The Four Color Conjecture: Every Plane Graph Is 4-Region-Colorable

Total Page:16

File Type:pdf, Size:1020Kb

The Four Color Conjecture: Every Plane Graph Is 4-Region-Colorable The Four Color Problem What is the minimum number of colors needed to color any map so that adjacent regions do not have the same color? Lucia Maddalena Priulla Index: - History of the Four-Color Problem; - Kempe’s approach: the first proof of the Four-Color Theorem; - Heawood counterexample to Kempe’s proof; - The conjectures of Hajòs and Hadwiger; - The Four-Color Theorem as a corollary of Hadwiger’s Conjectures; - More result about coloring: Mycielski’s Construction; - Mader’s Theorem; - König’s Theorem; - Vizing’s Theorem; - Bibliography. Some mathematicians attribute the problem to August Ferdinand Möebius. It is said that during a lecture, the lecturer turn to his students the following problem: “There was a king with five sons. In his will, he stated that after his death his kingdom should be divided into five regions in such a way that each region should have a common boundary with the other four. Can the terms of the will be satisfied?” • Möebius said that this problem cannot be solved. • In 1878 Alfred Cayley, introduced this problem to London Mathematical Society. The Four Color Problem •In 1852 Francis Guthrie (1831-1899), a former graduate of University College London, observed that the countries of England could be coloured with 4 colours so that neighboring countries are coloured differently. This, led him to ask if the previous statement holds for every map (real or imagined). •Francis mentioned this problem to his brother Frederick, who was taking a class from the famous mathematicians August De Morgan. •De Morgan was unable to solve this problem, and other mathematicians seemed to share this interest. •In 1879 there was an article written by the British lawyer Alfred Bray Kempe containing a proposed proof that every map can be coloured with 4 or fewer colours so that neighboring countries are coloured differently. •For the next ten years, the Four Color Problem was considered to be solved. •An 1890 article by the British mathematician Percy John Heawood showed a counterexample to the technique used by Kempe; so it showed that Kempe’s method was unsuccessful. The idea of Kempe. Now, we show the steps of the Kempe’s proof, which it contains an error. To see this, we need to introduce some new definitions. Recall Definition: A graph is planar if it has a drawing without crossing. A plane graph is a drawing of a planar graph in the plan. Definition: a map is a planar graph G, whose faces have sides which are simple and closed curve, called regions, and it satisfies: 1) Every side divides different faces; 2) Every vertex v has degree greter or equal to 3. Every map is a planar graph, but it is not true the vice versa. KEMPE CHAIN ARGUMENT Kempe chain argument in vertex colouring: Let G be a graph with a colouring using at least two different colours represented by i and j. For example i=1, and j=2. Let H(i, j) denote the subgraph of G induced by all the vertices of G coloured either i (=1) or j (=2) and let K be a connected component of the subgraph H(i, j). If we interchange the colours 1 and 2 on the vertices of K and keep the colours of all other vertices of G unchanged, then we get a new colouring of G, which uses the same colours with which we started. This subgraph K is called a Kempe chain and the recolouring technique is called the Kempe chain argument. Edge-colourings Definition: A k-edge-colouring of G is a labeling f : E(G) --> [k]; the labels are “colours”. A proper k-edge-colouring is a k-edge-colouring such that edges sharing a vertex receive different colours; equivalently, each colour class is a matching. A graph G is k-edge-colourable if it has a proper k-edge-coloring. The edge-chromatic number or chromatic index χ’(G) is the minimum k such that G is k-edge colourable. Kempe chain argument for edge colouring: it is the same topic of Kempe chain argument for vertex colouring. It’s enough to replace vertex with edge. Definition: consider a map colored with four colors: a,b,c,d. A Kempe’s chain (or ac-chain) is a sequence of regions (faces) colored with colors a and c, without passing from regions colored with b or d. ac-chain Kempe’s approach for solving the Four Color Problem. He considered a region R in a map M such that R is surrounded by five regions