The Thymic Stromal Cell Line MTSC4 Induced Thymocyte Apoptosis in a Non- MHC-Restricted Manner

Total Page:16

File Type:pdf, Size:1020Kb

The Thymic Stromal Cell Line MTSC4 Induced Thymocyte Apoptosis in a Non- MHC-Restricted Manner Cell research (2004); 14 (2): 125-133 ARTICLECell research, 14(2), April 2004 http://www.cell-research.com Xue Ying HE et al The thymic stromal cell line MTSC4 induced thymocyte apoptosis in a non- MHC-restricted manner Xue Ying HE1, Juan LI1, Xiao Ping QIAN1, Wen Xian FU1, Yan LI1, Li WU2, Wei Feng CHEN1 1Department of Immunology, Peking University Health Science Center,38 Xueyuan Road, Beijing 100083, China. 2The Walter and Eliza Hall Institute, PO Royal Melbourne Hospital, Victoria 3050, Australia. ABSTRACT Mouse thymic stromal cell line 4 (MTSC4) is one of the stromal cell lines established in our laboratory. While losing the characteristics of epithelial cells, they express some surface markers shared with thymic dendritic cells (TDCs). To further study the biological functions of these cells, we compared the capability of MTSC4 with TDCs in the induction of thymocyte apoptosis, using thymic reaggregation culture system. Apoptosis of thymocytes induced by MTSC4 and TDCs was measured by Annexin V and PI staining and analyzed by flow cytometry. We found that MTSC4 selectively augmented the apoptosis of CD4+8+ (DP) thymocytes. This effect was Fas/FasL independent and could not be blocked by antibodies to MHC class I and class II molecules. In addition, MTSC4 enhanced the apoptosis of DP thymocytes from different strains of mice, which implies that MTSC4-induced thymocyte apoptosis is not mediated by the TCR recognition of self peptide/MHC molecules. In contrast to MTSC4, thymocyte apoptosis induced by TDCs was MHC- restricted. Thus, MHC-independent fashion of stromal-DP thymocyte interaction may be one of the ways to induce thymocyte apoptosis in thymus. Our study has also shown that the interaction of MTSC4 stromal cells and thymocytes is required for the induction of thymocyte apoptosis. Keywords: MHC, thymic dendritic cells, thymic stromal cell line, thymocyte apoptosis. INTRODUCTION (TDCs) as professional antigen presenting cells express The communications between thymic microenvironmental high levels of MHC class II molecules and their role in stromal cells and thymocytes determine the development negative selection has been demonstrated in vivo and in and fate of thymocytes. During maturation, the thymocytes vitro[3, 4]. Apart from TDCs, other types of thymic stro- interact with the stromal cells, including epithelial cells, mal cells may also be involved in negative selection, such fibroblasts and dendritic cells, to undergo T cell receptor as thymic medullary epithelial cells[5-7]. (TCR) gene rearrangement and TCR/CD3 expression, thy- MTSC4 is a mouse thymic dendritic cell-like cell line mic selection and functional maturation. Although the de- established in our laboratory. It was identified by the ex- tailed molecular mechanism of thymic selection remains pression of vimentin and S-100 protein and lacking of char- unclear, it is generally believed that the positive and negative acteristic epithelial cell molecules, such as cytokeratin, selection of immature thymocytes depends on the avidity of tonofilaments and desmosomes[8]. Further characteriza- T cell receptor (TCR) to peptide/MHC complex and requires tion showed that 70% of MTSC4 cells were CD40 positive, secondary signals which are poorly defined. High avidity express low levels of B7.1, CD8α and MHC class I and interaction between TCR and peptide/MHC molecules in- do not express surface MHC class II and B7.2. The duces negative selection resulting in cell apoptosis, whereas proportion of MTSC4 cells expressing DEC-205 varied low avidity interaction between them leads to positive among the MTSC4 sub-clones (5%-54%). However, upon selection for cell survival [1, 2]. Thymic dendritic cells stimulation by a combination of cytokines (IFN-γ, IL-4, GM-CSF and anti-CD40 mAb), the clone of MTSC4-10 *Correspondence: Wei Feng CHEN, Tel: 0086-10-82802593, Fax: 0086-10-82801436, was upregulated on the