Niban Gene Is Commonly Expressed in the Renal Tumors: a New Candidate Marker for Renal Carcinogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Niban Gene Is Commonly Expressed in the Renal Tumors: a New Candidate Marker for Renal Carcinogenesis Oncogene (2004) 23, 3495–3500 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $25.00 www.nature.com/onc Niban gene is commonly expressed in the renal tumors: a new candidate marker for renal carcinogenesis Hiroyuki Adachi1,2, Shuichi Majima1, Shigeyuki Kon1,3, Toshiyuki Kobayashi1, Kazunori Kajino1, Hiroaki Mitani1, Youko Hirayama1, Hiroaki Shiina2, Mikio Igawa2 and Okio Hino*,1 1Department of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan; 2Department of Urology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan; 3Immuno-Biological Laboratories Co., Ltd., 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan Functional inactivation of tuberous sclerosis 2 gene (Tsc2) one of the Tsc2 allele is inactivated genetically by the leads to renal carcinogenesis in the hereditary renal insertion of a transposon-like sequence (Hino et al., carcinoma Eker rat models. Recent studies revealed a role 1994; Yeung et al., 1994; Kobayashi et al., 1995). At the of tuberin,a TSC2 product,in suppressing the p70 S6 histological level, multiple stages in the development of kinase (p70S6K) activity via inhibition of mammalian renal carcinomas have been observed, beginning with target of rapamycin (mTOR). Phosphorylated S6 protein, isolated, phenotypically altered renal tubules (Hino a substrate of p70S6K,was expressed in the early lesions et al., 1993). We have demonstrated the inactivation of in Eker rats,and this expression was suppressed by the the wild-type Tsc2 allele in phenotypically altered renal treatment of rapamycin,an inhibitor of mTOR. We tubules and provided evidence that two-hit mutation of previously isolated the novel gene Niban expressed in the Tsc2 gene is the causative step in renal carcinogen- renal carcinogenesis of Eker rats. In this study,we esis (Kubo et al., 1995). demonstrated that the expression of Niban was detected Carcinogenesis consists of multiple steps and carci- from early preneoplastic lesions in Eker rats. Interest- noma development is associated with multiple genetic ingly,in contrast to the phosphorylated S6 protein,the alterations even in hereditary cancers. Although the expression of Niban was unchanged and early lesions still inactivation of Tsc2 results in the initiation of renal remained even after treatment with rapamycin. These carcinogenesis, it is not sufficient for tumor progression. results might suggest the existence of another pathway Progression to carcinomas may require additional independent of mTOR-S6K pathway in Tsc2 mutant renal genetic and epigenetic modification (Hino et al., 2003). carcinogenesis. In addition,Niban was also expressed in To identify the genes associated with multistep renal other renal carcinoma models,including Tsc1 and Tsc2 carcinogenesis, we previously performed the differential knockout mice,and various types of human renal cell display analysis for two cell lines established from the carcinomas. Thus,Niban was commonly expressed in Eker rat renal carcinoma, and isolated the novel gene renal carcinomas and might be a new marker for renal Niban (Majima et al., 2000). The Niban gene consists of carcinogenesis. 14 exons and is located on rat chromosome 13, or mouse Oncogene (2004) 23, 3495–3500. doi:10.1038/sj.onc.1207468 and human chromosome 1. Published online 1 March 2004 Recent biochemical analyses revealed that tuberin, the TSC2 gene product, is a substrate of Akt and can Keywords: Niban; Tsc2 mutant (Eker) rats; multistep inhibit the phosphatidylinositol 3-kinase (PI3K)-depen- renal carcinogenesis; tumor marker; human renal cell dent activation of p70 S6 kinase (p70S6K) via the carcinoma inhibition of mammalian target of rapamycin (mTOR) (Dan et al., 2002; Gao et al., 2002; Inoki et al., 2002; Manning et al., 2002). The phosphorylated form of S6 ribosomal protein, a substrate of p70S6K, was expressed ONCOGENOMICS Introduction in early preneoplastic lesions in Eker rats, and the expression of this phosphorylated protein was sup- Hereditary renal carcinoma in the rat, originally pressed by treatment with rapamycin, an inhibitor of reported by R Eker in 1954, is an example of a specific mTOR (Kenerson et al., 2002; Kobayashi et al., 2003). cancer in an