and showed that for every coloring of M with four colors, there is a coloring of the entire map M with four colors. If only three colors are used to color these five regions, then a color is available for R, so we have obtained a 4-coloring. We consider a map with 4 colors: yellow, green, blue, red. Only the region R1 is colored yellow. Consider all the regions of the map M that are colored either yellow or red and that, beginning at R1, can be reached by an alternating sequence of neighboring yellow and red regions, that is, by a yellow-red Kempe chain. If the region R3 (which is the neighboring region of R colored red) cannot be reached by a yellow-red Kempe chain, then the colors yellow and red can be interchanged for all regions in M that can be reached by a yellow-red Kempe chain beginning at R1. This results in a coloring of all regions in M (except R) in which neighboring regions are colored differently and such that each neighboring region of R is colored red, blue, or green. We can then color R yellow to arrive at a 4-coloring of the entire map M. From this, we may assume that the region R3 can be reached by a yellow-red Kempe chain beginning at R1. See the figure : Let’s now look at the region R5, which is colored green. We consider all regions of M colored green or red and that, beginning at R5, can be reached by a green-red Kempe chain. If the region R3 cannot be reached by a green-red Kempe chain that begins at R5, then the colors green and red can be interchanged for all regions in M that can be reached by a green-red Kempe chain beginning at R5. Upon doing this, a 4-coloring of all regions in M (except R) is obtained, in which each neighboring region of R is colored red, blue, or yellow. We can then color R green to produce a 4-coloring of the entire map M. We may therefore assume that R3 can be reached by a green-red Kempe chain that begins at R5. (See Figure.) Because there is a ring of regions consisting of R and a green-red Kempe chain, there cannot be a blue-yellow Kempe chain in M beginning at R4 and ending at R1. In addition, because there is a ring of regions consisting of R and a yellow-red Kempe chain, there is no blue-green Kempe chain in M beginning at R2 and ending at R5. Hence we interchange the colors blue and yellow for all regions in M that can be reached by a blue-yellow Kempe chain beginning at R4 and interchange the colors blue and green for all regions in M that can be reached by a blue-green Kempe chain beginning at R2. Once these two color interchanges have been performed, each of the five neighboring regions of R is colored red, yellow, or green. Then R can be colored blue and a 4-coloring of the map M has been obtained, completing the proof. Heawood counterexample to Kempe’s proof. Blue-yellow-chain and blue-green-chain Kempe’s proof is unsuccessful when it is applied to the Heawood map, because there are neighboring regions with the same color. So, Heawood had discovered a counterexample to Kempe’s technique, not to the Four Neither red-yellow-chain nor red- Color Conjecture green-chain are present. itself. •Nevertheless,Heawood was able to use Kempe’s technique to prove that every map could be colored with five or fewer colors. •The Four Color Problem can be stated strictly in terms of planar graphs, rather then in terms of maps. Definition: Let G be a graph. Then G is k-region-colorable if each region of G can be assigned one of k given colors so that neighboring (adjacent) regions are colored differently. The Four Color Conjecture: Every plane graph is 4-region-colorable. There is another more popular statement of the Four Color Conjecture which involves the coloring of vertices. Definition: Let G be a graph. The planar dual G* of G can be constructed by first placing a vertex in each region of G. This set of vertices is V(G*). Two distinct vertices are then joined by an edge for each edge on the boundaries of the regions corresponding to these vertices of G*. Furthemore, a loop is added at a vertex of G* for each bridge of G on the boundary of the corresponding region. Each edge of G* is drawn so that it crosses its associated edge of G, but crosses no other edge of G or G*. Thus, G* is planar. Since G* may contain parallel edges and possibly loops, G* is a multigraph. The dual G* has the properties that its order is the same as the number of regions of G, and the number of regions of G* is the order of G.