expression of MHC class I, class E-mail: [email protected] II and B7.1. The up-regulation of MHC class II was IFN-γ Abbreviations: BSS, balanced salt solution; DN, double-negative; DP, dependent, and omission of any one of the cytokines from double-positive; Int, intermediate; MTEC1, mouse thymic epithelial the cocktail reduced the up-regulation of B7.1 expression. cell line 1; MTSC4, mouse thymic stromal cell line 4; NCS, newborn calf serum; SP, single-positive; TDC, thymic dendritic cell; TRC, thy- Our previous studies also showed that application of an- mic reaggregation culture. other cocktail of cytokines, including IL-1, IL-3, SCF and 125 Thymocyte apoptosis in a non-MHC-restricted manner http://www.cell-research.com Flt3L, did not change the cell phenotype. These results containing 5 mM EDTA). The low-density cell fraction was ob- demonstrated that MTSC4 lacked the surface markers tained by centrifugation for 10 min at 1,700 g, 4oC. To deplete non- typical for thymic epithelial cells and dendritic cells (DCs). DC cells, the recovered low-density cells were incubated with a However, upon activation, they up-regulated the expres- cocktail containing the following mAbs: anti-CD3, anti-CD4, anti- erythroid cell antigen, anti-Gr-1, anti-B220 and anti-Thy1.2 (1/3 sion of some surface molecules normally expressed on saturation concentration) for 30 min at 4oC. Cells were then washed DCs. and depleted with anti-Ig-coated magnetic beads (Paesel and Lorei, To determine the relationship between MTSC4 and the GMBH & Co, Frankfurt, Germany) at 10:1 bead-to-cell ratio. The thymic dendritic cells (TDCs) and to investigate the pos- mixture of beads and cells was resuspended in EDTA-BSS-NCS and sible functions of these cells during thymic selection, we incubated for 25 min with continuous slow rotation at 4oC. To obtain compared MTSC4 to freshly isolated TDCs for their ca- purified TDCs, the cell preparation was stained and sorted for + α+ pacity to induce thymocyte apoptosis. MTSC4 cells could CD11c CD8 cells by flow cytometry Vantage (Becton Dic-kinson, + + Mountain View, CA). The purity of separated TDCs was 95% after efficiently augment the apoptosis of CD4 8 thymocytes reanalyzed on FACS. in a Fas/FasL independent manner. In contrast to TDCs, the induction of thymocyte apoptosis by MTSC4 was not Effects of cytokines on MTEC1, MTSC4 and MTSC4-10 MHC-restricted. These results suggest that different mo- Murine rIFN−γ was purchased from PharMingen. Murine rIL-4, lecular pathways may be involved in the induction of thy- murine rGM-CSF and anti-CD40 mAb (FGK45.5) were obtained mocyte apoptosis in MTSC4 and TDCs. from Immunex Corp. (Seattle, WA) and from Dr. A. Rolink (Basel Institute for Immunology). MTEC1, MTSC4 and MTSC4-10 cells MATERIALS AND METHODS (2.5×104 cells/ml) were cultured in media supplemented with a cock- tail of cytokines containing mrIL-4 (100U/ml), mrGM-CSF (200 ng/ Mice ml), IFN-γ (4 ng/ml) for 48 h, then added anti-CD40 mAb (1 µg/ml) Six to eight week-old, specific pathogen-free female BALB/c (H- and the cells were cultured for additional 24 h. Cells were then har- 2d) and C57BL/6 (H-2b) mice were obtained from the Department of vested and analyzed by FACS Calibur (Becton Dickinson, Moun- Laboratory Animal Science, Peking University Health Science Center. tain View, CA). Six to eight week-old C3H (H-2k) mice were purchased from Beijing Vital River Laboratory Animal Co., Ltd. Preparation of thymic subsets Fresh adult thymuses were homogenized to a single-cell suspen- Cell lines sion in cold RPMI-1640 medium containing 2% newborn calf serum MTEC1 (mouse thymic medullary epithelial cell line 1), MTSC4 (NCS), using steel mesh. The cells were stained with anti-CD8α- (mouse thymic stromal cell line 4) and its clone, MTSC4-10, were Cychrome, anti-CD4-APC, and sorted for CD4+8+ (DP), CD4+CD8- established from the thymus of BALB/c mice in our laboratory[8, (CD4SP) and CD4-CD8+ (CD8SP) cells by flow cytometry on FACS 9]. 