From Medicine to Wi-Fi Technical Applications of Astronomy to Society 02

Total Page:16

File Type:pdf, Size:1020Kb

From Medicine to Wi-Fi Technical Applications of Astronomy to Society 02 From Medicine to Wi-Fi Technical Applications of Astronomy to Society 02 EDITED BY: Bethany Downer, Michael Burton, Ewine van Dishoeck and Pedro Russo CONTRIBUTIONS FROM: Jacob Baars, Tony Beasley, Dmitry Bisikalo, Georgia Bladon, Michael Burton, Ana Gomez de Castro, Lars Lindberg Christensen, Gabriele Giovannini, Jan Mathijs van der Hulst, Christoph Keller, Antonio Mário Magalhães, Marissa Rosenberg and Frans Snik Published by the IAU April 2019 Cover credit: ESO/Y. Beletsky 03 “Preserving knowledge is easy. Transferring knowledge is also easy. But making new knowledge is neither easy nor profitable in the short term. Fundamental research proves profitable in the long run, and, as importantly, it is a force that enriches the culture of any society with reason and basic truth.” 1 – Ahmed Zewail, winner of the Nobel Prize in Chemistry (1999) 04 05 Introduction Astronomy has always had inspires is perhaps the reason that a significant impact on our world. the beautiful images astronomy Early cultures identified celestial provides us with are so popular in objects with the belief systems and today’s culture. took their movements across the sky as prophecies of what was to come. Astronomy and related fields are Astronomy has also been used to at the forefront of science and measure time, mark the seasons, technology; answering fundamental and navigate across vast oceans. questions, pushing engineers to new Now, as our understanding of the levels and driving innovation. It is world progresses, we find ourselves for this reason that the International and our view of the world even more Astronomical Union’s (IAU) strategic entwined with the Universe. The plan emphasises technology and discovery that the basic elements skills, science and research, and that we find in stars, and the gas culture and society. and dust around them, are the same elements that make up our bodies This booklet aims to highlight has further deepened the connection some of the technical applications between us and the cosmos. that have been supported and Astronomy also helps us to broaden driven by astronomy research and our perspectives and to think on development. From medicine to grander scales. Our connection airport security, astronomy visibly to the cosmos and the awe it holds an integral role in our daily lives. Children are shown how to use a telescope in Ethiopia as part of the 2019 International Astronomical Union’s 100 Hours of Astronomy event. Credit: Mekbeb Tamrat 06 07 Medicine The applications of astronomy human tissue. When the pulses are to medicine are quite vast, from turned off, the protons ‘relax’ and improved diagnostic techniques emit radio waves. These waves are to enhanced image processing. seen by radio frequency receivers in the MRI machine, recorded and One of the most integral technology processed into an image similar to transfers between these domains is an interferometric image. the interferometry technique used by astronomers to obtain high- The design of telescopes able to resolution images of the radio-sky. measure the radiation produced by Interferometry simulates the effect some of the highest energy phenomena of a very large dish by electronically in the cosmos has found application combining the signal from many in medical imaging diagnosis through small, single-dish, radio telescopes the technique of computer-assisted that are distributed over a large tomography, or CAT scans. distance. The technique of combining data from multiple telescopes to Another important example of produce a single image is known how astronomical research has as ‘aperture synthesis’, developed contributed to the medical world is by the radio astronomer and Nobel in the development of clean working Laureate, Martin Ryle. One important areas. The manufacture of space application of aperture synthesis telescopes requires an extremely is Magnetic Resonance (MR) to clean environment to prevent dust enhance the imaging details and or particles that might obscure or to reduce the scan time in medical obstruct the mirrors or instruments diagnoses. Magnetic Resonance on the telescopes2. The cleanroom Imaging (MRI) uses powerful protocols, air filters, and bunny suits magnets and radio frequency that were developed to achieve this pulses to polarize and excite single are now also used in hospitals and protons of water molecules in the pharmaceutical labs3. The manufacturing of space-based telescopes and satellites has contributed to medicine by improving standards and development of clean working areas. Credit: NASA/Dominic Hart 08 09 Climate Change Technology and research methods electromagnetic radiation through developed in astronomy have also the atmosphere of Venus and developed valuable means of effectively used these techniques understanding Earth’s systems to model the climatic effects of and climate change. trace gases and aerosols in Earth’s atmosphere4,5. By studying the planet Venus using astronomical techniques, More recently, the development of researchers have developed