Evaluating Habitat Suitability for the Middle Spotted Woodpecker Using a Predictive Modelling Approach

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating Habitat Suitability for the Middle Spotted Woodpecker Using a Predictive Modelling Approach Ann. Zool. Fennici 51: 349–370 ISSN 0003-455X (print), ISSN 1797-2450 (online) Helsinki 29 August 2014 © Finnish Zoological and Botanical Publishing Board 2014 Evaluating habitat suitability for the middle spotted woodpecker using a predictive modelling approach Krystyna Stachura-Skierczyńska & Ziemowit Kosiński* Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznań, Poland (*corresponding author’s e-mail: [email protected]) Received 3 June 2013, final version received 1 Nov. 2013, accepted 28 Nov. 2013 Stachura-Skierczyńska, K. & Kosiński, Z. 2014: Evaluating habitat suitability for the middle spotted woodpecker using a predictive modelling approach. — Ann. Zool. Fennici 51: 349–370. This paper explores the influence of forest structural parameters on the abundance and distribution of potential habitats for the middle spotted woodpecker (Dendrocopos medius) in three different forest landscapes in Poland. We applied predictive habitat suitability models (MaxEnt) based on forest inventory data to identify key environ- mental variables that affect the occurrence of the species under varying habitat condi- tions and the spatial configuration of suitable habitats. All models had good discrimi- native ability as indicated by high AUC values (> 0.75). Our results show that the spe- cies exhibited a certain degree of flexibility in habitat use, utilizing other habitats than mature oak stands commonly associated with its occurrence. In areas where old oak- dominated stands are rare, alder bogs and species-rich deciduous forests containing other rough-barked tree species are important habitats. Habitat suitability models show that, besides tree species and age, an uneven stand structure was a significant predictor of the occurrence of middle spotted woodpecker. The total area of suitable habitats in the studied forests varied from 9% to 60%. Predictive habitat models identified several concentrations of suitable habitats (clusters) with the average distances between them ranging from 3.2 to 5.0 km. Although these distances lie within the species’ dispersal ability, the migration of individuals between these sites might be difficult due to the necessity of travelling long distances through unsuitable forest types. Introduction recent years, predictive modelling of species distributions has become an important tool for Identifying the habitat structure and composi- supporting conservation planning, i.e., for the tion that fulfils critical requirements for threat- selection of representative habitat networks to ened or indicator species is an important step meet species conservation goals (e.g. Rodriguez in developing promising conservation strategies. et al. 2007, Suárez-Seoane et al. 2008, Stachura- In particular, if habitats are subjected to human Skierczyńska et al. 2009, Fernández & Gur- exploitation, responsible management decisions rutxaga 2010, Mateo et al. 2013). must be based on reliable, quantitative habitat The scope of most studies on forest-dwelling models (Angelstam et al. 2003, 2004, Angelstam birds, such as woodpeckers (family Picidae), & Donz-Breuss 2004, Roberge et al. 2008). In is limited due to the cost and time required 350 Stachura-Skierczyńska & Kosiński • Ann. ZOOL. FEnnici Vol. 51 to execute the study. Environmental variables in the most recent decades. This decline has used to explain the habitat selection of birds resulted from the interaction of biotic and abiotic are frequently derived from small sample plots factors and has a mass character with periods of (e.g. Pasinelli 2000, Kosiński & Winiecki higher and smaller disease intensity (Thomas 2004, Müller et al. 2009, Delahaye et al. 2010, et al. 2002, Sonesson & Drobyshev 2010). The Rehnus et al. 2011). It is accepted, as is apparent appearance of oak decline may affect the sur- from the management or conservation implica- vival of middle spotted woodpecker in the future. tions developed by various authors, that results Therefore, identification of factors affecting the obtained from a limited area can be used effec- persistence of the middle spotted woodpecker tively for habitat management at a larger scale, in different types of forests is essential