Process Simulation and Techno-Economic Analysis of Large-Scale Bioproduction of Sweet Protein Thaumatin II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sweet Success
[Sweetners] Vol. 25 No. 2 Summer 2015 Sweet Success By Judie Bizzozero, Senior Editor In light of increasing consumer demand for less caloric, healthier and “natural” products featuring lower sugar content and non-GMO ingredients, formulators are seeking out versatile ingredients that not only are easy to integrate into food and beverages, but also deliver specific and reliable health benefits. “‘Natural’ sweeteners are gaining favor among consumers due to the increased focus on products, in all categories, that are ‘free-from’ and non-GMO,” said Rudy Wouters, vice president, BENEO Technology Center, Antwerp Area, Belgium. “Consumers are looking to manufacturers to deliver products that are natural, but also lower in sugar content for the maintenance of a more healthy diet and lifestyle.” Clean-Label Trending According to 2014 data from Tate & Lyle, Hoffman Estates, Illinois, 65 percent of consumers in the United States are looking for calories on package labels. In addition to calorie reduction, 2014 data from Harleysville, Pennsylvania-based Natural Marketing Institute (NMI) found 53 percent of consumers are looking for products with simpler ingredient lists. “The dual demand for calorie reduction and simpler ingredient lists makes zero-calorie sweeteners like stevia and monk fruit an ideal option for food and beverage manufacturers. And we’re already seeing manufacturers adopt these trending sweeteners in their formulations,” said Amy Lauer, marketing manager, Tate & Lyle North America. “In fact, stevia and monk fruit are the only high- potency sweeteners to see growth in new product launches from 2013 to 2014 in the United States [Innova, 2014]. Stevia in particular is gaining momentum with a 103-percent increase in new product launches from 2013 to 2014.” Tate & Lyle’s stevia-based zero-calorie sweetener meets consumer demand for low-calorie and low- sugar products and achieves 50 percent or more sugar-reduction levels, Lauer said. -
Thaumatin Is Similar to Water in Blood Glucose Response in Wistar Rats Warid Khayata1, Ahmad Kamri2, Rasha Alsaleh1
International Journal of Academic Scientific Research ISSN: 2272-6446 Volume 4, Issue 2 (May - June 2016), PP 36-42 www.ijasrjournal.org Thaumatin is similar to water in blood glucose response in Wistar rats Warid Khayata1, Ahmad Kamri2, Rasha Alsaleh1 1 (Department of Analytical and Food Chemistry, Faculty of Pharmacy/ University of Aleppo, Aleppo, Syria) 2 (Department of Physiology, Faculty of Sciences/ University of Aleppo, Aleppo, Syria) ABSTRACT: The aim of this study was to investigate the effect of thaumatin; a sweet tasting protein, compared to a natural sweetener; sucrose and a synthetic one; aspartame on blood glucose level and body weight in male Wistar rats. Sucrose, aspartame, and thaumatin solutions have been administrated orally every day to adult male Wistar rats for 8 consecutive weeks. Within this period, blood glucose was monitored during two hours and body weight was measured every two weeks. It was found that compared to water, aspartame and thaumatin did not elevate blood glucose at all. Also, neither aspartame nor thaumatin affected body weight. Subsequently, thaumatin can be considered as a safer and healthier sweetener than aspartame or sucrose, because it is natural and do not cause elevating in blood glucose. Keywords: Blood glucose, Body weight, Sweetener, Thaumatin, Wistar rat GRAPHICAL ABSTRACT www.ijasrjournal.org 36 | Page International Journal of Academic Scientific Research ISSN: 2272-6446 Volume 4, Issue 2 (May - June 2016), PP 36-42 I. INTRODUCTION Sugar obtained from sugar cane or beet is widely used in many food products to give sweetness, viscosity, and consistency. Furthermore, it has a role in the preservation of foods [1]. -
Use of Sweeteners in Animal Nutrition
