Virome Analysis of Ticks in a Forest Region of Liaoning, China

Total Page:16

File Type:pdf, Size:1020Kb

Virome Analysis of Ticks in a Forest Region of Liaoning, China Yang et al. Virol J (2021) 18:163 https://doi.org/10.1186/s12985-021-01632-x RESEARCH Open Access Virome analysis of ticks in a forest region of Liaoning, China: characterization of a novel hepe-like virus sequence Zijun Yang1, Ju Zhang1, Shixing Yang1, Xiaochun Wang1, Quan Shen1, Guangming Sun3, Hao Wang2* and Wen Zhang1* Abstract Background: Ticks (class Arachnida, subclass Acari) are vectors of transmitting a broad range of pathogenic micro- organisms, protozoa, and viruses afecting humans and animals. Liaoning Province is rich in forests where diferent animals and, abundant Haemaphysalis longicornis ticks exist. Methods: Using viral metagenomics, we analyzed the virome in 300 Haemaphysalis longicornis ticks collected from June to August 2015 in the forested region of Liaoning Province, China. Results: From the 300 ticks, 1,218,388 high-quality reads were generated, of which 5643 (0.463%) reads showed sig- nifcant sequence identity to known viruses. Sequence and phylogenetic analysis revealed that viral sequences show- ing a close relationship with Dabieshan tick virus, Aleutian mink disease virus, adeno-associated virus, Gokushovirus, avian gyrovirus 2 were present in the virome of these ticks. However, the signifcance of these viruses to human and animal health requires further investigation. Notably, an hepe-like virus, named tick-borne hepe-like virus sequence, was obtained and was highly prevalent in these ticks with a rate of 50%. Nevertheless, one constraint of our study was the limited geographical distribution of the sampled ticks. Conclusion: Our study ofers an overview of the virome in ticks from a forest region of Liaoning Province and pro- vides further awareness of the viral diversity of ticks. Keywords: Virome of ticks, Metagenomic analysis, Dabieshan tick virus, Tick-borne hepe-like virus, Liaoning Province Background 158 cases of CCHFV (Crimean-Congo hemorrhagic fever Ticks (class Arachnida, subclass Acari) transmit a broad virus) infection were published from 1953 to 2016, with range of pathogenic microorganisms, protozoa, and an overall case fatality rate of 32.4% [3]. SFTS (Severe viruses and are the second most common vectors of dis- fever with thrombocytopenia syndrome), with a 5.3% eases afecting livestock, humans, and companion ani- national average mortality rate, was reported in 23 prov- mals [1, 2]. Te diseases caused by the tick-borne virus inces of China, with increased numbers yearly from 2010 are numerous and severe. In Africa, Asia, and Europe, to 2016 [4]. Moreover, the incidence of some tick-borne infections and transmissions in recent decades showed an increasing or fuctuating tendency due to various fac- *Correspondence: [email protected]; [email protected] 1 Department of Microbiology, School of Medicine, Jiangsu University, tors, mainly associated with increased tick-exposure, Zhenjiang 212013, Jiangsu, China especially with the enlargement of cities, taking the place 2 Department of Clinical Laboratory, Huai’an Hospital, Xuzhou Medical of forests, and exposing wild hosts to humans and live- University, Huai’an 223002, Jiangsu, China Full list of author information is available at the end of the article stock animals [5–7]. © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Yang et al. Virol J (2021) 18:163 Page 2 of 12 Te rise of metagenomics analysis has transformed Tick sample pool preparation virus discovery and revealed a remarkable diversity of Te collected ticks were divided into six groups (Pool viruses sampled from ticks [8, 9]. Researchers found 01-06) based on their sampling month (early June, late a large monophyletic group of emerging viruses and June, early July, late July, early August, and late August) named this putative new virus family ’Chuviridae’ [9, (Additional fle 1). An additional table shows these pools 10]. Jingmen tick virus, a segmented RNA virus, was in detail (see Additional fle 1). Before homogenization, detected frstly from ticks in the Jingmen region of each tick pool was washed with 75% alcohol to remove Hubei Province in China [11]. Huaiyangshan virus, a contaminants on ticks and washed thrice with 1 mL of novel species of the genus Phlebovirus, was found in phosphate-bufered saline (PBS) to eliminate external human and tick samples with high prevalence [12, 13]. microbes. Te tick samples were homogenized, frozen, Together, these studies showed that using metagen- and thawed three times on dry ice, and the supernatants omics can express the diversity of viruses from ticks were then collected after centrifugation (5 min, 15,000g, massively. 