The Wnt-Specific Astacin Proteinase HAS-7 Restricts Head Organizer Formation in Hydra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proteomic Analysis of the Venom of Jellyfishes Rhopilema Esculentum and Sanderia Malayensis
marine drugs Article Proteomic Analysis of the Venom of Jellyfishes Rhopilema esculentum and Sanderia malayensis 1, 2, 2 2, Thomas C. N. Leung y , Zhe Qu y , Wenyan Nong , Jerome H. L. Hui * and Sai Ming Ngai 1,* 1 State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] 2 Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (Z.Q.); [email protected] (W.N.) * Correspondence: [email protected] (J.H.L.H.); [email protected] (S.M.N.) Contributed equally. y Received: 27 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%). -
Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis. -
The Astacin Family of Metalloendopeptidases
Profein Science (1995), 4:1247-1261. Cambridge University Press. Printed in the USA Copyright 0 1995 The Protein Society The astacin family of metalloendopeptidases JUDITH S. BOND’ AND ROBERT J. BEYNON2 ’ Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of ‘Science and Technology, Manchester M60 1QD. United Kingdom (RECEIVEDMarch 23, 1995; ACCEPTED April19, 1995) Abstract The astacin family of metalloendopeptidases was recognized as a novel family of proteases in the 1990s. The cray- fish enzyme astacin was the first characterized and is one of the smallest members of the family. More than 20 members of the family have nowbeen identified. They have been detected in species ranging from hydra to hu- mans, in mature andin developmental systems. Proposed functions of these proteases include activation of growth factors, degradation of polypeptides, and processing of extracellular proteins. Astacin family proteases aresyn- thesized with NH,-terminal signal and proenzyme sequences, and many (such as meprins, BMP-1, folloid)con- tain multiple domains COOH-terminal to the protease domain. They are eithersecreted from cells or are plasma membrane-associated enzymes. They have some distinguishing features in addition to the signature sequencein the protease domain: HEXXHXXGFXHEXXRXDR. They have a unique typeof zinc binding, with pentacoor- dination, and a protease domain tertiary structure that contains common attributeswith serralysins, matrix me- talloendopeptidases, and snake venom proteases; they cleave peptide bonds in polypeptides such as insulin B chain and bradykinin andin proteins such as casein and gelatin; and theyhave arylamidase activity. -
Structural Basis for the Sheddase Function of Human Meprin Β Metalloproteinase at the Plasma Membrane
Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane Joan L. Arolasa, Claudia Broderb, Tamara Jeffersonb, Tibisay Guevaraa, Erwin E. Sterchic, Wolfram Boded, Walter Stöckere, Christoph Becker-Paulyb, and F. Xavier Gomis-Rütha,1 aProteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Cientificas, Barcelona Science Park, E-08028 Barcelona, Spain; bInstitute of Biochemistry, Unit for Degradomics of the Protease Web, University of Kiel, D-24118 Kiel, Germany; cInstitute of Biochemistry and Molecular Medicine, University of Berne, CH-3012 Berne, Switzerland; dArbeitsgruppe Proteinaseforschung, Max-Planck-Institute für Biochemie, D-82152 Planegg-Martinsried, Germany; and eInstitute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, D-55128 Mainz, Germany Edited by Brian W. Matthews, University of Oregon, Eugene, OR, and approved August 22, 2012 (received for review June 29, 2012) Ectodomain shedding at the cell surface is a major mechanism to proteolysis” step within the membrane (1). This is the case for the regulate the extracellular and circulatory concentration or the processing of Notch ligand Delta1 and of APP, both carried out by activities of signaling proteins at the plasma membrane. Human γ-secretase after action of an α/β-secretase (11), and for signal- meprin β is a 145-kDa disulfide-linked homodimeric multidomain peptide peptidase, which removes remnants of the secretory pro- type-I membrane metallopeptidase that sheds membrane-bound tein translocation from the endoplasmic membrane (13). cytokines and growth factors, thereby contributing to inflammatory Recently, human meprin β (Mβ) was found to specifically pro- diseases, angiogenesis, and tumor progression. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Gent Forms of Metalloproteinases in Hydra
Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin. -
Meprin Metalloproteases Generate Biologically Active Soluble Interleukin-6 Receptor to Induce Trans-Signaling
www.nature.com/scientificreports OPEN Meprin Metalloproteases Generate Biologically Active Soluble Interleukin-6 Receptor to Induce Received: 07 October 2016 Accepted: 03 February 2017 Trans-Signaling Published: 09 March 2017 Philipp Arnold1, Inga Boll2, Michelle Rothaug2, Neele Schumacher2, Frederike Schmidt2, Rielana Wichert2, Janna Schneppenheim1, Juliane Lokau2, Ute Pickhinke2, Tomas Koudelka3, Andreas Tholey3, Björn Rabe2, Jürgen Scheller4, Ralph Lucius1, Christoph Garbers2, Stefan Rose-John2 & Christoph Becker-Pauly2 Soluble Interleukin-6 receptor (sIL-6R) mediated trans-signaling is an important pro-inflammatory stimulus associated with pathological conditions, such as arthritis, neurodegeneration and inflammatory bowel disease. The sIL-6R is generated proteolytically from its membrane bound form and A Disintegrin And Metalloprotease (ADAM) 10 and 17 were shown to perform ectodomain shedding of the receptor in vitro and in vivo. However, under certain conditions not all sIL-6R could be assigned to ADAM10/17 activity. Here, we demonstrate that the IL-6R is a shedding substrate of soluble meprin α and membrane bound meprin β, resulting in bioactive sIL-6R that is capable of inducing IL-6 trans- signaling. We determined cleavage within the N-terminal part of the IL-6R stalk region, distinct from the cleavage site reported for ADAM10/17. Interestingly, meprin β can be shed from the cell surface by ADAM10/17 and the observation that soluble meprin β is not capable of shedding the IL-6R suggests a regulatory mechanism towards trans-signaling. Additionally, we observed a significant negative correlation of meprin β expression and IL-6R levels on human granulocytes, providing evidence for in vivo function of this proteolytic interaction. -
Structure of Neurolysin Reveals a Deep Channel That Limits Substrate Access
Structure of neurolysin reveals a deep channel that limits substrate access C. Kent Brown*†, Kevin Madauss*, Wei Lian‡, Moriah R. Beck§, W. David Tolbert¶, and David W. Rodgersʈ Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 Communicated by Stephen C. Harrison, Harvard University, Cambridge, MA, December 29, 2000 (received for review November 14, 2000) The zinc metallopeptidase neurolysin is shown by x-ray crystallog- cytosolic, but it also can be secreted or associated with the raphy to have large structural elements erected over the active site plasma membrane (11), and some of the enzyme is made with a region that allow substrate access only through a deep narrow mitochondrial targeting sequence by initiation at an alternative channel. This architecture accounts for specialization of this neu- transcription start site (12). ropeptidase to small bioactive peptide substrates without bulky Although neurolysin cleaves a number of neuropeptides in secondary and tertiary structures. In addition, modeling studies vitro, its most established (5, 13, 14) role in vivo (along with indicate that the length of a substrate N-terminal to the site of thimet oligopeptidase) is in metabolism of neurotensin, a 13- hydrolysis is restricted to approximately 10 residues by the limited residue neuropeptide. It hydrolyzes this peptide between resi- size of the active site cavity. Some structural elements of neuro- dues 10 and 11, creating shorter fragments that are believed to  lysin, including a five-stranded -sheet and the two active site be inactive. helices, are conserved with other metallopeptidases. The connect- Neurotensin (pGlu-Leu-Tyr-Gln-Asn-Lys-Pro-Arg-Arg- ing loop regions of these elements, however, are much extended Pro s Tyr-Ile-Leu) is found in a variety of peripheral and in neurolysin, and they, together with other open coil elements, central tissues where it is involved in a number of effects, line the active site cavity. -