to main- e.g. on a landscape or regional scale. However, taining viable populations across the species habitat variation occurs across multiple scales, range. Moreover, identification of key habitats and detected patterns should not be generalized for middle spotted woodpeckers and their pro- beyond the extent of a given study (Wiens 1989). tection may also benefit non-vertebrate species Since it is not easy to obtain reliable extrapola- with similar habitat requirements, e.g. saproxylic tions of data from small to larger areas, their beetles and moths associated with oaks (Müller applicability by conservationists and land man- & Goßner 2007, Ranius et al. 2009). The middle agers may be limited. Therefore, to gain knowl- spotted woodpecker is listed in Annex I of the edge that would be applicable to forest manage- European Community Birds Directive (Directive ment at the landscape or regional scale, studies 2009/147/UE). Therefore, it is the subject of spe- of the habitat requirements of species should be cial conservation measures concerning its habitat conducted at different spatial scales (e.g. Rolstad in order to ensure its survival and reproduction. et al. 2000, Robles et al. 2007b) and replicated Most studies regarding middle spotted wood- in several regions (Dunning 2002, Roberge et al. pecker habitat selection have been confined 2008). to small spatial scales, i.e., nest-site selection Due to the long-term exploitation of Euro- (Pasinelli 2000, Kosiński & Winiecki 2004, pean forests, majority of primeval woodpecker Kosiński et al. 2006) and the trees used for for- habitats have either disappeared or been replaced aging (Pasinelli & Hegelbach 1997). Studies at by semi-natural or artificial commercial stands larger, macrohabitat scales describe the habitat with lower tree species diversity and only a use or population with regard to the area, age and selection of the few most productive tree species type of forest (deciduous vs. coniferous), as well (Mikusiński & Angelstam 1997). Such human as to the size and density of potential nesting/for- activities have apparently degraded primary hab- aging trees (Kosiński & Winiecki 2005, Robles itats for middle spotted woodpeckers (Dendroco- et al. 2007b, Müller et al. 2009). Moreover, pos medius) (Petterson 1985a, 1985b, Pasinelli some studies focus on habitat use, demography 2003, Roberge & Angelstam 2006, Robles et and population persistence at the macrohabitat al. 2007a, Ciudad et al. 2009), a habitat spe- scale (Kossenko & Kaygorodova 2001, Robles cialist restricted to mature stands with rough- et al. 2007a, Robles et al. 2008, Ciudad et al. barked tree species, mainly oaks (Müller 1982, 2009, Robles & Ciudad 2012). Since habitat Jenni 1983, Török 1990, Pasinelli & Hegelbach suitability is correlated with population persist- 1997, Pasinelli 2000, Kosiński 2006, Müller ence (Cabeza et al. 2004, Rodriguez et al. 2007, et al. 2009). Other potential habitats are rarely Robles & Ciudad 2012), an understanding of the reported and include mature alder stands (Noah factors influencing habitat suitability for middle 2000, Weiß 2003) and very old pure beech for- spotted woodpeckers is necessary for identifica- ests (Winter et al. 2005). Oak forests have been tion and protection of optimal areas and for guid- favoured by humans for centuries as sources of ing forest management. brushwood, timber, and acorns for pigs (Kas- Environmental features important for the prowicz 2010). However, incidences of oak middle spotted woodpecker are most often those decline in central Europe have occurred repeat- that are recorded in classical forest inventories edly during the past three centuries as well as (Müller et al. 2009, Walczak et al. 2013). More- Ann. ZOOL. FEnnici Vol. 51 • Evaluating habitat suitability for the middle spotted woodpecker 351 over, some additional characteristics describing the complexity of within-stand structure can be simply obtained directly from basic data (Kurlavicius et al. 2004, Stachura-Skierczyńska et al. 2009). Some studies have reported the importance of decaying or cavity trees, which are not normally included in forest inventories; however, these factors have usually been found to be of lesser significance (Pasinelli 2000). Nev- ertheless, environmental parameters describing tree species composition, the vertical structure of stands, etc., are frequently omitted in studies of habitat selection of the