3T3 fibroblast cell line was purchased from ATCC (VA, USA). Vantage. The purity of separated thymocyte subsets was 97-98% after reanalyzed on FACS. Monoclonal antibodies Fluorescence-conjugated monoclonal antibodies used for flow Thymic reaggregation cultures (TRC) cytometry analysis including: anti-MHC class II I-A(M5/114)-phy- The TRC was based on the method established by Anderson et al. coerythrin (PE), anti-CD8α(53-6.7)-PerCP, anti-CD8α(53-6.7)- [4]. Freshly prepared thymocytes and appropriate stromal cells were Cychrome, anti-CD4(RM4-5)-APC, and anti-CD3(145-2C11)-FITC mixed together at necessary ratios and pelleted by centrifugation. were purchased from PharMingen (San Diego, CA). Anti-DEC-205 Following removal of the supernatant, the cell pellet was carefully (NLDC-145)-PE was a kind gift given by Dr. Shortman (Melbourne, transferred to the surface of a 0.8 µm Nucleopore filter supported by Australia). Supernatants or ascites of mAbs used for the depletion gelatin foam sponges. by immuno-magnetic beads or for cell cultures were generated in our laboratory, including: anti-erythroid cell antigen (Ter-119), anti- Flow cytometric analysis Thy1.2 (30H12), anti-Gr-1(RB68C5), anti-CD3 (KT3-1.1), anti- MTSC4 and MTSC4-10 cells were dispersed in 0.1% EDTA- CD4 (RL172), anti-B220 (RA36B2), anti-B7.2 (GL1) , anti-CD11c PBS (pH 8.0) at 37oC for 15 min. After blocking with mouse and rat (N418), anti-MHC II I-A (M5/114) and anti-MHC class I (HB-79). sera, the single cell suspensions were stained with a panel of conju- gated mAbs (see Monoclonal antibodies) for 30 min at 4oC. Stained Isolation of thymic dendritic cells (TDCs) cells were analyzed on FACS Calibur. Data acquisition and analysis Thymic DCs were isolated according to Vremec et al [10].
Recommended publications
  • MCB 50 Immunity and Disease Lecture Outline MHC Restriction Jan
    MCB 50 Immunity and Disease Lecture Outline MHC Restriction Jan. 31, 2001 I. Definition of self MHC restriction; MHC restriction is the requirement that APC or target cells express MHC molecules that the T cell recognizes as self in order for T cell to respond to the antigen presented by that APC or target cell. (T cells will only recognize antigens presented by their own MHC molecules.) CD8 T cells bind class I MHC which are expressed on most cells in the body. CD4 T cells bind class II MHC which are only expressed on specialized APCs. APCs primarily reside in 2 ° lymphoid tissue (lymph nodes, spleen) but can be found in most tissues. II. MHC Genetics Mouse MHC gene complex called H-2. Human MHC gene complex called HLA. MHC Molecules Mouse H-2 Human HLA Class I K,D,L A, B, C Class II I-A, I-E DR, DQ, DP Definitions: Alleles functional forms of the same genes. Heterozygous different allele at each locus. Homozygous same allele at each locus. Haplotype is the total set of MHC alleles present on one chromosome. For each MHC gene locus you have 2 copies which can be denoted by their allele classification. Most humans will be heterozygous and will have different alleles for each of the different HLA loci. (e.g. A2/A12, B17/B83, C3/C37, DR3/DR4 etc). Syngeneic identical at all MHC loci same allele on both chromosomes. (inbred mice or identical twins). Allogeneic --genetically different at MHC different alleles. Every person gets a chromosome from each biological parent which contains an MHC molecule at each locus.
    [Show full text]
  • Repertoire Selection from Data on the Mature T Cell Deriving Quantitative
    Deriving Quantitative Constraints on T Cell Selection from Data on the Mature T Cell Repertoire This information is current as Vincent Detours, Ramit Mehr and Alan S. Perelson of October 2, 2021. J Immunol 2000; 164:121-128; ; doi: 10.4049/jimmunol.164.1.121 http://www.jimmunol.org/content/164/1/121 Downloaded from References This article cites 75 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/164/1/121.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Deriving Quantitative Constraints on T Cell Selection from Data on the Mature T Cell Repertoire1 Vincent Detours,*†‡ Ramit Mehr,§ and Alan S. Perelson2* The T cell repertoire is shaped in the thymus through positive and negative selection. Thus, data about the mature repertoire may be used to infer information on how TCR generation and selection operate.