a better polarimetric techniques to study understanding of our own climate. the atmospheres of exoplanets With a similar size and composition has also led to a suite of SPEX to Earth, Venus provides a valuable (Spectropolarimeter for Planetary opportunity to study an evolving EXploration)instruments to study climate system like Earth in our own the effects of particles in the solar system. Today, the Venusian Earth’s atmosphere on our health atmosphere is more than 90 and climate6. This initiative has times thicker than our own, as it is led to the large citizen science believed that the planet experiences campaign iSPEX for measuring a runaway greenhouse effect air pollution7. The technology is following rising surface temperature also being commercialised and greater levels of atmospheric for ground-based air pollution water. Climatologist James Hansen measurements and has been further used radiative transfer models adapted for operation on an Earth- that calculated the transfer of observing satellite platform. Image of Earth taken by ESA astronaut Alexander Gerst in 2014 from the International Space Station. Credit: ESA/NASA 10 11 Computing The processing of astronomical has also been formative in spawning data has supported the develop- grid computing – the pooling of vast ment of improved computing meth- numbers of machines, distributed ods, including grid and distributed around the world, for crowd computing, and large astronomical computing efforts to solve complex citizen science initiatives. scientific problems. Over recent decades, the amount of Historically, the first two public data obtained by astronomers has distributed computing projects were grown dramatically. New telescopes initiated to solve mathematical and space missions have all (GIMPS, 1996) and cryptographic contributed to the development of (distributed.net, 1997) problems. The new tools and methods to analyse third (and the most famous) project the data they obtain. Vast amounts was the SETI@home initiative that of computational resources are began in 1999. SETI – the Search for needed for their processing. Grid Extra-Terrestrial Intelligence – sought computing, through which computers to find signs of other intelligent forms are widely distributed and connected of life through the transmission of together across a common network, radio signals. SETI@home is the first is an efficient method of sharing and of many new citizen science projects using these vast amounts of collected that collaboratively contribute to resources. Astronomers are gathering valuable scientific initiatives, in ways exponentially greater amounts of data, that were never possible before. often referred to as the era of “big data”, This work continues today and has which is changing how science is done. already harnessed the engagement of more than 1.7 million users, that The search for extra-terrestrial all contribute their computing power intelligence by radio astronomers to SETI@home. Data Centre at the European Southern Observatory (ESO) Headquarters in Garching bei München, Germany, which archives and distributes data from ESO’s telescopes. Credit: ESO 12 13 Time Keeping The position of the Earth and on International Atomic Time, which is the stars in the sky has held an kept by a few hundred atomic clocks integral role in time keeping, at various institutions around the world. from the earliest calendars to today’s satellite navigation and The task of combining the time of positioning services. all atomic clocks around the world is carried out by the International Throughout history, many calendars Bureau of Weights and Measures have been developed, primarily tied and the International Earth Rotation to culture or region. The concept and Reference Systems Service. of time was conceived through This service is responsible for observation of the apparent motion keeping clocks in synchronization of the Sun, Moon and stars and the with the motion of the Earth around rhythm of night and day. The notion the Sun and the Earth’s own rotation. of a day was connected to the motion These are measured very precisely of the Sun and the conception of using strong and distant radio a month came from observations of astronomy sources – radio galaxies the changing phases and positions and quasars – as a reference frame, of the Moon. The concept of an hour known as ephemeris time. can be traced back to the Egyptians who divided the day into 10 parts, The ability to keep accurate time is with an extra part before and after to essential for the Global Positioning allow for sunrise and sunset. System (GPS) satellites, which have accurate atomic clocks on board that are Today, keeping accurate time is done tuned to ephemeris time. The precise with high precision atomic clocks, knowledge of the time and their positions in which the frequency of an atomic makes it possible to use their signals for transition is used as a standard to accurate position determination on the keep time. The world’s time is based surface of the Earth. The Global Positioning System (GPS) satellites rely heavily on the accurate keeping of time. Each satellite is equipped with an atomic clock onboard that is tuned to ephemeris time.