middle spotted wood- pecker (however, see Pavlik 1994, Roberge et al. 2008, Delahaye et al. 2010, Walczak et al. 2013). In this study, we analyze environmental fac- Fig. 1. Distribution of study sites across Poland (KOF: tors affecting the occurrence of middle spotted Krotoszyn Oak Forest, FDR: Forest at the Drawa River, woodpecker in three forests sited within Special KF: Knyszyn Forest). Protection Areas, and differing in size, spatial structure, habitat conditions and history of use. Our goal was to develop a landscape-scale pre- petreae, locally Calamagrostio arundinaceae– dictive model of potential nesting habitats for Quercetum petraeae) in central Europe (Kaspro- middle spotted woodpeckers. In particular, our wicz 2010). Stands with dominant oak (mainly objectives were: (1) to identify key environmen- Pedunculate oak Quercus robur) comprise about tal variables that
Recommended publications
  • Dynamics of Woodpecker – Common Starling Interactions: a Comparison of Old World and New World Species and Populations
    Ornis Hungarica 2016. 24(1): 1–41. DOI: 10.1515/orhu-2016-0001 Dynamics of Woodpecker – Common Starling interactions: a comparison of Old World and New World species and populations Jerome A. JACKSON1* & Bette J. S. JACKSON2 Received: May 03, 2016 – Accepted: June 10, 2016 Jerome A. Jackson & Bette J. S. Jackson 2016. Dynamics of Woodpecker – Common Starling interactions: a comparison of Old World and New World species and populations. – Ornis Hun- garica 24(1): 1–41. Abstract Woodpecker species whose cavities are most usurped by Common Starlings (Sturnus vulgaris) are widespread and generalists in their use of habitats. These include primarily woodpeckers that are similar in size to or slightly larger than the starling – such as the Great-spotted Woodpecker (Dendrocopos major) of Eurasia and the Northern Flicker (Colaptes auratus) and Red-bellied (Melanerpes carolinus) and Red-headed (M. erythrocephalus) Woodpeckers of North America. Usurpation occurs primarily in human-dominated urban, suburban and exurban habitats with pastures, sports fields and other open areas that serve as prime feeding habi­ tats for starlings. Starlings prefer high, more exposed cavities with a minimal entrance diameter relative to their body size. Usurpation success depends on timing – optimally just as a cavity is completed and before egg-lay- ing by the woodpeckers. Starlings likely reduce woodpecker populations in more open, human-dominated habi- tats. Woodpecker habitat losses and fragmentation are more serious problems that enhance habitat quality for star- lings and reduce habitat quality for most woodpeckers. The only woodpeckers that might become in danger of extinction as a primary result of starling cavity usurpation are likely island species with small populations.
    [Show full text]
  • Pileated Woodpecker Dryocopus Pileatus
    Pileated Woodpecker Dryocopus pileatus Folk Name: Logcock, B’Jesus Bird, Johnny Cock Status: Resident Abundance: Rare to Uncommon Habitat: Mature forests “The pileated woodpecker is a living symbol of the American wilderness, a reminder of the virgin forests that existed before European axes felled the great trees. Along with the great horned owl, raven, and wild turkey, the big woodpecker was a part of the limitless eastern forests.” —John Trott, 2000 The Pileated Woodpecker is our largest woodpecker, growing almost as big as an American Crow. It is quite a distinctive bird with a very large stout bill and a “flaming” red crest. The male has a red malar stripe. It has a white eye line and a white stripe on its neck. From the neck down, its body is almost all black when perched. In flight, it shows a small white wing crescent on the upper wings and large white wing patches on the forewings below. It the Logcock,” published in the March 1888 issue of the can be very loud, and its calls will often echo throughout journal Ornithologist and Oologist. In it, McLaughlin the large expanses of mature forest where it nests. It can provides great detail on how to find Pileated nests, nest occasionally be found in younger forests with “scattered descriptions, clutch size, and more. He discusses seven large, dead trees.” Mature forests with larger diameter nests in Iredell County, at least two of which were active trees support more pairs of woodpeckers than forests with in early to mid-April, and he describes the Pileated as “a smaller diameter timber.
