Popular Mining Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Popular Mining Encyclopedia Popular Mining Magazine articles, Volume I Popular Mining Encyclopedia Table of Contents Volume I HOW TO STAKE A CLAIM 1 STAKING CLAIMS WITH A RANGE FINDER 3 WHIRLPOOL CONCENTRATOR Centrifugal CONCENTRATORS 6 Open Your Own Assay Office 8 Estimating Gold Values In Placers 9 A Quality Concentrating Table You Can Build 11 PART II 18 Part III 22 Finishing The Table - Part IV 25 MERCURY POISONING -WHAT YOU CAN DO 28 MICRON GOLD AMALGAMATOR 30 SUPER HOT TORCH FROM PIPE 32 Building a Furnace Part II 34 AN ASSAY BALANCE 36 TIPS ON STAYING ALIVE UNDERGROUND 40 NON-CYANIDE LEACHING 42 PRECIPITATING GOLD WITH ZINC 43 Expanded Metal Sluice 45 Learning About Flotation 47 Exploring Old Mines 48 A Vibrating Backpack Sluice 49 Dredging for Gold in North Carolina 50 How to Fire Liquids 52 Improving Your Sluice 53 A Mercury Retort from Pipe 54 More Information On Mercury Retorts 55 Making and Maintaining BABBIT BEARINGS 56 How to do Sampling 59 Lab Centrifugal Concentrator 61 Modified 66 A Poor Man's Rock Crusher 67 Letters to the Editor 67 Idea Corner 68 Running 3 Phase Motors On Single Phase Power 69 Vacuum Dredge Nozzle For Less than $15.00 70 Handling Dynamite 71 Building a Furnace Part III 72 Understanding Sluices Part II 76 SAVING YOUR FUEL 78 BUILDING A BALL MILL 79 How to Do Fire Assays 84 MAKING CUPELS 86 Learning About Flotation Part II 88 GETTING RID OF RATS 90 Special Chemical Assay 91 Tripod Hoist 92 A Little Drain Pipe Sluice 93 Automatic Feed for a Pipe Sluice 93 Pretreatment for a Plastic Sluice 94 Mining with a Slusher 95 Assaying Complex Ores 98 Annual Assessment Work 99 Exploring Old Mines 101 A Homemade Trommel 102 Sluicebox Troubleshooting Guide 103 Action Mining Services Inc All rights reserved copyright ©2015 www.actionmining.com Popular Mining Magazine articles, Volume I Table of Contents Volume I Quartz Cracker 109 Wet Suit Heater 110 Poor Miner's Vacuum System 111 Mine Safety - Lack of Oxygen 111 Railroad Series Laying Rail 113 Investment Money 116 On the Lighter Side...Gold Nuggets 117 Patenting Your Mining Claim 118 Simple Amalgamator 121 A Simple Ball Mill 122 Precious Metal Extraction 123 An Easy to Build Classifier 125 Using a Feather on your Concentrating Table 126 Whirlpool Concentrator, another version 127 1930s Forest Service/Miners Working Together 128 Using Stock 2-Wheel-Drive Vehicles in Off Road Situations 130 Letters to the Editor 132 Water Distribution Box on a Table 134 A Drive for Trommels or Ball Mills 135 Poor Man's Hammer Mill 136 A Simple Scraper 137 Home Built Furnace Torch 137 A Simple Amalgamator 138 Conversion Charts 139 A Simple Dewatering System 140 Acquiring a Mining Claim 141 Safety - Lead 143 Refining High Grade Sulfide Silver Ore 144 Use of Depressants on Your Table 146 The Doodle Bug 147 Sluicebox without Riffles 152 Platinum, the Miracle Metal 154 Sluice Box Riffle System 155 Mounting Adapter for Compressor 155 SUBJECT: Micron Gold 158 Reducing Gold Loss from Concentrates 160 GOLD On Mercury Copper Plates 163 Gold Farms of Peru 164 You Don't Need an Expensive Hot Plate 166 How to Check for Mercury in Your Ore 167 A Simple Scale You Can Build 168 Characteristics of Particles 169 Prospectors' Maps 170 A Simple Concentrating Table 172 How to Wash Leach Residue 173 Electric Gold Panner 175 Railroad Switches You Can Make 176 Extracting Gold from Water 179 Silvering, Silver-plating, Desilvering 180 Increasing Mill Production 181 Diver Control Switch 182 Let’s Talk Clean-up - Stamp Mills 184 A Lift Mechanism for Your Pot Furnace Crucible 186 Determining Platinum Group Metals in Nickel Ores and Concentrates 188 