4 °C). Liaoning Province, situated in the northeastern region of China, is owned by a temperate monsoon cli- Viral metagenomic analysis mate region with plenty of rainfall and sunshine. Fur- 500ul of each supernatant was fltered through a 0.45- thermore, it has 4.641 million hectares of forests and is μm flter (Millipore) to remove eukaryotic and bacterial rich in animal resources, with 827 species of animals, cell-sized particles. Te fltrate was treated for 60 min including amphibians, mammals, reptiles, and birds. at 37 °C with a DNases mixture (Turbo DNase from Researchers found that tick richness correlated with Ambion, Baseline-ZERO from Epicentre), benzonase forest size, even among locally common birds [14]. (Novagen), and RNase (Fermentas) to digest unprotected Ticks and tick-borne diseases have the evolution of nucleic acid [18, 19]. Nucleic acids (total DNA and RNA) cooperation with various wild animal hosts, and these were then extracted using a QIAamp Viral RNA Mini Kit hosts constitute reservoir hosts for ticks and tick-borne (QIAGEN) following the manufacturer’s instructions. pathogens[1]. Nevertheless, with urbanization and the Extractions were reverse-transcribed to cDNA using increasing range of human activity, a state of equilib- reverse transcriptase (Super-Script III, Invitrogen). Total rium between them may be of, and the risk of tick bites nucleic acids were subjected to RT reactions with Super- and infecting diseases increases. Haemaphysalis lon- Script III reverse transcriptase (Invitrogen), following gicornis (H. longicornis) is the predominant species in second-strand cDNA synthesis with Large (Klenow) frag- Liaoning Province [15], but the overview of viruses car- ment (NEB). Sixty-four libraries were then constructed ried by ticks has not yet been entirely elucidated. It is using Nextera XT DNA Sample Preparation Kit (Illu- necessary to investigate the viruses carried by ticks and mina) and sequenced using the HiSeq Illumina platform identify their natural habitats to prevent outbreaks of with 250 base pair-ends with dual barcoding for each tick-borne viral diseases [6]. pool [20]. Since the necessity and feasibility, this study aims to study the diversity and evolutionary origin of viruses Bioinformatics analysis in ticks from a forest of Liaoning Province by a viral metagenomic approach. Paired-end reads of 250 bp generated by HiSeq were debarcoded using vendor software from Illumina. Clonal reads were removed, and low-sequencing-quality tails Methods were trimmed using Phred. Adaptors were removed using Sample collection the default parameters of VecScreen[21]. Te cleaned According to climatic conditions of summer-autumn reads were assembled de novo within each barcode group favor tick proliferation, we collected 300 live adult ticks utilizing the ENSEMBLE assembler [22]. Te assembled from June to August during 2015 in a big forest park of contigs and singlets were compared to an in-house viral proteome database using BLASTx with an E-value cut- Dalian city in southern Liaoning (Fig. 1A) by the drag- 5 fag method. Six diferent batches of ffty ticks were sam- of of < 10¯ . Candidate viral hits were then contrasted to pled based on sampling time (early June, late June, early an in-house non-redundant (NVNR) protein database to July, late July, early August, and late August). Ticks were remove false-positive viral hits. Te NVNR database was placed in labeled vials and shipped on dry ice [16]. All the compiled using non-viral protein sequences extracted collected ticks were identifed using tick taxonomic keys from an NCBI nr fasta fle (based on annotation tax- by tick entomologists under the microscope at a magnif- onomy, excluding the virus kingdom). Contigs with- out signifcant BLASTx similarity to the viral proteome cation of × 56 [17]. Yang et al. Virol J (2021) 18:163 Page 3 of 12 A Liaoning Province China Dalian BC4000 8e+05 Adenoviridae Anelloviridae Bunyaviridae Flaviviridae 3000 Microviridae 6e+05 None−DNA virus total reads None−RNA virus viral reads None−unclassified virus Papillomaviridae s 2000 Parvoviridae 4e+05 reads Retroviridae read Tombusviridae Virgaviridae 2e+05 1000 0e+00 0 Pool01 Pool02 Pool03 Pool04 Pool05 Pool06 Pool01 Pool02 Pool03 Pool04 Pool05 Pool06 Pool Pool Fig. 1 The map of collection sites and the viral reads in each pool. A Map of tick collection sites. B The proportion of viral sequences in total reads.