    [Show full text]
  • (Dendrocopos Syriacus) and Middle Spotted Woodpecker (Dendrocoptes Medius) Around Yasouj City in Southwestern Iran
    Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.15, No.1, 99-105, 2019 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v15i1.81230 Comparison of nest holes between Syrian Woodpecker (Dendrocopos syriacus) and Middle Spotted Woodpecker (Dendrocoptes medius) around Yasouj city in Southwestern Iran Mohamadian, F., Shafaeipour, A.* and Fathinia, B. Department of Biology, Faculty of Science, Yasouj University, Yasouj, Iran (Received: 10 May 2019; Accepted: 9 October 2019) In this study, the nest-cavity characteristics of Middle Spotted and Syrian Woodpeckers as well as tree characteristics (i.e. tree diameter at breast height and hole measurements) chosen by each species were analyzed. Our results show that vertical entrance diameter, chamber vertical depth, chamber horizontal depth, area of entrance and cavity volume were significantly different between Syrian Woodpecker and Middle Spotted Woodpecker (P < 0.05). The average tree diameter at breast height and nest height between the two species was not significantly different (P > 0.05). For both species, the tree diameter at breast height and nest height did not significantly correlate. The directions of nests’ entrances were different in the two species, not showing a preferentially selected direction. These two species chose different habitats with different tree coverings, which can reduce the competition between the two species over selecting a tree for hole excavation. Key words: competition, dimensions, nest-cavity, primary hole nesters. INTRODUCTION Woodpeckers (Picidae) are considered as important excavator species by providing cavities and holes to many other hole-nesting species (Cockle et al., 2011). An important part of habitat selection in bird species is where to choose a suitable nest-site (Hilden, 1965; Stauffer & Best, 1982; Cody, 1985).
    [Show full text]
  • Bird Checklists of the World Country Or Region: Myanmar
    Avibase Page 1of 30 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Myanmar 2 Number of species: 1088 3 Number of endemics: 5 4 Number of breeding endemics: 0 5 Number of introduced species: 1 6 7 8 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Myanmar. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=mm [23/09/2021]. Make your observations count! Submit your data to ebird.
    [Show full text]
  • Leptosomiformes ~ Trogoniformes ~ Bucerotiformes ~ Piciformes
    Birds of the World part 6 Afroaves The core landbirds originating in Africa TELLURAVES: AFROAVES – core landbirds originating in Africa (8 orders) • ORDER ACCIPITRIFORMES – hawks and allies (4 families, 265 species) – Family Cathartidae – New World vultures (7 species) – Family Sagittariidae – secretarybird (1 species) – Family Pandionidae – ospreys (2 species) – Family Accipitridae – kites, hawks, and eagles (255 species) • ORDER STRIGIFORMES – owls (2 families, 241 species) – Family Tytonidae – barn owls (19 species) – Family Strigidae – owls (222 species) • ORDER COLIIFORMES (1 family, 6 species) – Family Coliidae – mousebirds (6 species) • ORDER LEPTOSOMIFORMES (1 family, 1 species) – Family Leptosomidae – cuckoo-roller (1 species) • ORDER TROGONIFORMES (1 family, 43 species) – Family Trogonidae – trogons (43 species) • ORDER BUCEROTIFORMES – hornbills and hoopoes (4 families, 74 species) – Family Upupidae – hoopoes (4 species) – Family Phoeniculidae – wood hoopoes (9 species) – Family Bucorvidae – ground hornbills (2 species) – Family Bucerotidae – hornbills (59 species) • ORDER PICIFORMES – woodpeckers and allies (9 families, 443 species) – Family Galbulidae – jacamars (18 species) – Family Bucconidae – puffbirds (37 species) – Family Capitonidae – New World barbets (15 species) – Family Semnornithidae – toucan barbets (2 species) – Family Ramphastidae – toucans (46 species) – Family Megalaimidae – Asian barbets (32 species) – Family Lybiidae – African barbets (42 species) – Family Indicatoridae – honeyguides (17 species) – Family