Shk Toxin: History, Structure and Therapeutic Applications for Autoimmune Diseases
ShK toxin: history, structure and therapeutic applications for autoimmune diseases WikiJournal of Science Search this Journal Search Open access • Publication charge free • Public peer review Submit Authors Reviewers Editors About Journal Issues Resources CURRENT Editorial In preparation guidelines Upcoming This is an unpublished pre-print. It is undergoing peer review. articles Authors: Shih Chieh Chang, Saumya Bajaj, K. George Chandy Ethics statement This pre-print is undergoing public peer review Laboratory of Molecular Physiology, Infection Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological Bylaws University, Singapore First submitted: 04 January 2018 Financials Author correspondence: [email protected] Last updated: 05 January 2018 Contact Reviewer comments Last reviewed version Abstract Stichodactyla toxin (ShK) is a 35-residue basic peptide from the sea anemone Stichodactyla helianthus that blocks a number of potassium channels. An analogue of ShK called ShK-186 or Dalazatide is in human trials as Licensing: This is an open access article distributed under the Creative a therapeutic for autoimmune diseases. Commons Attribution License, which permits unrestricted use, distribution, and reproduction, provided the original author and source are credited. Key words: ShK peptide, autoimmune diseases, T cells, Kv1.3, ShK domains History Contents Stichodactyla helianthus is a sea anemone of the family Stichodactylidae. Abstract Helianthus comes from the Greek words Helios meaning sun, and anthos meaning History flower. S. helianthus is also referred to as the 'sun anemone'. It is sessile and uses potent neurotoxins for defense against its primary predator, the spiny lobster. The Structure venom contains, among other components, numerous ion channel-blocking Phylogenetic relationships of ShK and ShK domains peptides. -
Design of a Truncated Cardiotoxin‑I Analogue with Potent Insulinotropic
Design of a Truncated Cardiotoxin‑I Analogue with Potent Insulinotropic Activity Thi Tuyet Nhung Nguyen, Benjamin Folch, Myriam Letourneau, Nam Hai Truong, Nicolas Doucet, Alain Fournier, David Chatenet To cite this version: Thi Tuyet Nhung Nguyen, Benjamin Folch, Myriam Letourneau, Nam Hai Truong, Nicolas Doucet, et al.. Design of a Truncated Cardiotoxin‑I Analogue with Potent Insulinotropic Activity. Journal of Medicinal Chemistry, American Chemical Society, 2014, 57 (6), pp.2623-33. 10.1021/jm401904q. hal-01177382 HAL Id: hal-01177382 https://hal.archives-ouvertes.fr/hal-01177382 Submitted on 14 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of a Truncated Cardiotoxin-I Analogue with Potent Insulinotropic Activity Thi Tuyet Nhung Nguyen†‡§, Benjamin Folch†∥⊥, Myriam Létourneau†§, Nam Hai Truong‡, Nicolas Doucet†∥⊥, Alain Fournier*†§, and David Chatenet*†§ † INRS−Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies Ville de Laval, Québec H7 V 1B7, QuébecCanada ‡ Vietnam Academy of Science and Technology, Institute -
Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48 -
Bioactive Mimetics of Conotoxins and Other Venom Peptides
Toxins 2015, 7, 4175-4198; doi:10.3390/toxins7104175 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Bioactive Mimetics of Conotoxins and other Venom Peptides Peter J. Duggan 1,2,* and Kellie L. Tuck 3,* 1 CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia 2 School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5042, Australia 3 School of Chemistry, Monash University, Clayton, VIC 3800, Australia * Authors to whom correspondence should be addressed; E-Mails: [email protected] (P.J.D.); [email protected] (K.L.T.); Tel.: +61-3-9545-2560 (P.J.D.); +61-3-9905-4510 (K.L.T.); Fax: +61-3-9905-4597 (K.L.T.). Academic Editors: Macdonald Christie and Luis M. Botana Received: 2 September 2015 / Accepted: 8 October 2015 / Published: 16 October 2015 Abstract: Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. Keywords: venom peptides; toxins; conotoxins; peptidomimetics; N-type calcium channel; Cav2.2 1. Introduction A wide range of species from the animal kingdom produce venom for use in capturing prey or for self-defense.