Recommended publications
  • Interferometric Spectrometers
    LBNL-40663 UC-410 . ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Interferometric Spectrometers Anne Thome and Malcolm Howells Accelerator and Fusion Research Division June 1997 To be published as a chapter in Techniques ofVacuum Ultraviolet Physics, J~A-. Samson and D A. Ederer, eds.-, ·..-:~-:.:-':.::;:::;;;;r,;-:·.::~:~~:.::~-~~'*-~~,~~~;.=;t,ffl;.H;~:;;$,'~.~:~~::;;.:~< :.:,:::·.;:~·:..~.,·,;;;~.· l.t..•.-J.' "'"-""···,:·.:·· \ '-· . _ .....::' .~..... .:"~·~-!r.r;.e,.,...;. 17"'JC.(.; .• ,'~..: .••, ..._i;.·;~~(.:j. ... ..,.~1\;i:;.~ ...... J:' Academic Press, ....... ·.. ·... :.: ·..... ~ · ··: ·... · . .. .. .. - • 0 • ···...::; •• 0 ·.. • •• • •• ••• , •• •• •• ••• •••••• , 0 •• 0 .............. -·- " DISCLAIMER. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain cmTect information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legahesponsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the
    [Show full text]
  • Manastash Ridge Observatory History by Julie Lutz
    Manastash Ridge Observatory History by Julie Lutz MRO Site Survey: Western Washington has a well-deserved reputation for clouds and rainy weather. Hence, the desirability of an observatory for professional astronomers in Washington state was not instantly obvious. However, a drive to the east side of the Cascade mountains yields much better weather. Long time University of Washington (UW) astronomer Theodor Jacobson started thinking about convenient telescope access for faculty and students when the university decided to expand astronomy dramatically in the mid-1960s. When the first UW astronomy department chair George Wallerstein arrived in 1965, he immediately started a campaign to get a research telescope. Wallerstein came to UW from Berkeley where faculty and Ph.D. students had ready access to telescopes, including a productive 20-inch. He felt strongly that a high-quality research telescope in Washington state would help create a high-quality astronomy department. A grant from the National Science Foundation (NSF) provided enough money to purchase automated cameras for a site survey and a 16-inch Boller and Chivens telescope. The eastern side of the Cascade mountains was the obvious region to survey for the best telescope location. The site had to be within reasonable driving distance of the UW Seattle campus and have road access on at least a dirt/gravel track. Founding telescope engineer and jack-of-all-trades Ed Mannery surveyed severall locations during 1965/66. The best site turned out to be Manastash Ridge on US Forest Service land southwest of Ellensberg. However, Rattlesnake Mountain on the Hanford Reservation (owned by the US Department of Energy) outside of Richland had a developed road and readily-available electricity.
    [Show full text]
  • Summer 2020 Re Visiting a Past Event
    REINVENTING AMERICAN DEMOCRACY FOR THE 21ST CENTURY THE INTERSECTION OF DEMOCRACY & RELIGION A Nation in Crisis SUMMER 2020 RE VISITING A PAST EVENT Policy Perspectives on Police Use of Lethal Force As America reckons with its relationship to police violence, we are reminded that progress can be slow. It has been more than five years since the deaths of Michael Brown and Eric Garner. On February 4, 2015, the Academy convened a discussion at the University of California, Berkeley, led by Andrea Roth (Assistant Professor of Law, University of California, Berkeley School of Law) and Franklin Zimring (William G. Simon Professor of Law, University of California, Berkeley School of Law) about the hundreds of people who are killed each year by police, the racial disparity among the victims, and the incomplete data that make analyzing the problem so difficult. The conversation also covered the effectiveness of various avenues for police reform. To read the full transcript of this event (published in the Spring 2015 issue of the Bulletin) and hundreds of other Stated Meetings from the last twenty years, please visit amacad.org/bulletin. A video of this event and many others can be found at youtube.com/americanacad. For more information about Academy events, please visit www.amacad.org/events. SUMMER 2020 CONTENTS Features 16 Letters from Members Letters upon election are an Academy tradition. Letters of reflection are something new. 20 Online Discussions A series of virtual programs on topics related to the COVID-19 pandemic. CONTENTS 4 Our Work 4 Reinventing American Democracy for the 21st Century 9 New Issue of Dædalus Explores the Intersection of Democracy & Religion 12 A New Profile of Humanities Departments Members 25 Noteworthy 9 Departments 3 From the President 28 From the Archives ON THE COVER: Several hundred doctors, nurses, and medical professionals gathered on June 5, 2020, in St.
