Foundations of Public Health Immunology Hypersensitivity

Total Page:16

File Type:pdf, Size:1020Kb

Foundations of Public Health Immunology Hypersensitivity 2/18/2014 Objectives Foundations of Public Health • Describe the hypersensitivity reaction to Immunology antigen exposure • Identify and explain the similarities and differences in the mechanism of the four types of hypersensitivity reactions Hypersensitivity • Identify selected disorders for each type of hypersensitivity reaction (selected disorders of autoimmunity) Type I hypersensitivity • Identify and explain the mechanisms of sepsis reactions can be caused by a variety of allergens Hypersensitivity Hypersensitivity • Normally beneficial immune responses that • Four types of occur in an exaggerated or inappropriate hypersensitivity form diseases • Results in inflammation, tissue damage or other problems known as immunopathology • Mechanism of • Hypersensitivity reaction only occur on the immune injury second or subsequent exposure to an is different in allergen • The host must first be sensitized to the allergen!! each type Characteristics of Hypersensitivity Type I: Immediate Hypersensitivity • Also know as: • Allergy • Atopy • Anaphylaxis • Most severe form of Type I reaction • Examples of Type I reactions • Asthma • Hay fever • Some food and drug allergies 1 2/18/2014 Type I Hypersensitivity Type I Reaction cont’d Reaction • Cross‐linking induces • IgE is produced in 1st degranulation of the exposure to an antigen involved mast cells and basophils‐ on 2nd & later • IgE proteins bind to Fc exposures receptors on mast cells • Mediators are released (on both the connective during degranulation tissue and in the mucosa) • Trigger the symptoms of Type I hypersensitivity and basophils • One mediator released during • Repeat exposure to the this reaction is histamine • Anaphylatoxins, C3a & C5a, antigen then cross‐links also released in complement the IgE molecules cascade triggered by released mediators. Process of the cross-linking of IgE with the antigen Type I: Immediate Hypersensitivity • Th2 cytokines promote Type I hypersensitivity • Genetic predisposition for allergen which appears to be Human Leukocyte Antigen (HLA)‐linked • Environmental pollutants can promote allergies • These pollutants can act as IgE adjuvants 2 2/18/2014 Th2 Mediation of Type I Hypersensitivity Type I: Immediate Hypersensitivity Type I: Latex Allergy • Allergies can be diagnosed by • Occurs when the immune system reacts the Skin Prick Test to proteins in natural rubber latex • “Wheal & Flare” is characteristic • of an allergic reaction An estimated 1 –6% of general population has been sensitized to latex • Common allergens include pollen, foods, dander • 5 – 10% of healthcare workers are • A variety of medication and sensitized! treatments are used to control • Should substitute synthetic gloves allergies for latex • Hyposensitization • Products that commonly cause reactions (Desensitization) therapy included gloves, balloons & condoms • Person is exposed in increasing levels of the antigen until • May also react to rubber bands, erasers, tolerance develops rubber parts of toys, pacifiers, etc. Ascaris (Roundworm) Type 1: Asthma • Effects of an asthmatic reaction • Strong immune response to larval stage can occur both Ascaris lumbridoides infestation immediately and • Ascaris allergen is the most potent of all allergens over a prolonged or parasitic origin time period • • Results in both an Bronchial asthma, urticaria (hives), early & late angioedema (diffuse swelling and hives) response during an frequently occur with the larval stage parasite asthmatic attack • However, the immune system is frequently from inflammatory response tolerant of adult Ascaris intestinal infestation 3 2/18/2014 Dracunuliasis Type 2: Cytotoxic Hypersensitivity • Also known as Guinea Worm • With Type 2 reactions, the reaction is against an disease antigen located on a cell surface • The female worm forms a painful • blister on the skin (usually the The antigen being attacked is an integral part of the cell!! feet) and when the foot is placed • IgM and IgG antibodies bind to the cell surface or in water, the female worm tissue antigens in conjunction with complement releases numerous eggs activation • The worm can be removed by • The complement activation results in: winding it slowly around a stick over many days (see photo w/ • Chemotaxis match stick) • Inflammation • If worm ruptures during removal, • Opsonization it will release numerous antigens • Cellular activation & produce a severe allergic reaction. Type 2 Mediated Immunopathology Type 2: Blood Immunopathologies • Blood transfusion reactions • Hemolytic Disease of the Newborn • RhD factor • Reaction involves IgG • Also called erythorblastosis fetalis Erythroblastosis fetalis 4 2/18/2014 Bleeding under the skin due to low platelets. Type 2: Autoimmune Blood Reactions • Spontaneous reactions that destroy erythrocytes • Warm antibody hemolytic anemia involve autoantibodies that attach to and destroy erythrocytes at temperatures above normal body temperature • Cold antibody hemolytic anemia involve autoantibodies