experimental animal (Eker and Mossige, In this study, we demonstrated that the expression of 1961). We and others have demonstrated that the gene Niban was also detected in early preneoplastic lesions in responsible for renal carcinoma in the Eker rat is the rat Eker rats. Interestingly, the expression of Niban was homologue of the human TSC2 gene. In the Eker rat, unchanged and Niban-positive early preneoplastic lesions still remained after treatment with rapamycin. *Correspondence: O Hino; E-mail: [email protected] Furthermore, Niban was commonly expressed in other Received 17 October 2003; revised 14 December 2003; accepted 6 renal carcinogenesis models and sporadic human renal January 2004; Published online 1 March 2004 carcinomas. Niban expressed in renal carcinogenesis H Adachi et al 3496 Results Demonstration of the specificity of anti-rat and human Niban polyclonal antibodies For the detection of Niban proteins, we generated rabbit polyclonal antibodies against rat or human Niban proteins. First, we assessed the specificity of these polyclonal antibodies by Western blotting and immu- nohistochemical analysis (Figure 1). The predicted size of Niban proteins was about 130 kDa. This predicted size was clearly detected in extracts from HeLa cells and NIH3T3 cells transiently transfected with plasmids expressing the rat or human Niban proteins, respec- tively. This band could not be detected in extracts from cells transiently transfected with empty vector (Figures 1a and b; lanes R and E). The expression of rat Niban was not detected in normal kidneys from non- Eker rats (Figure 1a; lane C). Interestingly, the smaller band (about 70 kDa) was detected in renal tumors from Eker rats, and this band disappeared with the addition of the antigen peptide by Western blotting analysis (Figure 1a; lanes 1–3). Next, we examined the specificity of antibody against human Niban using cell lines established from human renal cell carcinomas. Two bands (about 70 and 130 kDa) were detected, and both of these bands disappeared with the addition of the antigen peptide (Figure 1b; lanes 1–3). The same results were obtained from immunohistochemical ana- lyses (Figures 1c–f). Thus, we consider that these antibodies specifically react with a peptide correspond- ing to the internal sequences of rat or human Niban proteins. Expression of Niban is detected from the early stage of renal carcinogenesis in Eker rats Next, we examined the expression of Niban in renal tumors developed in Eker rats using anti-rat Niban antibody. In the proximal tubules of normal kidneys from non-Eker rats, we could not detect the expression of Niban (Figure 2a). Strong staining was observed in phenotypically altered renal tubules, hyperplasias and adenomas (Figures 2b–d). A brush border was identified in phenotypically altered renal tubules (Figure 2b, arrow), so we considered that these renal tumors were derived from the proximal tubules. In advanced adenocarcinoma, we identified two groups, which Figure 1 Confirmation of the specificity of the rabbit polyclonal revealed positive or negative expressions of Niban antibodies against the rat (a) or human (b) Niban proteins by (Figure 2e). Western blotting and immunohistochemical analysis (c–f). (a) Recombinant rat Niban protein: lane R; empty vector (pcDNA 3.1): lane E; normal rat kidney tissues: lane C; renal tumor tissues Expression of Niban is commonly induced in renal from Eker rats: lanes 1–3. (b) Recombinant human Niban protein: carcinomas lane R; empty vector (pcDNA 3.1): lane E; renal tumor cell lines: lanes 1–3. (c–f) Positive staining was identified in Eker rat renal After we checked the crossreactivity of anti-rat Niban tumors (c) and human renal cell carcinomas (e), and most antibody between rat and mouse Niban proteins, we immunoreactivity disappeared when the anti-peptide antibodies analysed the expression of Niban in other renal were pretreated with the immunologic peptides, respectively (d and f). Eker rat renal tumors: (c) and (d); human renal cell carcinomas: carcinogenesis models, including Tsc1 (Figure 3a) and (e) and (f). Original magnification  100 Tsc2 knockout mouse (Figure 3b). The expression of Niban was also detected in renal tumors developed in these models. Furthermore, we can detect the expression of Niban in the sporadic human renal cell carcinomas Oncogene Niban expressed in renal carcinogenesis H Adachi et al 3497 Figure 2 Immunohistochemistry of