Recommended publications
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Breakthrough in My Favorite Open Problem of Mathematics: Chromatic Number of the Plane Alexander Soifer
    Breakthrough in My Favorite Open Problem of Mathematics: Chromatic Number of the Plane Alexander Soifer [I] can’t offer money for nice problems of other people because then I will really go broke… It is a very nice problem. If it were mine, I would offer $250 for it. – Paul Erdős Boca Raton, February 1992 1. Chromatic Number of the Plane: The Problem On behalf of all enthusiasts of this problem, let me express gratitude to my friend, the late Edward Nelson, who created this problem at a tender age of 18 in November 1950: What is the smallest number of colors sufficient for coloring the plane in such a way that no two points of the same color are unit distance apart? This number is called the chromatic number of the plane and is denoted by . In 1961, the Swiss geometer Hugo Hadwiger admitted that he was not the author of the problem, even though the name “Harwiger-Nelson” got stuck to the problem, just as Cardano did not author the Cardano Formula, and Pythagoras Theorem was known a millennium before the great Greek was born. Such is life with credits in mathematics. Right at problem’s birth, Eddie Nelson determined the lower bound of 4, and his 20-year old friend John Isbell, 20 figured out the upper bound of 7: = 4, or 5, or 6, or 7 A very broad spread. Which one is the value of ? Paul Erd"os thought 5. On May 28, 2009, during the DIMACS Ramsey Theory International Workshop that I organized on request of DIMACS Director Fred Roberts, I asked the distinguished audience to determine the chromatic number of the plane by democratic means of a vote.
    [Show full text]
  • Some Remarks on Even-Hole-Free Graphs
    Some remarks on even-hole-free graphs Zi-Xia Song∗ Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA Abstract A vertex of a graph is bisimplicial if the set of its neighbors is the union of two cliques; a graph is quasi-line if every vertex is bisimplicial. A recent result of Chudnovsky and Seymour asserts that every non-empty even-hole-free graph has a bisimplicial vertex. Both Hadwiger’s conjecture and the Erd˝os-Lov´asz Tihany conjecture have been shown to be true for quasi-line graphs, but are open for even-hole-free graphs. In this note, we prove that for all k ≥ 7, every even-hole-free graph with no Kk minor is (2k − 5)-colorable; every even-hole-free graph G with ω(G) < χ(G) = s + t − 1 satisfies the Erd˝os-Lov´asz Tihany conjecture provided that t ≥ s>χ(G)/3. Furthermore, we prove that every 9-chromatic graph G with ω(G) ≤ 8 has a K4 ∪ K6 minor. Our proofs rely heavily on the structural result of Chudnovsky and Seymour on even-hole-free graphs. 1 Introduction All graphs in this paper are finite and simple. For a graph G, we use V (G) to denote the vertex set, E(G) the edge set, |G| the number of vertices, e(G) the number of edges, δ(G) the minimum degree, ∆(G) the maximum degree, α(G) the independence number, ω(G) the clique number and χ(G) the chromatic number. A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.
    [Show full text]
  • SZAKDOLGOZAT Probabilistic Formulation of the Hadwiger
    SZAKDOLGOZAT Probabilistic formulation of the Hadwiger–Nelson problem Péter Ágoston MSc in Mathematics Supervisor: Dömötör Pálvölgyi assistant professor ELTE TTK Institute of Mathematics Department of Computer Science ELTE 2019 Contents Introduction 3 1 Unit distance graphs 5 1.1 Introduction . .5 1.2 Upper bound on the number of edges . .6 2 (1; d)-graphs 22 3 The chromatic number of the plane 27 3.1 Introduction . 27 3.2 Upper bound . 27 3.3 Lower bound . 28 4 The probabilistic formulation of the Hadwiger–Nelson problem 29 4.1 Introduction . 29 4.2 Upper bounds . 30 4.3 Lower bounds . 32 5 Related problems 39 5.1 Spheres . 39 5.2 Other dimensions . 41 Bibliography 43 2 Introduction In 1950, Edward Nelson posed the question of determining the chromatic number of the graph on the plane formed by its points as vertices and having edges between the pairs of points with distance 1, which is now simply known as the chromatic number of the plane. It soon became obvious that at least 4 colours are needed, which can be easily seen thanks to a graph with 7 vertices, the so called Moser spindle, found by William and Leo Moser. There is also a relatively simple colouring by John R. Isbell, which shows that the chromatic number is at most 7. And despite the simplicity of the bounds, these remained the strongest ones until 2018, when biologist Aubrey de Grey found a subgraph which was not colourable with 4 colours. This meant that the chromatic number of the plane is at least 5.