Recommended publications
  • Towards the Improved Accuracy of Hepatitis E Diagnosis In
    healthcare Review Towards the Improved Accuracy of Hepatitis E Diagnosis in Vulnerable and Target Groups: A Global Perspective on the Current State of Knowledge and the Implications for Practice Jasminka Talapko 1 , Tomislav Meštrovi´c 2,3, Emina Pustijanac 4 and Ivana Škrlec 1,* 1 Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; [email protected] 2 University Centre Varaždin, University North, HR-42000 Varaždin, Croatia; [email protected] 3 Clinical Microbiology and Parasitology Unit, Dr. Zora Profozi´cPolyclinic, HR-10000 Zagreb, Croatia 4 Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia; [email protected] * Correspondence: [email protected] Abstract: The hepatitis E virus (HEV) is a positive single-stranded, icosahedral, quasi-enveloped RNA virus in the genus Orthohepevirus of the family Hepeviridae. Orthohepevirus A is the most numerous species of the genus Orthohepevirus and consists of eight different HEV genotypes that can cause infection in humans. HEV is a pathogen transmitted via the fecal–oral route, most commonly by consuming fecally contaminated water. A particular danger is the HEV-1 genotype, which poses a very high risk of vertical transmission from the mother to the fetus. Several outbreaks caused by this genotype have been reported, resulting in many premature births, abortions, and also neonatal Citation: Talapko, J.; Meštrovi´c,T.; and maternal deaths. Genotype 3 is more prevalent in Europe; however, due to the openness of Pustijanac, E.; Škrlec, I. Towards the the market, i.e., trade-in animals which represent a natural reservoir of HEV (such as pigs), there is Improved Accuracy of Hepatitis E a possibility of spreading HEV infections outside endemic areas.
    [Show full text]
  • Genome Sequencing by Random Priming Methods for Viral Identification
    Genome sequencing by random priming methods for viral identification Rosseel Toon Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Veterinary Sciences, Faculty of Veterinary Medicine, Ghent University, 2015 Promotors: Dr. Steven Van Borm Prof. Dr. Hans Nauwynck “The real voyage of discovery consist not in seeking new landscapes, but in having new eyes” Marcel Proust, French writer, 1923 Table of contents Table of contents ....................................................................................................................... 1 List of abbreviations ................................................................................................................. 3 Chapter 1 General introduction ................................................................................................ 5 1. Viral diagnostics and genomics ....................................................................................... 7 2. The DNA sequencing revolution ................................................................................... 12 2.1. Classical Sanger sequencing .................................................................................. 12 2.2. Next-generation sequencing ................................................................................... 16 3. The viral metagenomic workflow ................................................................................. 24 3.1. Sample preparation ...............................................................................................
    [Show full text]
  • Generic Amplification and Next Generation Sequencing Reveal
    Dinçer et al. Parasites & Vectors (2017) 10:335 DOI 10.1186/s13071-017-2279-1 RESEARCH Open Access Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey Ender Dinçer1†, Annika Brinkmann2†, Olcay Hekimoğlu3, Sabri Hacıoğlu4, Katalin Földes4, Zeynep Karapınar5, Pelin Fatoş Polat6, Bekir Oğuz5, Özlem Orunç Kılınç7, Peter Hagedorn2, Nurdan Özer3, Aykut Özkul4, Andreas Nitsche2 and Koray Ergünay2,8* Abstract Background: Ticks are involved with the transmission of several viruses with significant health impact. As incidences of tick-borne viral infections are rising, several novel and divergent tick- associated viruses have recently been documented to exist and circulate worldwide. This study was performed as a cross-sectional screening for all major tick-borne viruses in several regions in Turkey. Next generation sequencing (NGS) was employed for virus genome characterization. Ticks were collected at 43 locations in 14 provinces across the Aegean, Thrace, Mediterranean, Black Sea, central, southern and eastern regions of Anatolia during 2014–2016. Following morphological identification, ticks were pooled and analysed via generic nucleic acid amplification of the viruses belonging to the genera Flavivirus, Nairovirus and Phlebovirus of the families Flaviviridae and Bunyaviridae, followed by sequencing and NGS in selected specimens. Results: A total of 814 specimens, comprising 13 tick species, were collected and evaluated in 187 pools. Nairovirus and phlebovirus assays were positive in 6 (3.2%) and 48 (25.6%) pools. All nairovirus sequences were closely-related to the Crimean-Congo hemorrhagic fever virus (CCHFV) strain AP92 and formed a phylogenetically distinct cluster among related strains.