Niban in normal kidneys from non-Eker rats and renal tumors developed in Eker rats. In the proximal tubules of normal kidneys, we could not detect the expression of Niban (a). However, positive staining was detected from phenotypically altered renal tubules (b–e). A brush border Figure 3 Immunohistochemistry of Niban in the hereditary renal was identified in phenotypically altered renal tubules (b, arrow). In carcinoma models and human renal cell carcinomas. Niban was advanced adenocarcinoma, we identified two groups, which also detected in renal carcinoma models, including Tsc1 (a) and revealed positive or negative expressions of Niban (e). Normal Tsc2 knockout mice (b). In addition, positive staining was observed rat kidney tissues from non-Eker rats: (a); Phenotypically altered in human renal cell carcinomas, including clear cell carcinomas (c renal tubules: (b); hyperplasias: (c); adenomas: (d); adenocarcino- and d), granular cell carcinoma (e) and spindle cell carcinoma (f). The expression of Niban was mainly observed in the cytoplasm (d– mas: (e). Original magnification  200 f). Nuclear staining of Niban was also observed in part of clear cell carcinoma (c). Renal tumor tissues from Tsc1 knockout mice: (a); renal tumor tissues from Tsc2 knockout mice: (b); clear cell using anti-human Niban antibody (Figures 3c–f). These carcinomas: (c) and (d); granular cell carcinomas: (e); spindle cell sporadic carcinomas consisted of various types, includ- carcinomas: (f).
Recommended publications
  • Comparative Oncogenomics Identifies Tyrosine Kinase FES As a Tumor Suppressor in Melanoma
    RESEARCH ARTICLE The Journal of Clinical Investigation Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma Michael Olvedy,1,2 Julie C. Tisserand,3 Flavie Luciani,1,2 Bram Boeckx,4,5 Jasper Wouters,6,7 Sophie Lopez,3 Florian Rambow,1,2 Sara Aibar,6,7 Bernard Thienpont,4,5 Jasmine Barra,1,2 Corinna Köhler,1,2 Enrico Radaelli,8 Sophie Tartare-Deckert,9 Stein Aerts,6,7 Patrice Dubreuil,3 Joost J. van den Oord,10 Diether Lambrechts,4,5 Paulo De Sepulveda,3 and Jean-Christophe Marine1,2 1Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium. 2Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium. 3INSERM, Aix Marseille University, CNRS, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France. 4Laboratory for Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium. 5Laboratory for Translational Genetics, and 6Laboratory of Computational Biology, Department of Human Genetics, KU Leuven, Leuven, Belgium. 7Laboratory of Computational Biology, and 8Mouse Histopathology Core Facility, VIB Center for Brain & Disease Research, Leuven, Belgium. 9Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, U1065, Université Côte d’Azur, Nice, France. 10Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium. Identification and functional validation of oncogenic drivers are essential steps toward
    [Show full text]
  • Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer Marco Matejcic1, Hiba A
    Author Manuscript Published OnlineFirst on February 24, 2021; DOI: 10.1158/1055-9965.EPI-20-1457 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Rare variants in the DNA repair pathway and the risk of colorectal cancer Marco Matejcic1, Hiba A. Shaban1, Melanie W. Quintana2, Fredrick R. Schumacher3,4, Christopher K. Edlund5, Leah Naghi6, Rish K. Pai7, Robert W. Haile8, A. Joan Levine8, Daniel D. Buchanan9,10,11, Mark A. Jenkins12, Jane C. Figueiredo13, Gad Rennert14, Stephen B. Gruber15, Li Li16, Graham Casey17, David V. Conti18†, Stephanie L. Schmit1,19† † These authors contributed equally to this work. Affiliations 1 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA 2 Berry Consultants, Austin, TX, 78746, USA 3 Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA 4 Seidman Cancer Center, University Hospitals, Cleveland, OH 44106, USA 5 Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA 6 Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, NY 10467, USA 7 Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA 8 Department of Medicine, Research Center for Health Equity, Cedars-Sinai Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA 90048, USA 9 Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia 10 Victorian Comprehensive Cancer Centre, University of Melbourne, Centre for Cancer Research, Parkville, Victoria 3010, Australia 1 Downloaded from cebp.aacrjournals.org on September 29, 2021.