    [Show full text]
  • Thymic Nurse Cells Participate in Heterotypic
    Send Orders for Reprints to [email protected] 828 Current Molecular Medicine 2015, 15, 828-835 Thymic Nurse Cells Participate in Heterotypic Internalization and Repertoire Selection of Immature Thymocytes; Their Removal from the Thymus of Autoimmune Animals May be Important to Disease Etiology J.C. Guyden1, M. Martinez2, R.V.E. Chilukuri1, V. Reid3, F. Kelly4 and M.-O.D. Samms*,1 1Department of Biology, The City College of New York, New York, NY 10031, USA 2Department of Biology College of Arts and Sciences, Tuskegee University, Armstrong Hall, Room 107, 1200 West Montgomery Road, Tuskegee, AL 36088, USA 3The Hall Perrine Cancer Center, Department of Surgery, Mercy Medical Center Cedar Rapids, IA, Division of Surgical Oncology & Endocrine Surgery, The University of Iowa Hospitals & Clinics, 200 Hawkins Dr, Iowa City, IA 52242, USA 4Essential Health, St Mary’s Medical Center, 407 East 3rd Street, Duluth, MN 55805, USA M.-O.D. Samms Abstract: Thymic nurse cells (TNCs) are specialized epithelial cells that reside in the thymic cortex. The initial report of their discovery in 1980 showed TNCs to contain up to 200 thymocytes within specialized vacuoles in their cytoplasm. Much has been reported since that time to determine the function of this heterotypic internalization event that exists between TNCs and developing thymocytes. In this review, we discuss the literature reported that describes the internalization event and the role TNCs play during T cell development in the thymus as well as why these multicellular complexes may be important in inhibiting the development of autoimmune diseases. Keywords: Thymic nurse cells, internalization, MHC restriction, lupus erythromatosus.
    [Show full text]
  • HLA-Restricted, Processing- and Metabolism-Independent Pathway of Drug Recognition by Human Alpha Beta T Lymphocytes
    HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. M P Zanni, … , S Valitutti, W J Pichler J Clin Invest. 1998;102(8):1591-1598. https://doi.org/10.1172/JCI3544. Research Article T cell recognition of drugs is explained by the hapten-carrier model, implying covalent binding of chemically reactive drugs to carrier proteins. However, most drugs are nonreactive and their recognition by T cells is unclear. We generated T cell clones from allergic individuals specific to sulfamethoxazole, lidocaine (nonreactive drugs), and cef-triaxone (per se reactive beta-lactam antibiotic) and compared the increase of intracellular free calcium concentration ([Ca2+]i) and the kinetics of T cell receptor (TCR) downregulation of these clones by drug-specific stimulations. All drugs tested induced an MHC-restricted, dose- and antigen-presenting cell (APC)-dependent TCR downregulation on specific CD4(+) and CD8(+) T cell clones. Chemically nonreactive drugs elicited an immediate and sustained [Ca2+]i increase and a rapid TCR downregulation, but only when these drugs were added in solution to APC and clone. In contrast, the chemically reactive hapten ceftriaxone added in solution needed > 6 h to induce TCR downregulation. When APC were preincubated with ceftriaxone, a rapid downregulation of the TCR and cytokine secretion was observed, suggesting a stable presentation of a covalently modified peptide. Our data demonstrate two distinct pathways of drug presentation to activated specific T cells. The per se reactive ceftriaxone is presented after covalent binding to carrier peptides. Nonreactive drugs can be recognized by specific alphabeta+ T cells via a nonconventional presentation pathway based on a labile binding […] Find the latest version: https://jci.me/3544/pdf HLA-restricted, Processing- and Metabolism-independent Pathway of Drug Recognition by Human ab T Lymphocytes Martin P.