    [Show full text]
  • Hairy Woodpecker (Picoides Villosus)
    Hairy Woodpecker (Picoides villosus) Paul Cotter Traits of the hairy woodpecker—contrasting black and white (sometimes smoky) coloration, distinctive undulating flight, loud drumming, and willingness to come to feeders—are familiar to many observers in North American forests and woodlands (Fig 1). This species characteristically probes trees for insects, its primary food item, but also feeds on fruit and seeds. A charismatic year-round resident of Southeastern Alaska (Southeast), the hairy woodpecker can be observed in all forested areas of the Tongass National Forest (Gabrielson and Lincoln 1959). In the Tongass, as elsewhere, hairy woodpeckers are primary excavators; they hollow out their nests in trees, often in the trunk or upper regions of snags. These nests are later available for use by other wildlife species. The hairy woodpecker is associated with the varied structure of mature and old-growth forests (Jackson et al. 2002). Because the species is strongly affiliated with old-growth forest habitats, population trends of the hairy woodpecker may serve as indicators of old- growth forest health. Further, because other bird species are at least partly dependent on abandoned hairy woodpecker cavities, declines in hairy woodpecker populations may foreshadow declines in other avian species. Recently, the U.S. Fish and Wildlife Service (USFWS) has expressed interest in developing a monitoring strategy for hairy woodpeckers (M. Kissling, USFWS, Juneau, AK, FIG 1. A male hairy woodpecker at a feeding site in personal communication 2004). The reliance of this southeastern Alaska. (Bob Armstrong) species on old-growth forest habitats for breeding and wintering makes it a logical choice for a Management Indicator Species (MIS) for measuring old-growth forest health in the Tongass.
    [Show full text]
  • A Highly Contiguous Genome for the Golden-Fronted Woodpecker (Melanerpes Aurifrons) Via Hybrid Oxford Nanopore and Short Read Assembly
    GENOME REPORT A Highly Contiguous Genome for the Golden-Fronted Woodpecker (Melanerpes aurifrons) via Hybrid Oxford Nanopore and Short Read Assembly Graham Wiley*,1 and Matthew J. Miller†,1,2 *Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma and †Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma ORCID IDs: 0000-0003-1757-6578 (G.W.); 0000-0002-2939-0239 (M.J.M.) ABSTRACT Woodpeckers are found in nearly every part of the world and have been important for studies of KEYWORDS biogeography, phylogeography, and macroecology. Woodpecker hybrid zones are often studied to un- Piciformes derstand the dynamics of introgression between bird species. Notably, woodpeckers are gaining attention hybrid assembly for their enriched levels of transposable elements (TEs) relative to most other birds. This enrichment of TEs repetitive may have substantial effects on molecular evolution. However, comparative studies of woodpecker genomes elements are hindered by the fact that no high-contiguity genome exists for any woodpecker species. Using hybrid assembly methods combining long-read Oxford Nanopore and short-read Illumina sequencing data, we generated a highly contiguous genome assembly for the Golden-fronted Woodpecker (Melanerpes auri- frons). The final assembly is 1.31 Gb and comprises 441 contigs plus a full mitochondrial genome. Half of the assembly is represented by 28 contigs (contig L50), each of these contigs is at least 16 Mb in size (contig N50). High recovery (92.6%) of bird-specific BUSCO genes suggests our assembly is both relatively complete and relatively accurate. Over a quarter (25.8%) of the genome consists of repetitive elements, with 287 Mb (21.9%) of those elements assignable to the CR1 superfamily of transposable elements, the highest pro- portion of CR1 repeats reported for any bird genome to date.