that attach to and destroy erythrocytes at temperatures below normal body temperature • Thrombocytopenia (low platelet count) Type 2: Adverse Drug Reactions • Drug‐induced reactions involving drug‐Ab immune complex and erythrocyte antigens • Steven‐Johnson Syndrome (SJS) • Affects people of all ages, but more child cases • If untreated, can result in death • Toxic Epidermal Necrolysis Syndrome • Another form of SJS Toxic Epidermal Necrosis Type 2: Autoimmune Diseases Type 2: Autoimmune Diseases • Goodpasture’s syndrome • Pemphigus vulgaris • Involves IgG and complement • • Lungs & kidneys are effected Involves antibodies against • Results in kidney basement chromosome proteins, skin membrane damage and mucous membranes • May be triggered by viral • Results in blistering respiratory infections or inhaling hydrocarbon solvents • Exact cause is unknown • Treat with immunosuppressive • Disease is uncommon, drugs and plasmapheresis (to occurs mostly in middle‐aged remove harmful autoantibodies from the blood) (or older) patients 5 2/18/2014 Type 2: Autoimmune Diseases Type 3: Immune Complex Hypersensitivity • Myasthenia Gravis • With type 3 hypersensitivity, damage occurs to tissues • Involves IgG and at sites of immune complex deposition complement against • Antigens involved in Type 3 reactions are insoluble, acetylcholine receptors small immune complexes which have not been on muscle cell removed by phagocytes, the liver, or the spleen membranes • Results in muscle • Involves the deposited antigen, antibodies (IgG), weakness and fatigue complement deposition & effector cells • Thymus abnormalities • The antigen‐antibody often present complexes induce • Thymic tumors found in complement activation 10% of patients & result in • Changes in germinal inflammation mediated centers found in 70% of patients by neutrophils Factors Contributing to Deposition of Immune Complexes • Complement • Increased vascular deficiencies permeability (due to • Low affinity antibodies vasoactive amines) • Antibody isotype • High blood pressure • Ineffective phagocytois and turbulence (for example in the • Abnormal carbohydrate glomerular capillaries of on antibody molecules the kidneys) • Size of immune complex • Affinity of the antigen and the antibody for specific tissues isotype Type 3 Hypersensitivity • Three General Groups: • Persistent infection involving microbial antigens and the kidneys • Autoimmune disease against self antigen • Damage can occur to the kidneys, joints, & arteries etc. • Extrinsic antigens • Inhaled antigen –(mold) lung • Serum Sickness • Arthus Reaction 6 2/18/2014 Type 3: Autoimmune Disease Types 1 - 3 • Systemic Lupus Erythematosus • Antibody Mediated (SLE) Hypersensitivity • Formation of immune complexes cause inflammation & tissue • Different effector injury mechanisms that cause • Affects many parts of the body (joints, skin, kidneys, heart, pathology lungs, brain, blood vessels) • Autoantibodies are • Characterized by periods of illness (flares) & times of health antibodies specific for self (remission) antigens • More common in young women • Damage cells & tissues • Present in excess in many autoimmune diseases (including SLE) Autoimmune Diseases: Autoantibodies Autoantibody Tests • Not always a direct • Antinuclear antibody (ANA): may be found in autoimmune hypersensitivity link, but disorders [especially lupus, scleroderma, Sjorgren’s formation of autoantibodies can syndrome, polymyositis, certain types of chronic active cause autoimmunity hepatitis] • Graves disease & Hashimoto’s • Anti‐DNA antibody: may be present in lupus thyroiditis are 2 disease where • Titers will decrease when treatment is successful autoantibodies target a single • Usually not found in other autoimmune diseases organ – the thyroid • Antiphospholipid antibody: may be found in lupus and • Rheumatoid arthritis is a certain other conditions systemic autoimmune disorder – • Associated with miscarriages and clots high levels of circulating autoantibodies target multiple • Rheumatoid factor: often found in blood and joint synovial organs but most commonly affect fluid in rheumatoid arthritis patients the joints Type 4: Delayed Hypersensitivity T Cell Mediated Hypersensitivity • Type 4 reactions are regulated by cell‐mediated reactions • Type 4 reactions usually take longer than 12 hours to develop due to mediation via T‐cells Granuloma formation around a schistosome • Protective immunity does not egg (center) destroys always occur with Type 4 the liver tissue. reactions • Three varieties of Type IV Hypersensitivity: • Contact
Recommended publications
  • Difference Between Hypersensitivity and Autoimmunity Key Difference – Hypersensitivity Vs Autoimmunity