    [Show full text]
  • T Cell Maturation
    T-cell Maturation T cell maturation What allows T cell maturation? T cell progenitor DN DP SP 2ry • Direct contact with thymic epithelial cells (Subcapsular (Cortex) (Medulla) lymphoid zone) organs • Influence of thymic hormones THYMUS • Growth factors (cytokines, CSF) The earliest T cell precursors in the thymus : - Express Thy-1 (mice) - Have not yet rearranged TCR loci - Do NOT express CD4 or CD8 - Do not express CD3 - Are called “double negatives” MARKERS: - C-KIT - Receptor for Stem Cell Growth Factor - CD44 - Adh. Molecule. Homing to thymus - CD25 - Alpha chain of IL-2 receptor Time Course of Appearance in Thymus - Most double negative thymocytes will give rise to αβαβαβ T cells (in mice and humans). * - Some (5%) will differentiate into γδγδγδ T cells. - The developmental pathway of γδγδγδ T cells is not well defined. 1 Why is Pre-TCR important? - CD3 expression first appear between DN2 to DN3 - Double negative thymocytes (DN3 stage) undergo β chain locus re-arrangement. - The newly formed β chain combines with the Pre-Tα (surrogate chain) and CD3 to form the Pre-T cell receptor ( Pre-TCR ). 1) Productive TCR β chain re-arrangement 2) Signals for proliferation (similar β chain) and maturation 3) Suppresses further β chain re-arrangement (allelic exclusion) 4) Signals for TCR ααα chain re-arrangement 4) Induces development of CD4+8+ (double positive) stage - After β chain re-arrangement is completed the DN3 cells Positive and Negative selection of T cells: GOAL—to progress to DN4. recognize foreign Ag combined with self MHC - Both CD4 and CD8 are expressed = double positive (DP) cells.
    [Show full text]
  • T Cell Receptor
    Self-MHC restriction of the T cell Chapter 9 receptor (TCR) • Self restriction- T cell can only be activated by a unique peptide associated with self-MHC. T cell Receptor • Two models: – A) Dual receptor model : two receptors, one for the antigen and one for the MHC molecule – B) Altered self model : One receptor that recognizes both antigen and MHC molecule Self-MHC restriction of the TCR The αβαβαβ TCR is similar in size and structure to an antibody Fab fragment The αβαβαβ T cell receptor - Two chains - ααα and βββ - Two domains per chain - constant (C) domain - variable (V) domain - Chains held together by disulfide bonds - Small cytoplasmic tails on each chain Kuby Figure 9-3 Kuby Figure 9-3 1 - Some T cells express a TCR made of two alternate chains - γγγ and δδδ Table 9.1 Comparison of TCR - The γδγδγδ TCR is structurally similar αβ T cells γδγδγδ T cells to the αβαβαβ TCR. • % CD3 + 90-99% 1-10% - 0.5-15% of peripheral blood T cells • TCR V gene Large Small use the γδγδγδ TCR. A higher proportion in germline of T cells in the skin and intestinal epithelium use the γδγδγδ TCR. • CD4/CD8 60% <1% −−−γδγδγδ T cells seem to be biased CD4 toward recognition of specific CD8 30% 30% microbial antigens. CD4-CD8- <1% 60% −−−γδγδγδ T cells are thought to represent • MHC restriction Yes No a different lineage of T cells with specialized functions. • Ligands Peptide+ MHC Phospholipid antigen Intact protein Kuby Figure 9-9 (modified) TCR Receptor Complex- CD3 The TCR complex includes CD3 - 3 heterodimers: γεγεγε , εδεδεδ and ζζζζζζ - 1) TCR is not expressed without CD3.
    [Show full text]
  • MHC − Bound to Peptide the First Structures of T Cell Receptors
    The First Structures of T Cell Receptors Bound to Peptide−MHC Kai W. Wucherpfennig This information is current as J Immunol 2010; 185:6391-6393; ; of September 26, 2021. doi: 10.4049/jimmunol.1090110 http://www.jimmunol.org/content/185/11/6391 Downloaded from References This article cites 26 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/185/11/6391.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The First Structures of T Cell Receptors Bound to Peptide–MHC Kai W. Wucherpfennig he structure of the MHC class I molecule HLA-A2 yielded small quantities were reported. On the MHC side, it reported in 1987 by Bjorkman et al. (1) had revealed became clear that the MHC helices actually folded around T how peptide Ags are presented to T cells: peptides are the offered peptide and that it was impossible to generate sta- buried in the long and deep groove of the MHC molecule, ble, empty MHC class I molecules that could later be loaded flanked on each side by a long a helix.