    [Show full text]
  • A Sleeping Beauty Mutagenesis Screen Reveals a Tumor Suppressor
    A Sleeping Beauty mutagenesis screen reveals a tumor PNAS PLUS suppressor role for Ncoa2/Src-2 in liver cancer Kathryn A. O’Donnella,b,1,2, Vincent W. Kengc,d,e, Brian Yorkf, Erin L. Reinekef, Daekwan Seog, Danhua Fanc,h, Kevin A. T. Silversteinc,h, Christina T. Schruma,b, Wei Rose Xiea,b,3, Loris Mularonii,j, Sarah J. Wheelani,j, Michael S. Torbensonk, Bert W. O’Malleyf, David A. Largaespadac,d,e, and Jef D. Boekea,b,i,2 Departments of aMolecular Biology and Genetics, iOncology, jDivision of Biostatistics and Bioinformatics, and kPathology and bThe High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; cMasonic Cancer Center, dDepartment of Genetics, Cell Biology, and Development, eCenter for Genome Engineering, and hBiostatistics and Bioinformatics Core, University of Minnesota, Minneapolis, MN 55455; fDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and gLaboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 Edited by Harold Varmus, National Cancer Institute, Bethesda, MD, and approved March 23, 2012 (received for review September 21, 2011) The Sleeping Beauty (SB) transposon mutagenesis system is a pow- alterations have been documented in liver cancer, the key genetic erful tool that facilitates the discovery of mutations that accelerate alterations that drive hepatocellular transformation remain tumorigenesis. In this study, we sought to identify mutations that poorly understood. Nevertheless, a unifying feature of human cooperate with MYC, one of the most commonly dysregulated HCC is amplification or overexpression of the MYC oncogene (8, genes in human malignancy.
    [Show full text]
  • Oncogenomics: Clinical Pathogenesis Approach
    International Journal of Genetics, ISSN: 0975–2862, Volume 1, Issue 2, 2009, pp-25-43 Oncogenomics: Clinical pathogenesis approach Gupta G. 1, Gupta N. 2, Trivedi S. 3, Patil P. 5, Gupta M. 2, Jhadav A. 4, Vamsi K.K.6, Khairnar Y. 4, Boraste A. 4, Mujapara A.K. 7, Joshi B.8 1S.D.S.M. College Palghar, Mumbai 2Sindhu Mahavidyalaya Panchpaoli Nagpur 3V.V.P. Engineering College, Rajkot, Gujrat 4Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India 5Dr. D. Y. Patil ACS College, Pimpri, Pune 6Rai foundations College CBD Belapur Navi Mumbai 7Sir PP Institute of Science, Bhavnagar 8Rural College of Pharmacy, D.S Road, Bevanahalli, Banglore Abstract - Oncogenomics is new research sub-field of genomics, which applies high throughput technologies to characterize genes associated with cancer and synonymous with cancer genomics. The goal of oncogenomics is to identify new oncogenes or tumor suppressor genes that may provide new insights into cancer diagnosis, predicting clinical outcome of cancers, and new targets for cancer therapies. Oncoproteomics is the term used to describe the application of proteomic technologies in oncology and parallels the related field of oncogenomics. It is now contributing to the development of personalized management of cancer. Genomics has generated a wealth of data that is now being used to identify additional molecular alterations associated with cancer development. Mapping these alterations in the cancer genome is a critical first step in dissecting oncological pathways. Keywords - Biomarkers, Drug development, Drug resistance, Gene therapy, Oncogenomics Introduction Oncogenomics applies high throughput technologies to characterize genes associated transducing cellular signals of cell growth or with cancer and is used to identify new death.