    [Show full text]
  • The 100-Inch Telescope of the Mount Wilson Observatory
    The 100-Inch Telescope of the Mount Wilson Observatory An International Historical Mechanical Engineering Landmark The American Society of Mechanical Engineers June 20, 1981 Mount Wilson Observatory Mount Wilson, California BACKGROUND THE MOUNT WILSON OBSERVATORY was founded in 1904 by the CARNEGIE INSTITUTION OF WASH- INGTON, a private foundation for scientific research supported largely from endowments provided by Andrew Carnegie. Within a few years, the Observatory became the world center of research in the new science of astrophysics, which is the application of principles of physics to astronomical objects beyond the earth. These include the sun, the planets of our solar system, the stars in our galaxy, and the system of galaxies that reaches to the limits of the The completed facility. visible universe. SCIENTIFIC ACHIEVEMENTS The Mount Wilson 100-inch reflector dominated dis- coveries in astronomy from its beginning in 1918 until the dedication of the Palomar 200-inch reflector in 1948. (Both telescopes are primarily the result of the lifework of one man — George Ellery Hale.) Many of the foundations of modern astrophysics were set down by work with this telescope. One of the most important results was the discovery that the intrinsic luminosities (total light output) of the stars could be found by inspection of the record made when starlight is dispersed into a spectrum by a prism or a grating. These so-called spectroscopic absolute lumi- nosities, discovered at Mount Wilson and developed for over forty years, opened the way to an understanding of the evolution of the stars and eventually to their ages. Perhaps the most important scientific discovery of the 20th century is that we live in an expanding Universe.
    [Show full text]
  • The Methods and Experiments of Shape Measurement for Off-Axis
    materials Article The Methods and Experiments of Shape Measurement for Off-Axis Conic Aspheric Surface Shijie Li 1,2,*, Jin Zhang 1,2, Weiguo Liu 1,2, Haifeng Liang 1,2, Yi Xie 3 and Xiaoqin Li 4 1 Shaanxi Province Key Laboratory of Thin Film Technology and Optical Test, Xi’an Technological University, Xi’an 710021, China; [email protected] (J.Z.); [email protected] (W.L.); hfl[email protected] (H.L.) 2 School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China 3 Display Technology Department, Luoyang Institute of Electro-optical Equipment, AVIC, Luoyang 471009, China; [email protected] 4 Library of Xi’an Technological University, Xi’an Technological University, Xi’an 710021, China; [email protected] * Correspondence: [email protected] Received: 26 March 2020; Accepted: 27 April 2020; Published: 1 May 2020 Abstract: The off-axis conic aspheric surface is widely used as a component in modern optical systems. It is critical for this kind of surface to obtain the real accuracy of the shape during optical processing. As is widely known, the null test is an effective method to measure the shape accuracy with high precision. Therefore, three shape measurement methods of null test including auto-collimation, single computer-generated hologram (CGH), and hybrid compensation are presented in detail in this research. Although the various methods have their own advantages and disadvantages, all methods need a special auxiliary component to accomplish the measurement. In the paper, an off-axis paraboloid (OAP) was chosen to be measured using the three methods along with auxiliary components of their own and it was shown that the experimental results involved in peak-to-valley (PV), root-mean-square (RMS), and shape distribution from three methods were consistent.
    [Show full text]
  • A Needs Analysis Study of Amateur Astronomers for the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2
    A Needs Analysis Study of Amateur Astronomers For the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2 1Clinton B. Ford Astronomical Data & Research Center American Association of Variable Star Observers 25 Birch St, Cambridge MA 02138 2Space Sciences Laboratory University of California, Berkeley 7 Gauss Way Berkeley, CA 94720-7450 Abstract Through a combination of qualitative and quantitative processes, a survey was con- ducted of the amateur astronomy community to identify outstanding needs which the National Virtual Observatory (NVO) could fulfill. This is the final report of that project, which was conducted by The American Association of Variable Star Observers (AAVSO) on behalf of the SEGway Project at the Center for Science Educations @ Space Sci- ences Laboratory, UC Berkeley. Background The American Association of Variable Star Observers (AAVSO) has worked on behalf of the SEGway Project at the Center for Science Educations @ Space Sciences Labo- ratory, UC Berkeley, to conduct a needs analysis study of the amateur astronomy com- munity. The goal of the study is to identify outstanding needs in the amateur community which the National Virtual Observatory (NVO) project can fulfill. The AAVSO is a non-profit, independent organization dedicated to the study of vari- able stars. It was founded in 1911 and currently has a database of over 11 million vari- able star observations, the vast majority of which were made by amateur astronomers. The AAVSO has a rich history and extensive experience working with amateur astrono- mers and specifically in fostering amateur-professional collaboration. AAVSO Director Dr. Janet Mattei headed the team assembled by the AAVSO.