Action Mining Services Inc All rights reserved copyright ©2015 www.actionmining.com Popular Mining Magazine articles, Volume II Table of Contents Volume II A SIMPLE STACKABLE FURNACE 1 ASSAYING MICRON GOLD 2 A Heavy Duty Shaker Screen 4 Safety Data Sheet - Lead Oxide 5 GEOCHEMICAL EXPLORATION 6 A SIMPLE POT FURNACE 7 Idea Corner 9 The Meaning of pH 14 Selecting Hose Size by Flow Capacity 15 AN IDAHO MINERAL JIG 16 DETERMINING SILVER, NICKEL, OR TIN COATINGS 18 Dredge Innovations 19 USING GEOCHEMICAL EXPLORATION FOR PROSPECTING 20 MINING EQUIPMENT - What They’re Used For 22 A Micron 24 SIMPLE METHOD OF ATTACHING GEARS AND PULLEYS 25 OFF ROAD DRIVING SURVIVAL TIPS 26 Temperature Conversions 27 Incompatible Materials in the Lab 28 Letters to the Editor 29 Critical Points on Fire Assaying 32 SILVER...the Noble Metal 35 Sluice Box Addition 36 Tips for Recovering Fine Gold 37 Head box for Sluice 40 A Useful Mixing Unit 42 Flotation Principles 45 Conversion Factors 46 Leaching Silver at pH 5 - pH 7 47 Parkes Process for Desilvering Lead 49 Chart - Tap Drill Sizes 51 Low Budget Brake 52 Hard Rock Drilling Ideas 54 Chart - Recommended Cutting Fluids 55 Sandstone Gold 56 Care and Feeding of Gasoline Powered Rock Drills 57 The Urea Controversy 59 Shaker Deck 60 Prospecting With a Metal Detector 62 Gold Recovery Machine from Australia 63 Air Vibrated Screen from South Africa 70 Dowsing Research Project 71 Rock Crushing Experience 73 Recovering Nitrate Leached Values 75 Conversion Charts 76 VENTURI DATA 77 Mac/Mac Subsurface 5” Sampling Dredge 78 Don’t Overlook Gems 82 Of the Platinum Metals 83 Size Wise 86 Dredge Tilt Indicator 87 TRY THIS WITH YOUR SPIRAL WHEEL.. 89 UTILIZING HYDROCARBON SOLVENTS 90 RECOVERING AND CONCENTRATING GOLD 90 Action Mining Services Inc All rights reserved copyright ©2015 www.actionmining.com Popular Mining Magazine articles, Volume II Table of Contents Volume II GOLD PROSPECTING FUN 92 FOR THE WHOLE FAMILY (AND OTHER USEFUL DATA) 92 POWER JETS 94 BACKPACK "BURRO' 95 Water Conversion Table 97 A LOW COST MAGNETIC SEPARATOR 98 Crucibles, Ten Guides to Safety & Long Service 99 CHOOSING A PROSPECTING CLUB 100 Care of a Small Gas Engine 101 Black Sand Panner 102 A Simple Surface Suction Dredge 103 'QUICK FIX" FOR YOUR FURNACE 103 MODIFYING A TRIPLE SLUICE DREDGE 104 New Aspects in Thiourea Leaching of Precious Metals 107 A BLACK SAND SEPARATOR 109 USING TEFLON WITH CYANIDE 110 PROSPECTING A RIVER 111 FIRE ASSAY VS. TORCH ASSAY 113 FINDING A LOST MINE 116 RECOVERY OF COARSE, FINE, & SUPER-FINE GOLD 118 FROM PLACER GRAVEL DEPOSITS 118 HOW MUCH CABLE FOR A WINCH 121 A Battery Charger Generator 123 A FEW NOTES ON FINE GOLD 124 ROTARY SCREENING PLANT 125 FOR ALLUVIAL GOLD RECOVERY FROM NEW ZEALAND 125 How Many Feet in a Reel? 128 DISCOVER & RECOVER THE NOBLE METALS 129 DRAIN YOUR WATER PUMPS 132 THE MICRON GOLD SLUICE 133 A MINER'S “SEA SAW” FOR BEACH SANDS 136 CHARGED MERCURY 138 BACK SAVER FOR A PICKUP 139 THE ACT OF LEACHING 140 Prospecting Adventure 142 Mining Claims Location and Assessment Work 143 SCREEN YOUR SUMMER FINDS 145 Light Weight Low Cost Dry Washer 147 Sampling and Repeatable Assay Results 148 The Atomic Absorption Spectrophotometer 151 Recovery of Platinum from Used Contact Mass 153 A VERY SPECIAL BREED 157 California Gold Production 1848-1986 158 Chart - Color Scale for High Temperature Ranges 159 Teflon Tape 159 Charts - Melting Points & Weights of Common Metals 160 Chart for Pipe Problems 161 Conversion Charts 162 Man-Sized Waders 163 Gold Refining 165 Ultra Violet Light and Mercury or 166 How to make a mercury detector for ores 166 Water Soluble Values 167 A Crucible Holder for Pouring 168 The Lovett Mine in