    [Show full text]
  • Oncogenomics
    Oncogene (2002) 21, 7901 – 7911 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites Hua Qian1,4, Ting Wang1, Louie Naumovski2, Charles D Lopez3 and Rainer K Brachmann*,1,5 1Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Avenue, Box 8069, St Louis, Missouri, MO 63110, USA; 2Division of Hematology, Oncology and Stem Cell Transplantation, Stanford University, 269 Campus Drive, CCSR Room 1215, Stanford, California, CA 94305, USA; 3Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Baird Hall Room 3030, Portland, Oregon, OR 97201, USA The tumor suppressor protein p53, once activated, can and/or apoptosis (Prives and Hall, 1999; Vogelstein et cause either cell cycle arrest or apoptosis through al., 2000). Direct target genes of p53 have one or more transactivation of target genes with p53 DNA binding p53 DNA binding site(s) (DBS) very similar to the p53 sites (DBS). To investigate the role of p53 DBS in the consensus DBS that consists of two copies of the 10 regulation of this profound, yet poorly understood base pair (bp) motif 5’-PuPuPuC(A/T)(T/A)GPyPyPy- decision of life versus death, we systematically studied 3’ separated by 0 – 13 bp (el-Deiry et al., 1992; Funk et all known and potential p53 DBS. We analysed the DBS al., 1992). However, only one p53 DBS, Type IV separated from surrounding promoter regions in yeast Collagenase, is a perfect match for the p53 consensus and mammalian assays with and without DNA damage.
    [Show full text]
  • BRCA1, BRCA2 and Beyond: an Update on Hereditary Cancer Keynote Speaker and Basser Global Prize Awardee: Steven Narod, MD, FRCPC, FRSC
    5TH ANNUAL SCIENTIFIC SYMPOSIUM BRCA1, BRCA2 and Beyond: An Update on Hereditary Cancer Keynote Speaker and Basser Global Prize Awardee: Steven Narod, MD, FRCPC, FRSC THURSDAY, MAY 4, 2017 FRIDAY, MAY 5, 2017 Smilow Center for Translational Research Auditorium/Commons (enter through Perelman Center for Advanced Medicine) Program Overview This symposium is designed to educate researchers, scientists, and health care providers in cancer genetics by presenting cutting-edge data from renowned BRCA1/2 researchers. This symposium will provide new information on the basic biology of known cancer susceptibility genes. In addition, progress in cancer screening and prevention as well as ongoing work in targeted therapy for BRCA1/2 mutation carriers will be discussed through a series of lectures and panel discussions. Attendees will have the opportunity to network with colleagues working in the field. PROGRAM OBJECTIVES At the completion of this symposium, attendees should be able to: • Discuss new research on the basic biology of BRCA1 and BRCA2 and other homologous repair deficiency genes. • Describe the current clinical management strategies for individuals with genetic risk of breast, ovarian and pancreatic cancer. • Review new approaches to screening and prevention of hereditary breast and ovarian cancer. • Discuss new advances in cancer treatment for BRCA1/2 mutation carriers. WHO SHOULD ATTEND Healthcare providers including medical oncology, surgical oncology, gynecology oncology, ob-gyn, genetic counselors, primary care physicians and nurses/nurse practitioners who are interested in the genetics of BRCA1/2 related cancers. KEYNOTE SPEAKER AND BASSER GLOBAL PRIZE AWARDEE Steven Narod, MD, FRCPC, FRSC Women’s College Research Institute, University of Toronto Women with mutations in BRCA1 and BRCA2 have a high risk of breast or ovarian cancer.