    [Show full text]
  • An Interview with Ewine Van Dishoeck
    Issue 52 j October 2018 . Dear Colleagues, Welcome to the 5th anniversary edition of AstroPAH! What better way to cele- brate this festive occasion with you than with a show of lasers as featured on our cover. This year’s Nobel Prize in physics went to Arthur Ashkin, Gerard´ Mourou and Donna Strickland for their ground-breaking work in creating tools made of light. As the cover reveals, this has been of utmost importance to multiple fields amongst which astronomy and chemistry. Noteworthy is that Donna Strickland is the 3rd woman ever to win a Nobel Prize in physics (and the 1st in over 50 years). We would further like to celebrate our anniversary with a tribute to our Kavli-price winner Ewine van Dishoeck, who was awarded this ”Nobel-price for astronomy” for her ”combined contributions to observational, theoretical, and laboratory astrochemistry, elucidating the life cycle of interstellar clouds and the formation of stars and planets” Enjoy our interview with her in the In Focus. Of course our newsletter itself is also ’In Focus’ with some nice numbers from your feedback, showing our impact in the community. Thanks to all of you who responded to our survey! We will take your feedback into account to improve our newsletter and continue to keep you updated on the rich field of PAH-related research. We also thank everyone who has sent their paper abstracts to us, in this issue and all previous ones. Once again, our abstract section is full of interesting papers on the- oretical, experimental, and observational studies of astronomical PAHs and so much more.
    [Show full text]
  • 50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
    Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert.
    [Show full text]
  • Optical Low-Coherence Interferometry for Selected Technical Applications
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 56, No. 2, 2008 Optical low-coherence interferometry for selected technical applications J. PLUCIŃSKI∗, R. HYPSZER, P. WIERZBA, M. STRĄKOWSKI, M. JĘDRZEJEWSKA-SZCZERSKA, M. MACIEJEWSKI, and B.B. KOSMOWSKI Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Narutowicza St., 80-952 Gdańsk, Poland Abstract. Optical low-coherence interferometry is one of the most rapidly advancing measurement techniques. This technique is capable of performing non-contact and non-destructive measurement and can be used not only to measure several quantities, such as temperature, pressure, refractive index, but also for investigation of inner structure of a broad range of technical materials. We present theoretical description of low-coherence interferometry and discuss its unique properties. We describe an OCT system developed in our Department for investigation of the structure of technical materials. In order to provide a better insight into the structure of investigated objects, our system was enhanced to include polarization state analysis capability. Measurement results of highly scattering materials e.g. PLZT ceramics and polymer composites are presented. Moreover, we present measurement setups for temperature, displacement and refractive index measurement using low coherence interferometry. Finally, some advanced detection setups, providing unique benefits, such as noise reduction or extended measurement range, are discussed. Key words: low-coherence interferometry (LCI), optical coherence tomography (OCT), polarization-sensitive OCT (PS-OCT). 1. Introduction 2. Analysis of two-beam interference Low-coherence interferometry (LCI), also known as white- 2.1. Two-beam interference – time domain description. light interferometry (WLI), is an attractive measurement Let us consider interference of two beams emitted from method offering high measurement resolution, high sensi- a quasi-monochromatic light source located at a point P, i.e.
    [Show full text]
  • D:\Dropbox\Phd Leiden University\Thesis\Thesis\Cover V7
    Cover Page The handle http://hdl.handle.net/1887/58690 holds various files of this Leiden University dissertation. Author: Ligterink, N.F.W. Title: The astrochemical factory: A solid base for interstellar reactions Issue Date: 2017-12-18 Publications Published papers Protostellar and cometary detections of organohalogens • Fayolle, E.C.; Oberg,¨ Karin I.; Jørgensen, J.K.; Altwegg, K.; Calcutt, H.; Muller,¨ H.S.P.; Rubin, M.; van der Wiel, M.H.D.; Bjerkeli, P.; Bourke, T.L.; Coutens, A.; van Dishoeck, E.F.; Drozdovskaya, M.N.; Garrod, R.T.; Ligterink, N.F.W.; Persson, M.V.; Wampfler, S.F.; Rosina Team The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar • IRAS 16293–2422 and laboratory constraints on its formation Ligterink, N.F.W.; Coutens, A.; Kofman, V.; Muller,¨ H.S.P.; Garrod, R.T.; Calcutt, H.; Wampfler, S.F.; Jørgensen, J.K.; Linnartz, H.; van Dishoeck, E.F.; 2017, Monthly Notices of the Royal Astronomical Society, Volume 469, Issue 2 The (w)hole survey: An unbiased sample study of transition disk candidates based • on Spitzer catalogs van der Marel, N.; Verhaar, B. W.; van Terwisga, S.; Mern, B.; Herczeg, G.; Ligterink, N. F. W.; van Dishoeck, E. F.; 2016, Astronomy & Astrophysics, Volume 592 The ALMA-PILS survey: First detections of deuterated formamide and deuterated • isocyanic acid in the interstellar medium Coutens, A.; Jørgensen, J. K.; van der Wiel, M. H. D.; Muller,¨ H. S. P.; Lykke, J. M.; Bjerkeli, P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S.