    Difference Between Hypersensitivity and Autoimmunity www.differencebetwee.com Key Difference – Hypersensitivity vs Autoimmunity Autoimmunity is an adaptive immune response mounted against self-antigens. In simple terms, when your body is acting against its own cells and tissues, this is called an autoimmune reaction. An exaggerated and inappropriate immune response to an antigenic stimulus is defined as a hypersensitivity reaction. Unlike autoimmune reactions that are triggered only by the endogenous antigens, hypersensitivity reactions are triggered by both endogenous and exogenous antigens. This is the key difference between hypersensitivity and autoimmunity. What is Hypersensitivity? An exaggerated and inappropriate immune response to an antigenic stimulus is defined as a hypersensitivity reaction. The first exposure to a particular antigen activates the immune system and, antibodies are produced as a result. This is called sensitization. Subsequent exposures to the same antigen give rise to hypersensitivity. Few important facts regarding the hypersensitivity reactions are given below They can be elicited by both exogenous and endogenous agents. They are a result of an imbalance between the effector mechanisms and the countermeasures that are there to control any inappropriate execution of an immune response. The presence of a genetic susceptibility increases the likelihood of hypersensitivity reactions. The manner in which hypersensitivity reactions harm our body is similar to the way that the pathogens are destroyed by immune reactions. Figure 01: Allergy According to the Coombs and Gell classification, there are four main types of hypersensitivity reactions. Type I- Immediate Type/ Anaphylactic Mechanism Vasodilation, edema, and contraction of smooth muscles are the pathological changes that take place during the immediate phase of the reaction.
    [Show full text]
  • Food Fact Sheet: Food Allergy and Food Intolerance
    Food Fact Sheet: Food Allergy and Food Intolerance Having to avoid certain foods in your diet can be difficult. But there are a few simple things you can do to help you manage your food allergies - allowing you to stay safe, continue to participate in fun activities and enjoy your food. What is the difference between food allergy and food intolerance? For some people, eating certain foods can lead to an unpleasant and sometimes dangerous physical reaction. The term used to describe all types of reactions to foods is ‘food hypersensitivity’. A 'food allergy' is a reaction involving the immune system (the body’s defence against foreign bodies). Those that do not involve the immune system are often called a ‘food intolerance’. It is important to identify and manage foods that trigger any symptoms in an appropriate way. Food allergy Proteins within foods can trigger immediate (within two hours) or delayed symptoms (up to several days later). Immediate food allergy (IgE mediated food allergy) Immediate reactions to foods occur when your immune system reacts to a normally harmless protein in food, due to the creation of Immunoglobulin E (IgE). This results in the release of chemicals (e.g. histamine) which trigger allergic symptoms. These symptoms are usually in the skin (itching/swelling), or gut (vomiting, diarrhoea). Other symptoms can include breathing problems and in rare cases an extreme allergic reaction called anaphylaxis. Delayed food allergy (non IgE mediated food allergy) Delayed reactions to foods still involve your immune system, but there is a different type of immune reaction involved. Symptoms typically occur in the gut (vomiting, diarrhoea, constipation) and/or the skin (atopic eczema).
    [Show full text]
  • Allergy, Hypersensitivity, Angioedema, and Anaphylaxis Episode Overview
    CrackCast Show Notes –Allergy and Anaphylaxis – October 2017 www.canadiem.org/crackcast Chapter 109 – Allergy, Hypersensitivity, Angioedema, and Anaphylaxis Episode Overview Key Points: 1. A history of sudden urticarial rash accompanied by respiratory difficulty, abdominal pain, or hypotension, strongly favors the diagnosis of anaphylaxis. 2. Epinephrine is the first-line treatment in patients with anaphylaxis: give it immediately. 3. There are no absolute contraindications to the use of epinephrine in the setting of anaphylaxis. 4. Antihistamines and corticosteroids are second- and third-line agents in the management of anaphylaxis and should not replace or precede epinephrine. 5. Consider prolonged observation or admission for patients who: a. Experience protracted anaphylaxis, hypotension, or airway involvement; b. Receive IV epinephrine or more than two doses of IM epinephrine; c. Or have poor outpatient social support. 6. Patients discharged after an anaphylactic event should be prescribed an EpiPen and instructed on its use. 7. Patients with refractory hypotension may require glucagon (receiving beta-blockage) or a continuous IV epinephrine infusion. 8. Non-histaminergic angioedema (non-allergic angioedema) does not typically respond to epinephrine and antihistamines. New drugs, including berinert, icatibant, ecallantide, and Ruconest have been approved for use in HAE. FFP has been used with varying success in HAE, ACID, and ACE inhibitor–induced angioedema. NOTE: ACID: acquired C1 esterase deficiency (ACED) Core Questions: 1. List the four types of Gell and Coombs classifications of immune reaction and give examples of each 2. List four etiologic agents causing anaphylaxis by immunologic mechanisms 3. List six mediators of anaphylaxis and their physiologic actions and clinical manifestations 4.
