) Program Overview This symposium is designed to educate researchers, scientists, and health care providers in cancer genetics by presenting cutting-edge data from renowned BRCA1/2 researchers. This symposium will provide new information on the basic biology of known cancer susceptibility genes. In addition, progress in cancer screening and prevention as well as ongoing work in targeted therapy for BRCA1/2 mutation carriers will be discussed through a series of lectures and panel discussions. Attendees will have the opportunity to network with colleagues working in the field. PROGRAM OBJECTIVES At the completion of this symposium, attendees should be able to: • Discuss new research on the basic biology of BRCA1 and BRCA2 and other homologous repair deficiency genes. • Describe the current clinical management strategies for individuals with genetic risk of breast, ovarian and pancreatic cancer. • Review new approaches to screening and prevention of hereditary breast and ovarian cancer. • Discuss new advances in cancer treatment for BRCA1/2 mutation carriers. WHO SHOULD ATTEND Healthcare providers including medical oncology, surgical oncology, gynecology oncology, ob-gyn, genetic counselors, primary care physicians and nurses/nurse practitioners who are interested in the genetics of BRCA1/2 related cancers. KEYNOTE SPEAKER AND BASSER GLOBAL PRIZE AWARDEE Steven Narod, MD, FRCPC, FRSC Women’s College Research Institute, University of Toronto Women with mutations in BRCA1 and BRCA2 have a high risk of breast or ovarian cancer.
    [Show full text]
  • Epigenetic Regulation (DNA Methylation, Histone Modifications
    Oncogene (2007) 26, 6566–6576 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ONCOGENOMICS Epigenetic regulation (DNA methylation, histone modifications) ofthe 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells A Vincent, M Perrais, J-L Desseyn, J-P Aubert, P Pigny and I Van Seuningen Inserm, U560, Place de Verdun, Lille cedex, France The human genes MUC2, MUC5AC, MUC5B and Introduction MUC6 are clustered on chromosome 11 and encode large secreted gel-forming mucins. The frequent occurrence of DNA methylation, associated with histone deacetyla- their silencing in cancers and the GC-rich structure of tion, is a common mechanism used by cancer cells to their promoters led us to study the influence ofepigenetics inhibit the expression of tumour suppressor genes on their expression. Pre- and post-confluent cells were (Herman and Baylin, 2003) and genes involved in treated with demethylating agent 5-aza-20-deoxycytidine tumour formation (Momparler, 2003). Recent works and histone deacetylase (HDAC) inhibitor, trichostatin aimed at studying the importance of epigenetics in A. Mapping ofmethylated cytosines was performed by cancer opened the way to a host of innovative diagnostic bisulfite-treated genomic DNA sequencing. Histone modi- and therapeutic strategies, attesting that DNA methyla- fication status at the promoters was assessed by chromatin tion is a powerful tool in the clinic (Laird, 2003). Hence, immunoprecipitation assays. Our results indicate that discovery of new methylated genes in cancer will help MUC2 was regulated by site-specific DNA methylation both in the classification of tumours and the identifica- associated with establishment ofa repressive histone code, tion of genes influencing tumour progression.
    [Show full text]
  • Chromosome 17Q25 Genes, RHBDF2 and CYGB, in Ovarian Cancer
    INTERNATIONAL JOURNAL OF ONCOLOGY 40: 1865-1880, 2012 Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer PAULINA M. WOJNAROWICZ1, DIANE M. PROVENCHER2-4, ANNE-MARIE MES-MASSON2,5 and PATRICIA N. TONIN1,6,7 1Department of Human Genetics, McGill University; 2Research Centre of the University of Montreal Hospital Centre (CRCHUM)/Montreal Cancer Institute; 3Division of Gynecologic Oncology, University of Montreal; 4Department of Obstetrics and Gynecology, University of Montreal; 5Department of Medicine, University of Montreal; 6The Research Institute of the McGill University Health Centre; 7Department of Medicine, McGill University, Montreal, Quebec, Canada Received November 15, 2011; Accepted December 29, 2011 DOI: 10.3892/ijo.2012.1371 Abstract. It has been proposed that the frequent loss of Introduction heterozygosity (LOH) of an entire chromosome 17 contig in epithelial ovarian cancers (EOC) is the consequence of It is well established that loss of chromosome 17 is a common the inactivation of multiple tumour suppressor genes on this occurrence in epithelial ovarian cancers (EOCs), as suggested chromosome. We report the characterization of a 453 Kb 17q25 by karyotype and loss of heterozygosity (LOH) studies (1,2). locus shown previously to exhibit a high frequency of LOH This observation, together with complementation studies in EOC samples. LOH analysis further defined the minimal involving the transfer of chromosome 17 which resulted in region of deletion to a 65 Kb interval flanked by D17S2239 reduced tumourigenicity of an EOC cell line (3), suggest that and D17S2244, which contains RHBDF2, CYGB and PRCD as this chromosome harbours tumour suppressor genes (TSGs). tumour suppressor gene candidates. Tissue specific expression Chromosome 17 contains a number of very well characterized excluded PRCD as a candidate.