wenatchee, Wash. 169 MERCURY VAPOR TEST PAPERS 170 Action Mining Services Inc All rights reserved copyright ©2015 www.actionmining.com Popular Mining Magazine articles, Volume II Table of Contents Volume II Building A Kangaroo Tank 171 Handling Lead 173 Field Test on the Universal Water Cyclone (Compound Water Cyclone) 175 The Centrifuge Concentrator 177 The Fusion Fire Assay 178 Lab Corner 179 "High Tech" Shovels & other things 181 Lightweight Dual Powered Dry Washer 183 The Chemistry of Gold 184 The Gold Wheel Fast-Feeder 185 Know Gold to Find Gold 187 Siphone Dredge: Low Cost Alternative to Power Dredges 188 Try A Gold Sandwich! 190 Save Your Back! 195 A Test Tube Filter 196 Whirlpool Concentrator 197 Let's Talk Clean-Up -Cylinder Mills 200 Prospecting for Scheelite - In a “Nutshell” 202 Method of Assaying Sulphide Ores for Au, Ag & Four Pt Metals 204 Lighting - "High Tech" & Low Tech Versions 205 The Amalgam Tube 206 Plans for GAMECo's Original Impact Mill 207 Suction Dredge for Non-Stoopers 208 The Hydraulic Riffle 208 Retorting Mercury 209 A Little Water from a Dry Desert 210 Ionic Values Require New Thinking 211 Action Mining Services Inc All rights reserved copyright ©2015 www.actionmining.com Popular Mining Magazine articles, Volume III Table of Contents Volume III Safety Data - Dangers In and Around Abandoned Mines 2 The Scrooper 3 Nifty Uses for Chain 4 A Soil Sampler 8 Idea Corner 9 Lab Corner 17 Electronic Methods of Prospecting 21 Water Valve Idea for a Rocker Table 23 Selecting a Prospecting Location 24 Grades, Slopes & Grade Resistance Chart 25 Safety Data - Lead & Your Health 26 Lab Techniques for Determining Pt Group Metals 28 Modified Low Cost Gravel Feeder 29 Importance of Sampling 30 A New Design for a Mini Sluice 31 Sampling Ore 33 Float Gold & the Bubble 35 Dowsing May Be For You 36 Dowsing May Be For You, Part II 38 Base Metal Oxides in Fire Assaying 40 Sweeping Mill Tailings 42 The Nug-Cup & PVC Header for Your Sluice 44 The Big Dipper - A Newer PVC Header 47 The “Mama Bear” Sluice & Tender 49 Prospecting and Mining Properties 53 Qs & As on Staking Mining Claims 55 A Bypass Gate Valve System 57 Detectors As A Tool in Mining and Prospecting 58 Gold Content of Water 61 On Improving Recovery 63 Using Preglazed Crucibles for PGM
Recommended publications
  • From Base Metals and Back – Isamills and Their Advantages in African Base Metal Operations
    The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013 H. de Waal, K. Barns, and J. Monama From base metals and back – IsaMills and their advantages in African base metal operations H. de Waal, K. Barns, and J. Monama Xstrata IsaMill™ technology was developed from Netzsch Feinmahltechnik GmbH stirred milling technology in the early 1990s to bring about a step change in grinding efficiency that was required to make Xstrata’s fine-grained lead/zinc orebodies economic to process. From small-scale machines suited to ultrafine grinding, the IsaMill™ has developed into technology that is able to treat much larger tonnages, in coarser applications, while still achieving high energy efficiency, suited for coarser more standard regrind and mainstream grinding applications. The unique design of the IsaMillTM, combining high power intensity and effective internal classification, achieves high energy efficiency and tight product distribution which can be effectively scaled from laboratory scale to full-sized models. The use of fine ceramic media also leads to significant benefits in downstream flotation and leaching operations. These benefits are key drivers for the adoption of the technology into processing a diverse range of minerals worldwide, and offer major opportunities for power reduction and improved metallurgy for the African base metal operations. Keywords: IsaMill, regrind, energy efficiency, inert grinding. Introduction The development of the IsaMillTM, by MIM (now GlencoreXstrata) and Netzsch Feinmahltechnik GmbH, was initiated to enable the development of the fine-grained ore deposits at Mt Isa and McArthur River in Northern Australia. To liberate the valuable minerals and so produce a saleable concentrate this ultrafine-grained ore needed to be ground to a P80 of 7 μm.