No. 24 / 2000, page 27 USE OF SWEETENERS IN ANIMAL NUTRITION Christina Hof (Cuxhaven, Germany) “The bitter truth about the sweet taste of excess, new which only differed in added flavour. During the first part research shows even low-calorie sweeteners seduce the of the fattening period a combination of a vanilla flavour appetite” (1990), “Diet soft drinks - too good to be true?” plus sweetener and a feed without flavour supplement (1987), these were headlines in The Independent and were offered at the same time. Later, the same flavour- the New York Times. Since then the assumption, that sweetener combination was tested with a special vanilla new non-calorie sweeteners support the trend to be slim, flavour (characterised by a slightly bitter, spicy note) has become shaky. Many scientific studies have been without addition of a sweetener (Figures 1 and 2). designed to find out whether non-calorie sweeteners increase the total calorie intake. Figure 1: Preference test in pigs (live weight 22 - 49 The knowledge from these studies could be useful for kg) at the University of Leuven (Belgium, animal feeding in order to guarantee and improve feed 1993) intake and daily weight gain. What role does taste play? Everyone knows the sensations of taste and smell; they can cause, often to a high degree, pleasant feelings or aversions. In contrast to the senses of seeing and hearing, the senses of smell and taste are not highly developed in humans. Their influence on us, however, is strong. The sense of smell, in particular, is closely asso- ciated with our emotions. -
Enhancing Sweetness and Stability of the Single Chain Monellin MNEI
www.nature.com/scientificreports OPEN Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through Received: 08 July 2016 Accepted: 07 September 2016 molecular design Published: 23 September 2016 Serena Leone1, Andrea Pica1, Antonello Merlino1, Filomena Sannino1, Piero Andrea Temussi1,2 & Delia Picone1 Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction. Sweet proteins are a family of structurally unrelated proteins that can elicit a sweet sensation in humans. To date, eight sweet and sweet taste-modifying proteins have been identified: monellin1, thaumatin2, brazzein3, pentadin4, mabinlin5, miraculin6, neoculin7 and lysozyme8. With the sole exception of lysozyme, all sweet proteins have been purified from plants, but, besides this common feature, they share no structure or sequence homology9. -
Sweet Sensations by Judie Bizzozero | Senior Editor
[Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named. -
Reports of the Scientific Committee for Food
Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Directorate-General Internal Market and Industrial Affairs 1985 EUR 10210 EN Published by the COMMISSION OF THE EUROPEAN COMMUNITIES Directorate-General Information Market and Innovation Bâtiment Jean Monnet LUXEMBOURG LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information This publication is also available in the following languages : DA ISBN 92-825-5770-7 DE ISBN 92-825-5771-5 GR ISBN 92-825-5772-3 FR ISBN 92-825-5774-X IT ISBN 92-825-5775-8 NL ISBN 92-825-5776-6 Cataloguing data can be found at the end of this publication Luxembourg, Office for Official Publications of the European Communities, 1985 ISBN 92-825-5773-1 Catalogue number: © ECSC-EEC-EAEC, Brussels · Luxembourg, 1985 Printed in Luxembourg CONTENTS Page Reports of the Scientific Committee for Food concerning - Sweeteners (Opinion expressed 14 September 1984) III Composition of the Scientific Committee for Food P.S. Elias A.G. Hildebrandt (vice-chairman) F. Hill A. Hubbard A. Lafontaine Mne B.H. MacGibbon A. Mariani-Costantini K.J. Netter E. Poulsen (chairman) J. Rey V. Silano (vice-chairman) Mne A. Trichopoulou R. Truhaut G.J. Van Esch R. Wemig IV REPORT OF THE SCIENTIFIC COMMITTEE FOR FOOD ON SWEETENERS (Opinion expressed 14 September 1984) TERMS OF REFERENCE To review the safety in use of certain sweeteners. -
Essen Rivesta Issue 26
ISSUE NO 27 FEB ‘19 2 ABOUT THE EDITION, 3 SWEETNER FOR SUGAR INDUSTRY SWEET NEWS FOR FARMERS: NOW, ELECTION REPORT: ‘LOAN OF A DISEASE-RESISTANT SUGARCANE ₹12,000 CRORES’ Sujakumari M Keerthiga R R Indira Gandhi Krishi Vishwavidyalaya has The Narendra Modi government is looking at yet produced tissue culture saplings of disease-free another relief package for sugar companies, and this sugarcane plant with naturally high level of is going to be twice the size of one announced in sweetness, which will translate into good quality September 2018.This relief package facilitates the sugar in mills. This is the first time such a sapling has loan which is nearly ₹12,000 crore for which the ex- been produced. chequer will bear 