    [Show full text]
  • Survival of Human Norovirus Surrogates in Juices and Their Inactivation Using Novel Methods
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2011 Survival of Human Norovirus Surrogates In Juices and their Inactivation Using Novel Methods Katie Marie Horm [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Horm, Katie Marie, "Survival of Human Norovirus Surrogates In Juices and their Inactivation Using Novel Methods. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/882 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Katie Marie Horm entitled "Survival of Human Norovirus Surrogates In Juices and their Inactivation Using Novel Methods." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Food Science and Technology. Doris H. D'Souza, Major Professor We have read this thesis and recommend its acceptance: Federico M. Harte, Gina M. Pighetti Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Survival of Human Norovirus Surrogates In Juices and their Inactivation Using Novel Methods A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Katie Marie Horm May 2011 Acknowledgments I would like to think my major professor/advisor Dr.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Rift Valley Fever: a Review
    In Focus Rift Valley fever: a review John Bingham Petrus Jansen van Vuren CSIRO Australian Animal Health Laboratory (AAHL) CSIRO Health and Biosecurity 5 Portarlington Road Australian Animal Health Geelong, Vic. 3220, Australia Laboratory (AAHL) Tel: + 61 3 52275000 5 Portarlington Road Email: [email protected] Geelong, Vic. 3220, Australia fi fi Rift Valley fever (RVF) is a mosquito-borne viral disease, Originally con ned to continental Africa since its rst isolation in principally of ruminants, that is endemic to Africa. The Kenya in 1930, RVFV has since spread to the Arabian Peninsula, 5,6 causative Phlebovirus, Rift Valley fever virus (RVFV), has a Madagascar and islands in the Indian Ocean . Molecular epide- broad host range and, as such, also infects humans to cause miological studies further highlight the ability of the virus to be primarily a self-limiting febrile illness. A small number of spread to distant geographical locations, with genetically related 4 human cases will also develop severe complications, includ- viruses found from distant regions of Africa . Serological evidence ing haemorrhagic fever, encephalitis and visual im- of RVFV circulation in Turkey is concerning and serves as a warning 7 pairment. In parts of Africa, it is a major disease of for possible incursion into Europe . However, serological surveys 8,9 domestic ruminants, causing epidemics of abortion and in Europe suggest absence of the virus and modelling indicates 10 mortality. It infects and can be transmitted by a broad range that the risk of introduction and large scale spread is low . Recent of mosquitos, with those of the genus Aedes and Culex importations of human RVF cases into Europe and Asia from thought to be the major vectors.
    [Show full text]
  • Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats
    viruses Article Characterizing and Evaluating the Zoonotic Potential of Novel Viruses Discovered in Vampire Bats Laura M. Bergner 1,2,* , Nardus Mollentze 1,2 , Richard J. Orton 2 , Carlos Tello 3,4, Alice Broos 2, Roman Biek 1 and Daniel G. Streicker 1,2 1 Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] (N.M.); [email protected] (R.B.); [email protected] (D.G.S.) 2 MRC–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (R.J.O.); [email protected] (A.B.) 3 Association for the Conservation and Development of Natural Resources, Lima 15037, Peru; [email protected] 4 Yunkawasi, Lima 15049, Peru * Correspondence: [email protected] Abstract: The contemporary surge in metagenomic sequencing has transformed knowledge of viral diversity in wildlife. However, evaluating which newly discovered viruses pose sufficient risk of infecting humans to merit detailed laboratory characterization and surveillance remains largely speculative. Machine learning algorithms have been developed to address this imbalance by ranking the relative likelihood of human infection based on viral genome sequences, but are not yet routinely Citation: Bergner, L.M.; Mollentze, applied to viruses at the time of their discovery. Here, we characterized viral genomes detected N.; Orton, R.J.; Tello, C.; Broos, A.; through metagenomic sequencing of feces and saliva from common vampire bats (Desmodus rotundus) Biek, R.; Streicker, D.G. and used these data as a case study in evaluating zoonotic potential using molecular sequencing Characterizing and Evaluating the data.