    [Show full text]
  • Chromatic Number of Euclidean Plane
    Chromatic number of Euclidean plane Kai-Rui Wang ∗ Abstract: If the chromaticnumber of Euclidean planeis largerthan four, but it is known that the chromatic number of planar graphs is equal to four, then how does one explain it? In my opinion, they are contradictory to each other. This idea leads to confirm the chromatic number of the plane about its exact value. Mathematics Subject Classification (2010): 05C10, 05C55, 05D10. Keywords: Euclidean plane; Finite unit distance graphs; The chromatic number of the plane. 1 Introduction One of the most interesting unsolved problems in geometric graph theory or Euclidean Ramsey theory is as below: How many colors are needed to color the plane so that no two points at unit dis- tance are the same color? which is also called the Hadwiger-Nelson problem, named after Hugo Hadwiger and Edward Nelson.[1,2,3] As for the age of the emergence of it, according to Jensen and Toft’s investigation (1995),[4] the problem was first formulated by E. Nelson in 1950, and first published by Gardner in 1960.[3] Hadwiger in 1945 published a related result,[1] showing that any cover of the plane by five congruent closed sets contains a unit distance in one of the sets, and he also mentioned the problem in a later paper (Hadwiger 1961).[2] A. Soifer (2003,2008,2011) discusses the problem and its origin extensively.[5−8] Although the answer of this problem is unknown,it has been narrowed down to one of the numbers 4, 5, 6 or 7. The lower bound of four follows from a seven-vertex unit arXiv:1507.00025v1 [math.GM] 1 Jul 2015 distance graph with chromatic number four discovered by brothers William and Leo Moser in 1961,[9] named the Moser spindle.
    [Show full text]
  • Colorful Results on Euclidean Distance Graphs and Their Chromatic Numbers
    Colorful Results on Euclidean Distance Graphs and Their Chromatic Numbers by Matt Noble A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 7, 2012 Keywords: Euclidean distance graphs, chromatic number, coloring the rationals Copyright 2012 by Matt Noble Approved by Peter D. Johnson, Chair, Professor of Mathematics and Statistics Chris Rodger, C. Harry Knowles Professor of Mathematical Sciences Dean Hoffman, Professor of Mathematics and Statistics Abstract In this work, we study Euclidean distance graphs with vertex set Qn, the n-dimensional rational space. In particular, we deal with the chromatic numbers (and some related param- eters) of such graphs when n = 2 or n = 3. A short history of the topic is given before we approach a few open problems related to the subject. Some of these questions are resolved, either completely or partially. For the problems able to resist our advances, methods are given that hopefully will lead to answers in future work. ii Acknowledgments Professionally, I would like to thank the Auburn University Department of Mathematics { in particular, Peter D. Johnson for being a great advisor and a stand-up guy in general. Personally, I would like to thank Linda, Mark, Seth, and Abby. They know why. iii Table of Contents Abstract . ii Acknowledgments . iii List of Figures . vi List of Tables . vii 1 Introduction . 1 1.1 Definitions . 1 1.2 History . 2 1.3 Outline . 4 2 Single-distance Graphs in Q3 ............................ 6 2.1 Introduction and Preliminaries . 6 2.2 Results .