    [Show full text]
  • Some Problems and Potentials of the Study of Cupellation
    Some problems and potentials of the study of cupellation remains: the case of post-medieval Montbéliard, France Marcos Martinon-Torres, Nicolas Thomas, Thilo Rehren, Aude Mongiatti To cite this version: Marcos Martinon-Torres, Nicolas Thomas, Thilo Rehren, Aude Mongiatti. Some problems and po- tentials of the study of cupellation remains: the case of post-medieval Montbéliard, France. Archeo- sciences, revue d’Archéométrie, G.M.P.C.A./Presses universitaires de Rennes, 2008, pp.59-70. halshs- 00599974 HAL Id: halshs-00599974 https://halshs.archives-ouvertes.fr/halshs-00599974 Submitted on 19 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some problems and potentials of the study of cupellation remains: the case of early modern Montbéliard, France Problèmes et perspectives à partir de l’étude des vestiges archéologiques issus de la coupellation : l’exemple du site de Montbéliard (France) Marcos Martinón-Torres*, Nicolas Thomas**, Thilo Rehren*, and Aude Mongiatti* Abstract: Bone-ash cupels are increasingly identified in medieval and later archaeological contexts related to the refining of noble metals in alchemy, assaying, jewellery or coin minting. These small finds may provide information on metal refining activities, the technical knowledge of different craftspeople, and the versatility of laboratory practices, which often differed from the standard protocols recorded in metallurgical treatises.
    [Show full text]
  • Fine Tuning Your GOLD BUDDY Drywasher. Drywashers Are an Excellent Tool to Recover Gold from Dry Material
    Drywasher Components Hopper: This is where you place the raw material. A classifier screen separates the material by size allow- ing the smaller material to enter the hopper and discarding the material that is too large to pass through the machine. Angle Adjustment: Changes the angle of the Recovery Box by adjusting the chain length. Flow Gate: This is a slide gate that controls the size of Recovery Box: This is the the opening at the bottom of lower box that is pressurized the hopper which regulates by the blower and collects how fast the material in the values in the riffle system. hopper enters the recovery box. Rear Leg: Frame: This is the steel structure that holds the components in place. For illustration purposes we are calling the leg where the fine material exits the drywasher the “Front Leg” and the leg where the larger material falls off the drywasher Front Leg: the “Rear Leg”. Setting up the Hopper / Frame Step 1: Your drywasher may have slightly different frame components than the illustration but the easiest way to as- semble a drywasher is usually to place the Hopper on the ground upside down. The upper part of the front and rear legs are at- tached to the hopper and need to be lifted so that the point where they intersect can be bolted together making the frame rigid. Step 2: Attach the bottom portions of the legs and secure them with the hardware provided. The bottom portions are differ- ent widths so you cannot get them mixed up. Step 3: Flip the assembled unit right side up and it should look like this.