    [Show full text]
  • Epigenetic Regulation (DNA Methylation, Histone Modifications
    Oncogene (2007) 26, 6566–6576 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ONCOGENOMICS Epigenetic regulation (DNA methylation, histone modifications) ofthe 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells A Vincent, M Perrais, J-L Desseyn, J-P Aubert, P Pigny and I Van Seuningen Inserm, U560, Place de Verdun, Lille cedex, France The human genes MUC2, MUC5AC, MUC5B and Introduction MUC6 are clustered on chromosome 11 and encode large secreted gel-forming mucins. The frequent occurrence of DNA methylation, associated with histone deacetyla- their silencing in cancers and the GC-rich structure of tion, is a common mechanism used by cancer cells to their promoters led us to study the influence ofepigenetics inhibit the expression of tumour suppressor genes on their expression. Pre- and post-confluent cells were (Herman and Baylin, 2003) and genes involved in treated with demethylating agent 5-aza-20-deoxycytidine tumour formation (Momparler, 2003). Recent works and histone deacetylase (HDAC) inhibitor, trichostatin aimed at studying the importance of epigenetics in A. Mapping ofmethylated cytosines was performed by cancer opened the way to a host of innovative diagnostic bisulfite-treated genomic DNA sequencing. Histone modi- and therapeutic strategies, attesting that DNA methyla- fication status at the promoters was assessed by chromatin tion is a powerful tool in the clinic (Laird, 2003). Hence, immunoprecipitation assays. Our results indicate that discovery of new methylated genes in cancer will help MUC2 was regulated by site-specific DNA methylation both in the classification of tumours and the identifica- associated with establishment ofa repressive histone code, tion of genes influencing tumour progression.
    [Show full text]
  • Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in Melanoma
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-12-01 Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in Melanoma Arvind M. Venkatesan University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cancer Biology Commons, Developmental Biology Commons, Genomics Commons, and the Integrative Biology Commons Repository Citation Venkatesan AM. (2017). Comparative Oncogenomics Identifies Novel Regulators and Clinical Relevance of Neural Crest Identities in Melanoma. GSBS Dissertations and Theses. https://doi.org/10.13028/ M20386. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/939 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. COMPARATIVE ONCOGENOMICS IDENTIFIES NOVEL REGULATORS AND CLINICAL RELEVANCE OF NEURAL CREST IDENTITIES IN MELANOMA A Dissertation Presented By Arvind Murali Venkatesan Submitted to the faculty of the University of Massachusetts Medical School, Worcester in partial fulfillment of the of the requirements for the degree of DOCTORATE OF PHILOSOPHY December 1, 2017 Interdisciplinary Graduate Program COMPARATIVE ONCOGENOMICS IDENTIFIES NOVEL
    [Show full text]
  • Personalized Oncogenomics in the Management of Gastrointestinal Carcinomas— Early Experiences from a Pilot Study
    PERSONALIZED ONCOGENOMICS IN GASTROINTESTINALORIGINAL CARCINOMAS, SheffieldARTICLE et al. Personalized oncogenomics in the management of gastrointestinal carcinomas— early experiences from a pilot study † ‡ ‡ B.S. SheffieldMD ,* B. Tessier-Cloutier MD,* H. Li-Chang MD, Y. Shen PhD, E. Pleasance PhD, ‡ ‡ ‡ § § K. Kasaian PhD, Y. Li PhD, S.J.M. Jones PhD, H.J. Lim MD PhD, D.J. Renouf MD, D.G. Huntsman MD,* § ‡|| S. Yip MD PhD,* J. Laskin MD, M. Marra PhD, and D.F. Schaeffer MD PhD* ABSTRACT Background Gastrointestinal carcinomas are genomically complex cancers that are lethal in the metastatic setting. Whole-genome and transcriptome sequencing allow for the simultaneous characterization of multiple oncogenic pathways. Methods We report 3 cases of metastatic gastrointestinal carcinoma in patients enrolled in the Personalized Onco-Genomics program at the BC Cancer Agency. Real-time genomic profiling was combined with clinical expertise to diagnose a carcinoma of unknown primary, to explore treatment response to bevacizumab in a colorectal cancer, and to characterize an appendiceal adenocarcinoma. Results In the first case, genomic profiling revealed an IDH1 somatic mutation, supporting the diagnosis of cholangiocarcinoma in a malignancy of unknown origin, and further guided therapy by identifying epidermal growth factor receptor amplification. In the second case, a BRAF V600E mutation and wild-type KRAS profile justified the use of targeted therapies to treat a colonic adenocarcinoma. The third case was an appendiceal adenocarcinoma defined by a p53 inactivation; Ras/raf/mek, Akt/mtor, Wnt, and notch pathway activation; and overexpression of ret, erbb2 (her2), erbb3, met, and cell cycle regulators. Summary We show that whole-genome and transcriptome sequencing can be achieved within clinically effective timelines, yielding clinically useful and actionable information.