    [Show full text]
  • AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018
    AOS Classification Committee – North and Middle America Proposal Set 2018-B 17 January 2018 No. Page Title 01 02 Split Fork-tailed Swift Apus pacificus into four species 02 05 Restore Canada Jay as the English name of Perisoreus canadensis 03 13 Recognize two genera in Stercorariidae 04 15 Split Red-eyed Vireo (Vireo olivaceus) into two species 05 19 Split Pseudobulweria from Pterodroma 06 25 Add Tadorna tadorna (Common Shelduck) to the Checklist 07 27 Add three species to the U.S. list 08 29 Change the English names of the two species of Gallinula that occur in our area 09 32 Change the English name of Leistes militaris to Red-breasted Meadowlark 10 35 Revise generic assignments of woodpeckers of the genus Picoides 11 39 Split the storm-petrels (Hydrobatidae) into two families 1 2018-B-1 N&MA Classification Committee p. 280 Split Fork-tailed Swift Apus pacificus into four species Effect on NACC: This proposal would change the species circumscription of Fork-tailed Swift Apus pacificus by splitting it into four species. The form that occurs in the NACC area is nominate pacificus, so the current species account would remain unchanged except for the distributional statement and notes. Background: The Fork-tailed Swift Apus pacificus was until recently (e.g., Chantler 1999, 2000) considered to consist of four subspecies: pacificus, kanoi, cooki, and leuconyx. Nominate pacificus is highly migratory, breeding from Siberia south to northern China and Japan, and wintering in Australia, Indonesia, and Malaysia. The other subspecies are either residents or short distance migrants: kanoi, which breeds from Taiwan west to SE Tibet and appears to winter as far south as southeast Asia.
    [Show full text]
  • Taxonomic Updates to the Checklists of Birds of India, and the South Asian Region—2020
    12 IndianR BI DS VOL. 16 NO. 1 (PUBL. 13 JULY 2020) Taxonomic updates to the checklists of birds of India, and the South Asian region—2020 Praveen J, Rajah Jayapal & Aasheesh Pittie Praveen, J., Jayapal, R., & Pittie, A., 2020. Taxonomic updates to the checklists of birds of India, and the South Asian region—2020. Indian BIRDS 16 (1): 12–19. Praveen J., B303, Shriram Spurthi, ITPL Main Road, Brookefields, Bengaluru 560037, Karnataka, India. E-mail: [email protected]. [Corresponding author.] Rajah Jayapal, Sálim Ali Centre for Ornithology and Natural History, Anaikatty (Post), Coimbatore 641108, Tamil Nadu, India. E-mail: [email protected] Aasheesh Pittie, 2nd Floor, BBR Forum, Road No. 2, Banjara Hills, Hyderabad 500034, Telangana, India. E-mail: [email protected] Manuscript received on 05 January 2020 April 2020. Introduction taxonomic policy of our India Checklist, in 2020 and beyond. The first definitive checklist of the birds of India (Praveen et .al In September 2019 we circulated a concept note, on alternative 2016), now in its twelfth version (Praveen et al. 2020a), and taxonomic approaches, along with our internal assessment later that of the Indian Subcontinent, now in its eighth version of costs and benefits of each proposition, to stakeholders of (Praveen et al. 2020b), and South Asia (Praveen et al. 2020c), major global taxonomies, inviting feedback. There was a general were all drawn from a master database built upon a putative list of support to our first proposal, to restrict the consensus criteria to birds of the South Asian region (Praveen et al. 2019a). All these only eBird/Clements and IOC, and also to expand the scope to checklists, and their online updates, periodically incorporating all the taxonomic categories, from orders down to species limits.
    [Show full text]
  • Pdf 184.33 K
    Iranian Journal of Animal Biosystematics (IJAB) Vol.15, No.1, 99-105, 2019 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v15i1.81230 Comparison of nest holes between Syrian Woodpecker ( Dendrocopos syriacus ) and Middle Spotted Woodpecker ( Dendrocoptes medius ) around Yasouj city in Southwestern Iran Mohamadian, F., Shafaeipour, A.* and Fathinia, B. Department of Biology, Faculty of Science, Yasouj University, Yasouj, Iran (Received: 10 May 2019; Accepted: 9 October 2019) In this study, the nest-cavity characteristics of Middle Spotted and Syrian Woodpeckers as well as tree characteristics (i.e. tree diameter at breast height and hole measurements) chosen by each species were analyzed. Our results show that vertical entrance diameter, chamber vertical depth, chamber horizontal depth, area of entrance and cavity volume were significantly different between Syrian Woodpecker and Middle Spotted Woodpecker (P < 0.05). The average tree diameter at breast height and nest height between the two species was not significantly different (P > 0.05). For both species, the tree diameter at breast height and nest height did not significantly correlate. The directions of nests’ entrances were different in the two species, not showing a preferentially selected direction. These two species chose different habitats with different tree coverings, which can reduce the competition between the two species over selecting a tree for hole excavation. Key words: competition, dimensions, nest-cavity, primary hole nesters. INTRODUCTION Woodpeckers (Picidae) are considered as important excavator species by providing cavities and holes to many other hole-nesting species (Cockle et al ., 2011). An important part of habitat selection in bird species is where to choose a suitable nest-site (Hilden, 1965; Stauffer & Best, 1982; Cody, 1985).