    [Show full text]
  • S Ndlovu (PDF)
    Extraction of Gold Then, Now and the Future Prof Sehliselo Ndlovu DST/NRF SARChI: Hydrometallurgy and Sustainable Development University of the Witwatersrand, Johannesburg Building a Robust Minerals Industry 3 – 4 July 2017, Cresta Lodge, Harare University of the Witwatersrand Johannesburg Founded Oct. 1896: School of Mines Approx. 37 000 Students 5 Faculties, 33 Schools, 3610 Courses >160 000 Degrees Conferred since 1922 55% Female Students 10 National Centres of Excellence Home to the Bidvest Football Club( Current PSL league Champions) Evolution in Gold Processing Past Technologies • Amalgamation • Panning Current Technologies • Cyanide leaching • Processing of Emerging and Future refractory ores Technologies • Bio-oxidation • Ionic liquids • Alternative leaching • Ultrasonic leaching reagents • Corn starch?? Past Technologies Used in Ancient Times History of gold extends back at least 6,000 years. Egypt and Mesopotamia around 4000 BC. Gravity Separation: Gold Panning Gold concentrated by washing lighter river sands with water Leaves dense gold particles Alternative- wash gold-bearing sand and gravel over a woollen fleece Traps heavier gold dust that would sink into the wool fibres. Advantages • Simplicity Disadvantages • Labour intensive Gravity Separation: Sluicing • Water is channelled to flow through a sluice-box. • Sluice-box is essentially a man-made channel with riffles (barriers) at the bottom. • Riffles create dead-zones in the water current which allows gold to drop out of suspension. Sluicing and panning results in the direct recovery of small gold nuggets and flakes. Gold Parting: Salt Cementation Process • Invented to remove Ag from Au-Ag mixtures around 6th century BC. Mix: argentiferous gold foil, common salt, brick dust or burnt clay and urine in a sealed container.
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Table of Contents
    Table of Contents Preface ........................................... xi Chapter 1. Physical Extraction Operations .................... 1 1.1. Solid-solid and solid-fluid separation operations .............. 1 1.1.1. Flotation ................................... 1 1.1.2. Settling under gravity ........................... 3 1.1.3. Centrifugation ................................ 3 1.1.4. Filtration ................................... 4 1.2. Separation operations of the components of a fluid phase ........ 5 1.2.1. Condensation ................................ 5 1.2.2. Vacuum distillation ............................. 5 1.2.3. Liquation ................................... 6 1.2.4. Distillation .................................. 8 1.2.5. Extractive distillation ........................... 11 1.3. Bibliography ................................... 12 Chapter 2. Hydrometallurgical Operations .................... 15 2.1. Leaching and precipitation operations .................... 15 2.1.1. Leaching and precipitation reactors ................... 15 2.1.2. Continuous stirred tank reactor (CSTR) ................ 18 2.1.3. Models of leaching and precipitation operations ........... 20 2.1.4. Particle-size distribution (PSD) functions ............... 21 2.2. Reactor models based on particle residence time distribution functions ........................................ 24 2.2.1. Performance equations for a single CSTR ............... 24 2.2.2. Performance equations for multistage CSTRs ............. 28 2.3. Reactor models based on the population balance
    [Show full text]
  • Recovery of Gold and Iron from Cyanide Tailings with a Combined Direct Reduction Roasting and Leaching Process
    metals Article Recovery of Gold and Iron from Cyanide Tailings with a Combined Direct Reduction Roasting and Leaching Process Pingfeng Fu 1,2,* ID , Zhenyu Li 1, Jie Feng 1 and Zhenzhong Bian 1 1 School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (Z.L.); [email protected] (J.F.); [email protected] (Z.B.) 2 Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-10-6233-2902 Received: 25 June 2018; Accepted: 19 July 2018; Published: 21 July 2018 Abstract: Cyanide tailings are the hazardous waste discharged after gold cyanidation leaching. The recovery of gold and iron from cyanide tailings was investigated with a combined direct reduction roasting and leaching process. The effects of reduction temperature, coal dosage and CaO dosage on gold enrichment into Au-Fe alloy (FexAu1−x) were studied in direct reduction roasting. Gold containing iron powders, i.e., Au-Fe alloy, had the gold grade of 8.23 g/t with a recovery of 97.46%. After separating gold and iron in iron powders with sulfuric acid leaching, ferrous sulfate in the leachate was crystallized to prepare FeSO4·7H2O with a yield of 222.42% to cyanide tailings. Gold enriched in acid-leaching residue with gold grade of 216.58 g/t was extracted into pregnant solution. The total gold recovery of the whole process reached as high as 94.23%. The tailings generated in the magnetic separation of roasted products, with a yield of 51.33% to cyanide tailings, had no toxic cyanide any more.