    [Show full text]
  • Pathogenicity of Severe Fever with Thrombocytopenia Syndrome Virus
    Park et al. Laboratory Animal Research (2020) 36:38 Laboratory Animal Research https://doi.org/10.1186/s42826-020-00070-0 RESEARCH Open Access Pathogenicity of severe fever with thrombocytopenia syndrome virus in mice regulated in type I interferon signaling Severe fever with thrombocytopenia and type I interferon Seok-Chan Park1, Jun Young Park1,2, Jin Young Choi1, Sung-Geun Lee2, Seong Kug Eo1,2, Jae-Ku Oem1, Dong-Seob Tark2, Myungjo You1, Do-Hyeon Yu3, Joon-Seok Chae4 and Bumseok Kim1,2* Abstract Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonotic disease, which causes high fever, thrombocytopenia, and death in humans and animals in East Asian countries. The pathogenicity of SFTS virus (SFTS V) remains unclear. We intraperitoneally infected three groups of mice: wild-type (WT), mice treated with blocking anti-type I interferon (IFN)-α receptor antibody (IFNAR Ab), and IFNAR knockout (IFNAR−/−) mice, with four doses of 5 2 SFTSV (KH1, 5 × 10 to 5 × 10 FAID50). The WT mice survived all SFTSV infective doses. The IFNAR Ab mice died 2 within 7 days post-infection (dpi) with all doses of SFTSV except that the mice were infected with 5 × 10 FAID50 SFTSV. The IFNAR−/− mice died after infection with all doses of SFTSV within four dpi. No SFTSV infection caused hyperthermia in any mice, whereas all the dead mice showed hypothermia and weight loss. In the WT mice, SFTSV RNA was detected in the eyes, oral swabs, urine, and feces at 5 dpi. Similar patterns were observed in the IFNAR Ab and IFNAR−/− mice after 3 dpi, but not in feces.
    [Show full text]
  • Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
    REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5.
    [Show full text]
  • HEPATITIS E VIRCLIA® Igm MONOTEST
    EN 1 N KIT FEATURES: HEPATITIS E VIRCLIA® IgM All reagents supplied are ready to use. Serum dilution solution and conjugate are coloured to help in MONOTEST the performance of the technique. For in vitro diagnostic use Sample predilution is not necessary. Reagents required for the run of the test are included in the VCM067: Indirect chemiluminescent immunoassay (CLIA) to monodose presentation. test IgM antibodies against hepatitis E virus in human serum/plasma. 24 tests. KIT CONTENTS: 1 VIRCLIA® HEPATITIS E IgM MONODOSE: 24 monodoses consisting of 3 reaction wells and 5 reagent wells with de INTRODUCTION: following composition : Hepatitis E virus (HEV) is the causative agent of hepatitis E. HEV Wells A, B, C: reaction wells; wells coated with anti-IgM belongs to the family Hepeviridae. Four out of seven genotypes antibodies (µ-specific). of Orthohepevirus A are known to infect humans. Genotypes 1 Well D: Conjugate: orange; containing HEV recombinant and 2 are responsible for human infections exclusively and are antigen, peroxidase conjugate dilution and Neolone and endemic in Asia, Africa and some American countries. Bronidox as preservatives. Genotypes 3 and 4 are zoonotic and present in Europe, United Well E: Serum dilution solution: blue; phosphate buffer States, Japan, China and Taiwan. HEV is transmitted via the fecal-oral route. Foodborne infection can occur from containing protein stabilizers and Neolone and Bronidox as consumption of uncooked/undercooked meat or organs from preservatives. infected animals. A wide range of clinical manifestations, from Well F: Calibrator: clear; positiveONLY serum dilution containing asymptomatic or subclinical to acute liver failure, can be Neolone and Bronidox as preservatives.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]