    [Show full text]
  • Hypothesis: the Mhc-Restricted T-Cell Receptor As a Structure with Two Multistate Allosteric Combining Sites*
    Molecular Immunology, Vol. 21, No. 11. pp. 1037-1046, 1984 0161-5890/84 $3.00 + 0.00 Printed in Great Britain . Pergamon Press Ltd HYPOTHESIS: THE MHC-RESTRICTED T-CELL RECEPTOR AS A STRUCTURE WITH TWO MULTISTATE ALLOSTERIC COMBINING SITES* W. LOUIS CLEVELAND and BERNARD F. ERLANGER Department of Microbiology. Columbia University Cancer Center/Institute of Cancer Research. New York, NY 10032, U.S.A. (Accepted 10 July 1984) Abstract-This paper presents a dual-recognition model of the T-cell receptor that has been constructed to account for the phenomenon of MHC restriction as well as the paradoxical ability of T-cells to be both multispecific and precisely specific at the same time. In our model the combining sites for antigen and MHC are not independent as in classical dual-recognition models. but interact with each other by an allosteric mechanism. We envision a flexible receptor with combining sites for antigen and MHC that are capable of existing in a multitude of distinct complementarity states. MHC and antigen molecules act as allosteric effectors such that one ligand perturbs the conformation and therefore the specificity of the site for the other ligand. An essential feature of the model is that different MHC determinants induce different conformations at the anti-antigen site. In this way the receptor acquires multiple specificities. Within a particular complementarity state, precise recognition results from the requirement that antigen and MHC exhibit positive cooperativity in their binding to the T-cell receptor. Positive cooperativity is also the basis for MHC restriction. Reaction mechanisms are presented which describe the requirement that antigen and MHC both induce conformational changes in order to generate high-affinity binding to either ligand.
    [Show full text]
  • The Antigenic Determinant That Defines Thymic Nurse Cells Is Expressed by Thymic Epithelial Progenitor Cells
    City University of New York (CUNY) CUNY Academic Works Publications and Research City College of New York 2014 The antigenic determinant that defines thymic nurse cells is expressed by thymic epithelial progenitor cells Rajendra V. E. Chilukuri CUNY City College Viral K. Patel CUNY City College Marcia Martinez Tuskegee University Jerry C. Guyden CUNY City College Michael D. Samms CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_pubs/129 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] ORIGINAL RESEARCH ARTICLE published: 28 April 2014 CELL AND DEVELOPMENTAL BIOLOGY doi: 10.3389/fcell.2014.00013 The antigenic determinant that defines thymic nurse cells is expressed by thymic epithelial progenitor cells Rajendra V. E. Chilukuri 1, Viral K. Patel 1, Marcia Martinez 2, Jerry C. Guyden 1 and Michael D. Samms 1* 1 Department of Biology, The City College of New York, New York, NY, USA 2 Biology, Tuskegee University, Tuskegee, AL, USA Edited by: Stromal thymic epithelial cells with the multicellular structure unique to thymic nurse cells Atsushi Asakura, University of (TNCs) express the pH91 antigen on their cell surfaces. The multicellular TNC-complexes Minnesota, USA develop through an intimate association between αβTCR+CD4+CD8+ thymocytes and Reviewed by: pH91-expressing cortical epithelial cells. TNCs participate in MHC-restriction and exhibit Yousuke Takahama, University of Tokushima, Japan epithelial cell progenitor characteristics. In this report, we show that as early as E11.5 Maria Guadalupe Reyes-Garcia, stage of thymus development, the pH91 antigen is expressed in association with K8, K5, National Autonomous University of Foxn1, and p63.