    [Show full text]
  • Metal Leaching in Mine-Waste Materials and Two Schemes for Classification of Potential Environmental Effects of Mine-Waste Piles
    Metal Leaching in Mine-Waste Materials and Two Schemes for Classification of Potential Environmental Effects of Mine-Waste Piles By David L. Fey and George A. Desborough Chapter D4 of Integrated Investigations of Environmental Effects of Historical Mining in the Basin and Boulder Mining Districts, Boulder River Watershed, Jefferson County, Montana Edited by David A. Nimick, Stanley E. Church, and Susan E. Finger Professional Paper 1652–D4 U.S. Department of the Interior U.S. Geological Survey ffrontChD4new.inddrontChD4new.indd ccxxxviixxxvii 33/14/2005/14/2005 66:07:29:07:29 PPMM Contents Abstract ...................................................................................................................................................... 139 Introduction ............................................................................................................................................... 139 Purpose and Scope ......................................................................................................................... 140 Sample Collection and Preparation ....................................................................................................... 140 Bulk Surface Samples ..................................................................................................................... 140 Two-Inch Diameter Vertical Core .................................................................................................. 140 Location of Mine-Waste Sites ...............................................................................................................
    [Show full text]
  • Metallurgical Leaching
    METALLURGICAL LEACHING Metallurgical leaching is a mining technology that involves the treatment of mineralmaterials, mainly oxidized containing desirable metals and which are reduced in size to be subjected to a wet process with acidic or basic solutions to dissolve soluble elements and concentrate in an enriched solution, so it is considered a “hydrometallurgical” process. This process allows to work “mineral deposits” ranked as low concentration provided that the mining operation occurs to a large scale to reduce costs per ton of mineral extraction and ensure profitability in the process. Compared to pyrometallurgical operations, leaching is a much simpler and much less harmful because gaseous pollution never occurs, and because its energy consumption is very low, mostly depending on gravity’s action and pumping solutions to the heap. The control points in the leaching process are to monitor the potential of acid generation of waste rocks to avoid toxicity, the efficiency of the operation and the temperature of the reactions are essential to ensure the profitability of the chemical operation of the reactants. There are various kinds of Metallurgical leaching processes. To choose the most appropriate will generally depend on the type of “reagents” used for the operation, which are selected according to the type of mineral or material being processed and that will generally can be identified as “oxides “or” sulfide” In the case of the leaching of a zinc oxide, a simple leaching reaction can be illustrated in the following formula: ZnO (zinc oxide) + H2SO4 (sulfuric acid) -> ZnSO4 (soluble zinc sulphate) + H20 (water) In the case of aluminum oxide, the leaching can occur with “alkali” solutions, for example, under the following formula: Al2O2 (1 molecule of aluminum oxide) + 3H2O (3 molecules of water) + 2NaOH (2 molecules hydroxide sodium) -> 2NaAl (OH) 4 (hydrated sodium aluminate) The leaching of precious metals like gold and silver can be done very easily with cyanide or ozone under ambient conditions.