    [Show full text]
  • Introduction to Ramsey Theory
    Introduction to Ramsey Theory Lecture notes for undergraduate course Introduction to Ramsey Theory Lecture notes for undergraduate course Veselin Jungic Simon Fraser University Production Editor: Veselin Jungic Edition: Second Edition ©2014-–2021 Veselin Jungic This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike 4.0 International License. Youcan view a copy of the license at http://creativecommons.org/ licenses/by-nc-sa/4.0/. To my sons, my best teachers. - Veselin Jungic Acknowledgements Drawings of Alfred Hale, Robert Jewett, Richard Rado, Frank Ramsey, Issai Schur, and Bartel van der Waerden were created by Ms. Kyra Pukanich under my directions. The drawing of Frank Ramsey displayed at the end of Section 1.3 was created by Mr. Simon Roy under my directions. I am grateful to Professor Tom Brown, Mr. Rashid Barket, Ms. Jana Caine, Mr. Kevin Halasz, Ms. Arpit Kaur, Ms. Ha Thu Nguyen, Mr. Andrew Poelstra, Mr. Michael Stephen Paulgaard, and Ms. Ompreet Kaur Sarang for their comments and suggestions which have been very helpful in improving the manuscript. I would like to acknowledge the following colleagues for their help in creating the PreTeXt version of the text. • Jana Caine, Simon Fraser University • David Farmer, American Institute of Mathematics • Sean Fitzpatrick , University of Lethbridge • Damir Jungic, Burnaby, BC I am particularly thankful to Dr. Sean Fitzpatrick for inspiring and encouraging me to use PreTeXt. Veselin Jungic vii Preface The purpose of these lecture notes is to serve as a gentle introduction to Ramsey theory for those undergraduate students interested in becoming familiar with this dynamic segment of contemporary mathematics that combines, among others, ideas from number theory and combinatorics.
    [Show full text]
  • Probabilistic and Extremal Combinatorics 2018, TM Lecture 3
    Version:Probabilistic November 3, 2018 and Extremal Combinatorics 2018, TM Lecture 3 Last lecture we proved the Frankl-Wilson theorem and treated its application to construct counterexamples to Borsuk’s conjecture by Kahn and Kalai. Now we will discuss the (also very nice) application that Frankl and Wilson had in mind when they proved their “omitted interstions” theorem. §2:4 The Hadwiger-Nelson problem The following question was invented independently by Hugo Hadwiger in 1945, a professional mathematician, and Edward Nelson who was a high school student when he invented the question in 1950. Trivia : Hadwiger, whose name we’ve seen before, was one of the more influential combinatorialists/graph theorists until now. Among other things, arguably one of the most important open problems in graph theory is “Hadwiger’s conjecture”. This states that, for each k, if a graph G = (V;E) cannot be coloured with k−1 colours, then it has a Kk-minor. This means that we can find k disjoint subsets V1;:::;Vk of the vertex set V such that the subgraph spanned on each Vi is connected and there is an edge between some vertex in Vi and some vertex in Vj for each i; j. You can think of “shrinking” each Vi to a point, and discarding excess edges and vertices to obtain a copy of Kk. (a graph that cannot be coloured with 3 colours, and K4-minor. source : wikipedia) Back to the Hadwiger-Nelson problem. The question that both these gentlemen, independently of each other, posed is: Hadwiger-Nelson problem: What is the least number of colours k such that you can assign a colour to every point of the plane R2 and any two points at distance exactly one receive distinct colours? This can be rephrased as “what is the chromatic number of the unit distance graph?”.
    [Show full text]
  • Breaking the Degeneracy Barrier for Coloring Graphs with No $ K T $ Minor
    Breaking the degeneracy barrier for coloring graphs with no Kt minor Sergey Norin∗ Luke Postle† Zi-Xia Song‡ May 28, 2020 Dedicated to the memory of Robin Thomas Abstract In 1943, Hadwiger conjectured that every graph with no K minor is (t 1)-colorable t − for every t 1. In the 1980s, Kostochka and Thomason independently proved that ≥ every graph with no Kt minor has average degree O(t√log t) and hence is O(t√log t)- β colorable. We show that every graph with no Kt minor is O(t(log t) )-colorable for ev- ery β > 1/4, making the first improvement on the order of magnitude of the Kostochka- Thomason bound. 1 Introduction All graphs in this paper are finite and simple. Given graphs H and G, we say that G has an H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. We denote the complete graph on t vertices by Kt. In 1943 Hadwiger made the following famous conjecture. Conjecture 1.1 (Hadwiger’s conjecture [Had43]). For every integer t 1, every graph with ≥ no Kt minor is (t 1)-colorable. arXiv:1910.09378v2 [math.CO] 27 May 2020 − Hadwiger’s conjecture is widely considered among the most important problems in graph theory and has motivated numerous developments in graph coloring and graph minor theory. We briefly overview major progress towards the conjecture below, and refer the reader to a recent survey by Seymour [Sey16] for further background. ∗Department of Mathematics and Statistics, McGill University.