    [Show full text]
  • Sexual Differences in Foraging Behaviour in the Lesser Spotted Woodpecker Dendrocopos Minor
    Sexual differences in foraging behaviour in the Lesser Spotted Woodpecker Dendrocopos minor Olav Hogstad Hogstad, O. 2010. Sexual differences in foraging behaviour in the Lesser Spotted Woodpecker Dendrocopos minor. – Ornis Norvegica 33: 135-146. Sexual differences in foraging behaviour in the nearly monomorphic Lesser Spotted Woodpecker (Dendrocopos minor) were studied from 1972 to 2007 in a subalpine woodland in central Norway. Data from different years were pooled and analysed on a seasonal basis: winter (November–February), prebreeding (March–April), breed- ing (May–June) and autumn (September–October). The predominant foraging substrates were in birch Betula odorata (42 % of 460 foraging observations) and grey alder Alnus incana (44 %). No sexual difference was found in use of dead snags, dying broken trees or live trees, for the four periods separately or combined. Both sexes foraged entirely on dead substrates in winter but with the winter period excluded, females foraged more in live trees and less in snags and broken trees than males. The sexes did not differ in use of tree species, except during the winter when females foraged more in birch (73 %) and less in grey alder (22 %) than males (51 % and 49 %, respectively). Females foraged in higher live trees of birch (average height 3.8 m) and grey alder (4.3 m) than males (3.4 m and 3.7 m, respectively) and used substrates with a smaller mean diameter (females: 4.6 cm; males: 5.9 cm). The sexes differed in foraging techniques in each of the periods: males used bark-scaling and pecking more than females in all periods, whereas females used more probing than males during the winter and prebreeding periods and more gleaning (picking in the surface of trunks or branches) outside the winter than males.
    [Show full text]
  • Woodpecker Damage Ecology & Management
    LIVING WITH WILDLIFE IN WISCONSIN: SOLVING NUISANCE, DAMAGE, HEALTH & SAFETY PROBLEMS – G3997-008 Woodpecker Damage Ecology & Management Woodpeckers are attractive, interesting visitors to bird feeders and yards. In g r o . d o addition to adding beauty to the land- o w g u B , s scape, woodpeckers are an integral part n a v E e k y of the ecosystem. Woodpeckers are primary D n a V y d n e cavity nesters, which means that they use their W – r ke ec dp bills (and reinforced skull structure) to excavate oo y w wn holes into dead wood. Woodpeckers use the cavities Do they create for nesting and roosting, but a wide assortment of other animals (secondary cavity users) like squirrels, raccoons, bluebirds, and owls, to name a few, will enlarge and use the cavities woodpeckers have created and abandoned. Thus, woodpeckers provide habitat for a host of other species. In addition, they feed on a variety of insects, helping to keep those populations in check. Although not everyone is familiar with their calls and vocalizations, most can Woodpeckers recognize the sound a woodpecker makes as it raps on trees (or your house). “ In fact, woodpeckers not only can be identified by their calls, but by their drumming, hammer for several because each species hammers with a different rhythm and intensity. reasons: to estab- Woodpeckers hammer for several reasons: to establish territory or find a mate; lish territory or to excavate a nesting or roosting hole; or to dislodge insects hiding under bark or siding. It is this aspect of woodpecker behavior that causes the most conflicts with find a mate; to humans, as woodpeckers do not necessarily distinguish between hammering on excavate a nesting an oak tree and hammering on a house.
    [Show full text]