5-6% interest subvention for 5 IGKV has four lakh such saplings available for sale years. The loans will be granted for enhancing at a rate of ₹8 per piece. The IGKV tissue culture lab ethanol production. The package is being finalised by developed the variety using sugarcane from the Prime Minister’s Office, Finance Ministry, Coimbatore. Lab in charge, Dr SL Verma said, Agriculture Ministry and the Food Ministry. farmers generally sow sugarcane either as a mature India is staring at a second consecutive year of step bud shoots, or by extracting buds by a chipping surplus sugar production this season. Indian Sugar machine and sowing them directly in the soil. “The Mills Association has estimated the country’s sugar practice however requires massive quantity of buds output in 2018-19 at 31.5-32 million tonnes. -
GRAS Notice 920, THAUMATIN II
GRAS Notice (GRN) No. 920 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory Form Approved: OMB No. 0910-0342; Expiration Date: 02/29/2016 (See last page for OMB Statement) FDA USE ONLY GRN NUMBER DATE OF RECEIPT DEPARTMENT OF HEALTH AND HUMAN SERVICES ESTIMATED DAILY INTAKE INTENDED USE FOR INTERNET Food and Drug Administration GENERALLY RECOGNIZED AS SAFE NAME FOR INTERNET (GRAS) NOTICE KEYWORDS Transmit completed form and attachments electronically via the Electronic Submission Gateway (see Instructions); OR Transmit completed form and attachments in paper format or on physical media to: Office of Food Additive Safety (HFS-200), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740-3835. PART I – INTRODUCTORY INFORMATION ABOUT THE SUBMISSION 1. Type of Submission (Check one) New Amendment to GRN No. Supplement to GRN No. 2. All electronic files included in this submission have been checked and found to be virus free. (Check box to verify) 3a. For New Submissions Only: Most recent presubmission meeting (if any) with FDA on the subject substance (yyyy/mm/dd): 3b. For Amendments or Supplements: Is your (Check one) amendment or supplement submitted in Yes If yes, enter the date of response to a communication from FDA? No communication (yyyy/mm/dd): PART II – INFORMATION ABOUT THE NOTIFIER Name of Contact Person Position Yuri Gleba, Ph.D. Chief Executive Officer Company (if applicable) 1a. Notifier Nomad Bioscience GmbH Mailing Address (number and street) Biozentrum Halle, Weinbergweg 22 City State or Province Zip Code/Postal Code Country Halle/Saale Saxony-Anhalt D-06120 Germany Telephone Number Fax Number E-Mail Address 49 345 1314 2606 4934513142601 [email protected] Name of Contact Person Position Kristi 0 . -
A Novel Approach to Dietary Exposure
Technical stakeholder event, 3 December 2019 A novel approach to dietary exposure Protocol for the exposure assessment as part of the safety assessment of sweeteners under the food additives re-evaluation programme Davide Arcella DATA Unit Sweeteners, to be re-evaluated under Regulation (EC) No 257/2010 E Number Food additive(s) Substance E 420 Sorbitols E 420 (i) Sorbitol E 420(ii) Sorbitol syrup E 421 Mannitols E 421(i) Mannitol by hydrogenation E 421(ii) Mannitol manufactured by fermentation E 950 Acesulfame K E 951(a) Aspartame(a) E 952 Cyclamates E 952(i) Cyclamic acid E 952(ii) Sodium cyclamate E 952(iii) Calcium cyclamate E 953 Isomalt E 954 Saccharin and its Na, K and Ca salts E 954(i) Saccharin E 954(ii) Sodium saccharin E 954(iii) Calcium saccharin E 954(iv) Potassium saccharin E 955 Sucralose E 957 Thaumatin E 959 Neohesperidine dihydrochalcone E 961 Neotame E 962 Salt of aspartame-acesulfame E 965 Maltitols E 965(i) Maltitol E 965(ii) Maltitol syrup E 966 Lactitol E 967 Xylitol 2 E 968 Erythritol Refined exposure assessment of food additives under re-evaluation Dietary exposure assessment Occurrence Consumption Exposure Occurrence data Call for data (batch 7) launched for sweeteners in 2018 (January-October) ▪ Use levels ▪ Analytical results in food and beverages intended for human consumption. From: ▪ National authorities/organisations of the Member States, and ▪ Interested business operators and other parties (e.g. individual food manufacturers, food manufacturer associations, research institutions, academia, food business operators and other stakeholders). An additional call on occurrence data on aspartame (E 951) will be launched to update the assessment of exposure to aspartame (E 951), as well as to assess the total aspartame exposure from the use of the salt of aspartame-acesulfame (E 962) and aspartame (E 951). -