    [Show full text]
  • Cellular and Peptiderequirements for in Vitro Clonal Deletion of Immature
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 9000-9004, October 1992 Immunology Cellular and peptide requirements for in vitro clonal deletion of immature thymocytes KAZUYA IWABUCHI*, KEI-ICHI NAKAYAMA*, RODERICK L. McCoy*, FANPING WANG*, TAKASHI NISHIMURAt, SONOKo HABUt, KENNETH M. MURPHYt, AND DENNIS Y. LoH* Departments of *Medicine, Genetics, and Molecular Microbiology, and *Pathology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and tDepartment of Immunology, Tokai University School of Medicine, Isehara 259-11, Japan Communicated by Herman N. Eisen, June 23, 1992 (receivedfor review March 16, 1992) ABSTRACT Thymocytes from DO1 T-cell-receptor deletion system that can be used to elucidate the cellular and trasgenic mice undergo apoptosis, or programmed cell death, peptide-antigen requirements for inducing clonal deletion. when chicken ovalbumin-(323-339) peptide is administered in vivo. Using DO1 mice thymocytes, we have now developed a EXPERIMENTAL PROCEDURES simple in vitro model system that recapitulates the in vivo Mice. TCR transgenic mice (DO10) bearing TCR from a clonal-deletion process. When transgenic thymocytes were hybridoma, DO11.10, with specificity for cOVA-(323-339) cocultured with fibroblasts, B cells, or thymic nurse cell lines and I-Ad have been backcrossed to BALB/c mice and are (all bearing I-Ad) in the presence of chicken ovalbumin-(323- maintained in our own animal facility. KA mice were created 339), deletion of the transgenic TCR+CD4+CD8+ thymocytes by the microinjection of I-Ad genes (a and f3) driven by class was seen within 8-20 hr. Thymocytes designed to bear I-Ad on I MHC Kb promoter into mouse embryos and maintained in their surface could mediate the deletion themselves.
    [Show full text]
  • Significance of The
    CHAPTERCHAPTER 7 7 SignificanceSignificance ofof thethe MHCMHC MajorMajor HistocompatibilityHistocompatibility Complex Complex (MHC)(MHC) WhatWhat isis MHC?MHC? rolerole inin immuneimmune responseresponse ––HLAHLA rolerole inin organorgan transplantationtransplantation – H-2 – H-2 rolerole inin predispositionpredisposition toto diseasedisease ––MinorMinor histocompatibilityhistocompatibility antigensantigens ––PeterPeter GorerGorer & & GeorgeGeorge SneellSneell (1940) (1940) - MHC molecules were initially discovered during studies Chromosome 17 aimed at understanding the molecules responsible for rejection of transplanted tissues . - Hence the name “Major Histocompatibility Complex ” L (MHC). - The term “Major Histocompatibility Complex” actually refers to a region of the genome that encodes a number of genes (hence Complex) that play an important (hence Chromosome 6 Major) role in tissue transplantation (hence Histocompatibility). - The term “MHC molecule” or “MHC antigen” refers to a molecule encoded by a gene within this region. In humans: In the Mouse: Class I = A, B and C (also called HLA-A, HLA-B and HLA-C) Class I = K, D and L molecules (also called - Ag (peptide) presentation to CD8+ cells H-2D, H-2K and H-2L) Class II = DP, DQ and DR (also called Class II = A and E (also called I-A and I-E) HLA-DP, HLA-DQ and HLA-DR) - Ag (peptide) presentation to CD4+ cells Class III = Complement proteins, Tumor necrosis factor (TNFs)-α, β Class III = Complement proteins, Tumor necrosis factor (TNFs)-α, β 1 MHC- Polimorphism PolymorphismPolymorphism
    [Show full text]
  • The Major Histocompatibility Complex, MHC
    The Major Histocompatibility Complex, MHC Ning Pan Department of Pathogen biology and Immunology Medical School , Southeast University 1 2 • George Snell (1903-1996) discovered the first components of the MHC through their role in rejecting transplants in mice, and created the word “histocompatibility”. • Around a decade later, Jean Dausset (1916-2009) uncovered the first compatibility antigen in humans. • Experiments by Baruj Benacerraf (1920-2011) in the 1970s provided the first indication that immune reactions are controlled by the MHC genes ('immune response genes' ). 3 • T cells do not recognize intact antigen (the whole chicken) • Interact only with antigen fragments — peptide (the drumstick) • Peptides are only recognized when they are associated with self-MHC molecules (presented by a waiter) 4 Terminology 1 • Histocompatible: transplanted tissue is successfully accepted as self • Histocompatibility antigens: rejection of foreign tissue is the result of an immune response to cell-surface molecules • Histocompatibility complex : a region of multiple loci that play major roles in determining whether transplanted tissue is with histocompatibility or inhistoincompatibility 5 Terminology 2 • Major vs minor – Major Histocompatibility Complex, MHC : rapid graft rejection – Minor Histocompatibility complex, mHC : slow graft rejection • HLA: human leukocyte antigen, MHC antigens in human • H-2: MHC antigen in mice 6 Terminology 3 • HLA or MHC gene/complex — DNA • HLA or MHC antigen/molecule — protein 7 HLA complex 8 HLA complex spans 3.5
    [Show full text]