    [Show full text]
  • Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in Melanoma
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-12-01 Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in Melanoma Arvind M. Venkatesan University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cancer Biology Commons, Developmental Biology Commons, Genomics Commons, and the Integrative Biology Commons Repository Citation Venkatesan AM. (2017). Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in Melanoma. GSBS Dissertations and Theses. https://doi.org/10.13028/ M20386. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/939 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. COMPARATIVE ONCOGENOMICS IDENTIFIES NOVEL REGULATORS AND CLINICAL RELEVANCE OF NEURAL CREST IDENTITIES IN MELANOMA A Dissertation Presented By Arvind Murali Venkatesan Submitted to the faculty of the University of Massachusetts Medical School, Worcester in partial fulfillment of the of the requirements for the degree of DOCTORATE OF PHILOSOPHY December 1, 2017 Interdisciplinary Graduate Program COMPARATIVE ONCOGENOMICS IDENTIFIES NOVEL
    [Show full text]
  • Regulation and Function of Silayltransferases in Pancreatic Cancer
    REGULATION AND FUNCTION OF SILAYLTRANSFERASES IN PANCREATIC CANCER Sònia Bassagañas i Puigdemont Dipòsit legal: Gi. 240-2015 http://hdl.handle.net/10803/285783 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Personalized Oncogenomics in the Management of Gastrointestinal Carcinomas— Early Experiences from a Pilot Study
    PERSONALIZED ONCOGENOMICS IN GASTROINTESTINALORIGINAL CARCINOMAS, SheffieldARTICLE et al. Personalized oncogenomics in the management of gastrointestinal carcinomas— early experiences from a pilot study † ‡ ‡ B.S. SheffieldMD ,* B. Tessier-Cloutier MD,* H. Li-Chang MD, Y. Shen PhD, E. Pleasance PhD, ‡ ‡ ‡ § § K. Kasaian PhD, Y. Li PhD, S.J.M. Jones PhD, H.J. Lim MD PhD, D.J. Renouf MD, D.G. Huntsman MD,* § ‡|| S. Yip MD PhD,* J. Laskin MD, M. Marra PhD, and D.F. Schaeffer MD PhD* ABSTRACT Background Gastrointestinal carcinomas are genomically complex cancers that are lethal in the metastatic setting. Whole-genome and transcriptome sequencing allow for the simultaneous characterization of multiple oncogenic pathways. Methods We report 3 cases of metastatic gastrointestinal carcinoma in patients enrolled in the Personalized Onco-Genomics program at the BC Cancer Agency. Real-time genomic profiling was combined with clinical expertise to diagnose a carcinoma of unknown primary, to explore treatment response to bevacizumab in a colorectal cancer, and to characterize an appendiceal adenocarcinoma. Results In the first case, genomic profiling revealed an IDH1 somatic mutation, supporting the diagnosis of cholangiocarcinoma in a malignancy of unknown origin, and further guided therapy by identifying epidermal growth factor receptor amplification. In the second case, a BRAF V600E mutation and wild-type KRAS profile justified the use of targeted therapies to treat a colonic adenocarcinoma. The third case was an appendiceal adenocarcinoma defined by a p53 inactivation; Ras/raf/mek, Akt/mtor, Wnt, and notch pathway activation; and overexpression of ret, erbb2 (her2), erbb3, met, and cell cycle regulators. Summary We show that whole-genome and transcriptome sequencing can be achieved within clinically effective timelines, yielding clinically useful and actionable information.
    [Show full text]