    [Show full text]
  • Comparative Oncogenomics Identifies Combinations of Driver Genes And
    ARTICLE https://doi.org/10.1038/s41467-019-08301-2 OPEN Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer Stefano Annunziato1,2,3, Julian R. de Ruiter1,2,3,4, Linda Henneman1,5, Chiara S. Brambillasca1,2,3, Catrin Lutz1,2,3, François Vaillant 6,7, Federica Ferrante1,2,3, Anne Paulien Drenth1,2,3, Eline van der Burg1,2,3, Bjørn Siteur8, Bas van Gerwen8, Roebi de Bruijn1,2,3,4, Martine H. van Miltenburg1,2,3, Ivo J. Huijbers5, Marieke van de Ven8, Jane E. Visvader 6,7, Geoffrey J. Lindeman 6,9,10, Lodewyk F.A. Wessels2,3,4 & Jos Jonkers1,2,3 1234567890():,; BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9- mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collabor- ating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.
    [Show full text]
  • Making Sense of Cancer Genomic Data
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Making sense of cancer genomic data Lynda Chin,1,2,3 William C. Hahn,1,2 Gad Getz,2 and Matthew Meyerson1,2 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; 2Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA High-throughput tools for nucleic acid characterization 2010). Moreover, the current pace of technological ad- now provide the means to conduct comprehensive anal- vances make it increasingly clear that the ability to yses of all somatic alterations in the cancer genomes. perform prospective and comprehensive molecular pro- Both large-scale and focused efforts have identified new filing of tumors will become commonplace and enable targets of translational potential. The deluge of informa- genome-informed personalized cancer medicine. tion that emerges from these genome-scale investigations However, the bottlenecks along this path are formi- has stimulated a parallel development of new analytical dable and numerous. For one, these large-scale genome frameworksandtools.Thecomplexityofsomaticgeno- characterization efforts involve the generation and in- mic alterations in cancer genomes also requires the de- terpretation of data at an unprecedented scale, which has velopment of robust methods for the interrogation of the brought into sharp focus the need for improved informa- function of genes identified by these genomics
    [Show full text]
  • The Promising Role of Epigenetic Mediators and Micrornas in the Early Diagnosis of Cholangiocarcinoma (Review)
    WORLD ACADEMY OF SCIENCES JOURNAL 1: 165-176, 2019 The promising role of epigenetic mediators and microRNAs in the early diagnosis of cholangiocarcinoma (Review) VIKRANT RAI1,2, CHANDRA S. BOOSANI2 and DEVENDRA K. AGRAWAL2 Departments of 1Biomedical Sciences, and 2Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA Received May 15, 2019; Accepted August 7, 2019 DOI: 10.3892/wasj.2019.18 Abstract. Cholangiocarcinoma (CC) is a highly lethal malig- histone deacetylation with DNA methyltransferase (DNMT) nant tumor which arises from the biliary tract epithelium and is and histone deacetylase (HDAC) inhibitors has been reported notoriously difficult to diagnose. Common risk factors for CC in a number of cancer types. In CC, targeting the epigenetic are primary sclerosing cholangitis, liver fluke infestation and pathways appears to be a promising approach for treatment. hepatolithiasis. Although CCs are relatively uncommon tumors, This review aims to provide a comprehensive overview of the the worldwide rising incidences and mortality rate for intrahe- putative role of epigenetic alterations and proteomic altera- patic CC (ICC) renders it a disease of interest for research. CCs tions in CC. Furthermore, the role of these alterations in early are usually fatal due to the typically late clinical presentation diagnosis, as prognostic markers, and therapeutics for better and the lack of effective non‑surgical therapeutic modalities. treatment strategies will be highlighted. The overall survival rate, including following tumor resection, is poor with <5% of patients surviving 5 years and this rate has not significantly improved over the past 30 years. Thus, there is Contents a need to diagnose CC at an early stage, and advances in immu- nohistochemistry, molecular genetics, pharmacogenomics and 1.
    [Show full text]