    [Show full text]
  • Cover Page the Handle
    Cover Page The handle http://hdl.handle.net/1887/20396 holds various files of this Leiden University dissertation. Author: Bast, Jeanette Elisabeth Title: Hot chemistry and physics in the planet-forming zones of disks Issue Date: 2013-01-10 Publications Refereed papers 1. Exploring organic chemistry in planet-forming zones Jeanette E. Bast, Fred Lahuis, Ewine F. van Dishoeck & Alexander G. G. M. Tielens; Submitted to Astronomy & Astrophysics (Chapter 5) 2. First detection of near-infrared line emission from organics in young circumstellar disks Avi M. Mandell, Jeanette E. Bast, Ewine F. van Dishoeck, Geoffrey A. Blake, Colette Salyk, Michael J. Mumma, M. & Geronimo Villanueva; 2012, The Astrophysical Journal, 747, 92 (Chapter 3) 3. Single peaked CO emission line profiles from the inner regions of protoplanetary disks Jeanette E. Bast, Joanna M. Brown, Gregory J. Herczeg, Ewine van F. Dishoeck & Klaus M. Pontoppidan; 2011, Astronomy & Astrophysics, 527, A119 (Chapter 2) 4. The abundance of SiS in circumstellar envelopes around AGB stars Fredrik L. Schöier, Jeanette E. Bast, Hans Olofsson & Michael Lindqvist; 2007, Astronomy & Astrophysics, 473, 871 Non-refereed papers Planet-forming regions at the highest spectral and spatial resolution with VLT- CRIRES Klaus M. Pontopppidan, Ewine F. van Dishoeck, Geoffrey A. Blake, Rachel Smith, Joanna M. Brown, Gregory J. Herczeg, Jeanette E. Bast, Avi M. Mandell, Alain Smette, Wing-Fai This, Edward D. Young, Mark R. Mor- ris William Dent & Hans Ulrich Käufl; 2011, Messenger, 143, 32 169 Publications Conference proceedings 1. New probes of the chemistry in the inner regions of planet-forming disks Jeanette. E. Bast, Avi M.
    [Show full text]
  • Phase Tomography by X-Ray Talbot Interferometry
    Phase Tomography by X-ray Talbot Interferometry X-ray phase imaging is attractive for the beamline of NewSUBARU, SPring-8. A SEM observation of weakly absorbing materials, such as (scanning electron microscope) image of the grating soft materials and biological tissues. In the past is shown in Fig. 1. The pitch and pattern height were decade, several techniques of X-ray phase imaging 8 µm and 30 µm, respectively. were reported and demonstrated [1]. Recently, we Through the quantitative measurement of the have developed an X-ray Talbot interferometer differential phase shift by the sample, extremely high- for novel X-ray phase imaging, including phase sensitive three-dimensional imaging, that is, X-ray tomography. This method is unique in that phase tomography, is attainable by X-ray Talbot transmission gratings are used to generate differential interferometry [3]. We demonstrated this with phase contrast (Fig. 1). Two gratings are aligned biological samples using monochromatic undulator along the optical axis with a specific distance X-rays at beamline BL20XU. Figure 2 shows a rabbit determined by the X-ray wavelength λ and the grating liver tissue with VX2 cancer observed by X-ray phase pitch d. The influence of refraction on the sample tomography using a CCD-based X-ray image detector placed in front of the first grating is observed just whose effective pixel size was 3.14 µm [4]. The behind the second grating. The detailed principle of cancerous lesion is depicted with a darker gray level the contrast generation is described in Refs. [2,3]. than the surrounding normal liver tissue.
    [Show full text]