    [Show full text]
  • Bad News for Chordal Partitions
    Bad News for Chordal Partitions Alex Scott‡ Paul Seymour§ David R. Wood¶ Abstract. Reed and Seymour [1998] asked whether every graph has a partition into induced connected non-empty bipartite subgraphs such that the quotient graph is chordal. If true, this would have significant ramifications for Hadwiger’s Conjecture. We prove that the answer is ‘no’. In fact, we show that the answer is still ‘no’ for several relaxations of the question. 1 Introduction Hadwiger’s Conjecture [9] says that for all t > 0 every graph with no Kt+1-minor is t-colourable. This conjecture is easy for t 6 3, is equivalent to the 4-colour theorem for t = 4, is true for t = 5 [18], and is open for t > 6. The best known upper bound on the chromatic number is p O(t log t), independently due to Kostochka [14, 15] and Thomason [21, 22]. This conjecture is widely considered to be one of the most important open problems in graph theory; see [20] for a survey. Throughout this paper, we employ standard graph-theoretic definitions (see [4]), with one important exception: we say that a graph G contains a graph H if H is isomorphic to an induced subgraph of G. Motivated by Hadwiger’s Conjecture, Reed and Seymour [17] introduced the following defini- tions1.A vertex-partition, or simply partition, of a graph G is a set P of non-empty induced subgraphs of G such that each vertex of G is in exactly one element of P. Each element of P is called a part.
    [Show full text]
  • Asia Mathematika on Coloring Distance Graphs
    Asia Mathematika Volume: 3 Issue: 1 , (2019) Pages: 60 { 69 Available online at www.asiamath.org On Coloring Distance Graphs V. Yegnanarayanan∗ Department of Mathematics, School of Arts, Science and Humanities, SASTRA Deemed to be University, Thanjavur-613401, Tamilnadu, India Received: 10 Oct 2018 • Accepted: 04 Apr 2019 • Published Online: 12 Apr 2019 Abstract: Some problems become very popular and demand rapt attention while others just collect dust on the shelf. Big Conferences like this are a nice breeding ground for advertising or publicizing both old and new problems. Consider for example the famous unit-distance problem. This problem asks for the smallest number of colors needed to color the points of the plane R2 so that points unit distance apart have distinct colors. This problem was attributed to atleast five different mathematicians in a variety of combinations. Edward Nelson, Hugo Hadwiger, Paul Erdos, Martin Gardner and Leo Moser. It is now known as Hadwiger-Nelson problem (HNP). The problem was actually formulated by Edward Nelson in 1950 when he was a graduate student at the University of Chicago. Nelson called it the alternative four-color problem as it dealt with the plane and four colors. He proved that atleast four colors are needed. John Isbell upon learning about the problem from Nelson, proved in 1951 that the unit distance graph is 7-colorable. This problem might be a typical candidate for a famous problem. It is simple enough for high school student to understand, it is easy to describe and looks deceptively easy to solve. After all, all one needs is to construct a finite set of points in the plane that requires more than 4-colors or prove that any set of points is 4-colorable.
    [Show full text]
  • An Invitation to Abstract Mathematics Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics
    Undergraduate Texts in Mathematics Béla Bajnok An Invitation to Abstract Mathematics Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interrelations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. For further volumes: http://www.springer.com/series/666 Bela´ Bajnok An Invitation to Abstract Mathematics 123 Bela´ Bajnok Department of Mathematics Gettysburg College Gettysburg, PA, USA ISSN 0172-6056 ISBN 978-1-4614-6635-2 ISBN 978-1-4614-6636-9 (eBook) DOI 10.1007/978-1-4614-6636-9 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013935711 Mathematics Subject Classification: 00-01, 01-01, 03-01 ©Bela´ Bajnok 2013 This work is subject to copyright.
    [Show full text]