Title Atomic Structure of the Sweet-Tasting Protein
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Atomic structure of the sweet-tasting protein thaumatin I at pH Title 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change. Masuda, Tetsuya; Ohta, Keisuke; Mikami, Bunzo; Kitabatake, Author(s) Naofumi; Tani, Fumito Biochemical and biophysical research communications (2012), Citation 419(1): 72-76 Issue Date 2012-03-02 URL http://hdl.handle.net/2433/175270 Right © 2012 Elsevier Inc. Type Journal Article Textversion author Kyoto University Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change Tetsuya Masudaab*, Keisuke Ohtaab, Bunzo Mikamic , Naofumi Kitabataked , and Fumito Taniab aDivision of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan, bDepartment of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan, and cDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan and dDepartment of Foods and Human Nutrition, Notre Dame Seishin University, Okayama 700-8516, Japan Correspondence email: [email protected] 1 Abstract Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80C for 4 h under acid conditions, it rapidly declines when heating at a pH above 7.0. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0 Å. -
A Biobrick Compatible Strategy for Genetic Modification of Plants Boyle Et Al
A BioBrick compatible strategy for genetic modification of plants Boyle et al. Boyle et al. Journal of Biological Engineering 2012, 6:8 http://www.jbioleng.org/content/6/1/8 Boyle et al. Journal of Biological Engineering 2012, 6:8 http://www.jbioleng.org/content/6/1/8 METHODOLOGY Open Access A BioBrick compatible strategy for genetic modification of plants Patrick M Boyle1†, Devin R Burrill1†, Mara C Inniss1†, Christina M Agapakis1,7†, Aaron Deardon2, Jonathan G DeWerd2, Michael A Gedeon2, Jacqueline Y Quinn2, Morgan L Paull2, Anugraha M Raman2, Mark R Theilmann2, Lu Wang2, Julia C Winn2, Oliver Medvedik3, Kurt Schellenberg4, Karmella A Haynes1,8, Alain Viel3, Tamara J Brenner3, George M Church5,6, Jagesh V Shah1* and Pamela A Silver1,5* Abstract Background: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. Results: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. Conclusions: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. -
Application of Sweet and Taste Modifying Genes for Development in Plants: Current Status and Prospects
J Plant Biotechnol (2016) 43:397–404 ISSN 1229-2818 (Print) DOI:https://doi.org/10.5010/JPB.2016.43.4.397 ISSN 2384-1397 (Online) Review Application of sweet and taste modifying genes for development in plants: current status and prospects Shahina Akter ・ Md. Amdadul Huq ・ Yu-Jin Jung ・ Yong-Gu Cho ・ Kwon-Kyoo Kang Received: 12 December 2016 / Revised: 20 December 2016 / Accepted: 20 December 2016 ⓒ Korean Society for Plant Biotechnology Abstract Sweet and taste modifying proteins are natural diseases and to add nutritional value. Therefore, the use of alternatives to synthetic sweeteners and flavor enhancers, sweet and taste modifying genes for development of different and have been used for centuries in different countries. Use crop varieties like maize, tomato, rice, potato, wheat, barley, of these proteins is limited due to less stability and availability. or different fruits would be a good way. The necessity of healthy, However, recent advances in biotechnology have enhanced natural and low calorie sweeteners production is increasing their availability. These include production of sweet and taste (Faus 2000) because every day many of world population are modifying proteins in transgenic organisms, and protein attacked by many diseases like caries, hyperlipemia, obesity engineering to improve their stability. Their increased availability and type II diabetes as a result of consumption of high caloric in the food, beverage or medicinal industries as sweeteners food many of which are comprised of sugars as well as and flavor enhancers will reduce the dependence on artificial carbohydrates. Sometimes these substances, cause other side alternatives. Production of transgenic plants using sweet and effects such as, brain tumors, bladder cancer, heart failure, even mental disorders (Kant 2005; Sun et al.