    [Show full text]
  • Isamill™ Uses Horizontal Milling to Secure Better Energy Efficiency
    IsaMill™ uses horizontal milling to secure better energy effi ciency, product size and availability with a 25% capital-back performance guarantee. IsaMill’s horizontal configuration means it’s completely different from other mills. IsaMill™ gives me an increased recovery that outweighs the cost. I never have to worry about the mill.” – Amandelbult Operation, Anglo American Flowsheet improvements for the real world IsaMill™ at a glance > Real-world success in 130 metalliferous installations across 21 countries since launching in 1994 > World’s only horizontal fine grinding mill, it avoids short-circuits and gives the highest availability > Most efficient fine grinding mill in the world > Strongest performance guarantee in the world > Most consistent product size > Delivers better results to downstream flotation and leaching For more: [email protected] Tel +61 7 3833 8500 IsaMill™ 1 IsaMill™ is the most effi cient and reliable grinding mill available and with 130 metalliferous installations in 21 countries it has a proven record in the real world. The IsaMill™ reduces the energy, media and capital costs of grinding. It’s incredibly effi cient and intense. It focuses only on the particles that need grinding. The IsaMill™ produces greater power vertical mill. It’s easy to operate and it The IsaMill™ is currently available in the intensity than ball or tower mills. maximises availability. following models, named for their net grinding volume: Today’s IsaMill™ is also light. A modest The IsaMill™ gives an accurate and volume of concrete and structural steel rapid scale up, so it’s predictable • M1000 (355–500kW)* are used, and the entire unit sits on a and reliable.
    [Show full text]
  • Catalog New Prices 2020 Page 1-18.Cdr
    The Original Backpacking Self-Locking Folding Sluice Box Coin and Relic Over 50,000 Sold Nationwide!! And Counting! $139.00 We have several scoops of different lengths and features · .063" Aluminum Body with Flare to accommodate your every need. We have short handle, · 50" Long (includes Flare) X 9” wide #00001 long handle and convertible scoops that convert from short · 8 Zinc Plated 18 ga. Steel Riffles Patent No. 8,322,536 handles to long handles by screwing on a handle extension. · 16 ga. Aluminum Expanded Metal The long handle is for soft dirt or sand or when you simply · Deep V Ribbed Black Rubber do not want to bend over. The short handle is for Matting for easy Gold ID digging into hard dirt. The 37 perforations on the · Nylon Carry Strap for easy Transport bill make it one ounce lighter and easier to use. · All screws secured by nylock nuts The nut, bolt & washers that secure the handle that never fall off. 43” to the basket are made of stainless steel, so they’ll never rust together. · Fits in a 5 gallon bucket · Weight 7.25 Lbs. 13 1/2” Self locking backpacking stream Sluice Box that folds from 50" to 15" for easy transportation & storage. Supplied with, “How to use” 58 minute instructional DVD. Short and Long Handle Scoops (When purchased directly from Royal) 15” Non-perforated Treasure Scoop (above right) #00093 $32.00 20” Super Flar e $20.00 15” Perforated Treasure Scoop (above left) #00094 $37.00 Increase Productivity! #00002 15” Non-perforated Stainless Steel Treasure Scoop #00095 $58.00 Attach this Super flare to your 50”
    [Show full text]
  • Rocky Mountain Prospectors & Treasure Hunters Newsletter
    Rocky Mountain Prospectors & Treasure Hunters Newsletter The News v. 15, n. 10 October, 2011 Going for the Gold Visit RMPTH On The Internet At http://rmpth.com Some Coin Hunting Tips Contents By Eric L. Nielsen 1 Some Coin Hunting Tips ecause many people engaged in the hobby of 2 About The News treasure searching have chosen coin hunting as 2 Book Review B their primary activity, it seems like a good idea to 6 Huge Silver Haul pass on a few tips that could help to increase their suc- cess. As with any activity, the more you learn about it 7 Rare Roman Coin Recovered and the more you practice, the better you become. 7 Local Treasure Tales There are a few basics that must be considered before 8 Recognizing A Stroke more advanced techniques can be applied. 8 Tales Of Gold Hill, Colorado 10 Calendar of Events Most important is the choice of the metal detector neces- 11 Calendars sary to be adequately successful. Although most detec- 12 The History Of Gold tors manufactured today will detect coins at shallow depths, it takes a very good detector to reach the good 14 Rhodochrosite old coins buried very deep. If finding a lot of clad coins 16 Trading Post and zinc pennies is all you care to do, just about any 17 RMPTH—Varied Interests discriminating type detector will suffice. In most locali- 18 2011 Schedule of Events ties the top 4 inches of soil has been pretty well depleted 19 Contact List of older coins. To reach the depth where the remaining coins reside requires a detector that has excellent ground balance capabilities to minimize the effect of minerals on the electromagnetic field of the detector coil.
    [Show full text]