    [Show full text]
  • Hypersensitivity Reactions (Types I, II, III, IV)
    Hypersensitivity Reactions (Types I, II, III, IV) April 15, 2009 Inflammatory response - local, eliminates antigen without extensively damaging the host’s tissue. Hypersensitivity - immune & inflammatory responses that are harmful to the host (von Pirquet, 1906) - Type I Produce effector molecules Capable of ingesting foreign Particles Association with parasite infection Modified from Abbas, Lichtman & Pillai, Table 19-1 Type I hypersensitivity response IgE VH V L Cε1 CL Binds to mast cell Normal serum level = 0.0003 mg/ml Binds Fc region of IgE Link Intracellular signal trans. Initiation of degranulation Larche et al. Nat. Rev. Immunol 6:761-771, 2006 Abbas, Lichtman & Pillai,19-8 Factors in the development of allergic diseases • Geographical distribution • Environmental factors - climate, air pollution, socioeconomic status • Genetic risk factors • “Hygiene hypothesis” – Older siblings, day care – Exposure to certain foods, farm animals – Exposure to antibiotics during infancy • Cytokine milieu Adapted from Bach, JF. N Engl J Med 347:911, 2002. Upham & Holt. Curr Opin Allergy Clin Immunol 5:167, 2005 Also: Papadopoulos and Kalobatsou. Curr Op Allergy Clin Immunol 7:91-95, 2007 IgE-mediated diseases in humans • Systemic (anaphylactic shock) •Asthma – Classification by immunopathological phenotype can be used to determine management strategies • Hay fever (allergic rhinitis) • Allergic conjunctivitis • Skin reactions • Food allergies Diseases in Humans (I) • Systemic anaphylaxis - potentially fatal - due to food ingestion (eggs, shellfish,
    [Show full text]
  • Microbiology Chapter 19 Outline
    Microbiology Chapter 19 Outline Introduction (p. 515) 1. Hay fever, transplant rejection, and autoimmunity are examples of harmful immune reactions. 2. Immunosuppression is inhibition of the immune system. 3. Superantigens activate many T cell receptors that can cause adverse host responses. Hypersensitivity (pp. 516–526) 1. Hypersensitivity reactions represent immunological responses to an antigen (allergen) that lead to tissue damage rather than immunity. 2. Hypersensitivity reactions occur when a person has been sensitized to an antigen. 3. Hypersensitivity reactions can be divided into four classes: types I, II, and III are immediate reactions based on humoral immunity, and type IV is a delayed reaction based on cell-mediated immunity. Allergies and the Microbiome (p. 516) 4. Childhood exposure to microbes may decrease development of allergies. Type I (Anaphylactic) Reactions (pp. 516–522) 5. Anaphylactic reactions involve the production of IgE antibodies that bind to mast cells and basophils to sensitize the host. 6. The binding of two adjacent IgE antibodies to an antigen causes the target cell to release chemical mediators, such as histamine, leukotrienes, and prostaglandins, which cause the observed allergic reactions. 7. Systemic anaphylaxis may develop in minutes after injection or ingestion of the antigen; this may result in circulatory collapse and death. 8. Localized anaphylaxis is exemplified by hives, hay fever, and asthma. 9. Skin testing is useful in determining sensitivity to an antigen. 10. Desensitization to an antigen can be achieved by repeated injections of the antigen, which leads to the formation of blocking (IgG) antibodies. Microbiology Chapter 19 Outline Type II (Cytotoxic) Reactions (pp. 522–524) 11.
    [Show full text]
  • Allergens Toolkit Introduction the Number of People That Suffers Food Allergy Or Food Intolerance to Some Products Is Increasing
    The International Nut and Dried Fruit Council (INC) is the leading international organization on health, nutrition, statistics, food safety, and international standards and regulations regarding nuts and dried fruits. INC Members include more than 800 nut and dried fruit sector companies from over 70 countries. International Nut and Dried Fruit Council C/de la Fruita Seca 4 · Polígon Tecnoparc 43204 Reus, Spain [email protected] www.nutfruit.org World consumption of nuts keeps growing and giving reasons for optimism. In season 2018/2019, world tree nut production has been estimated at 4.5 million metric tons, 50% up from a decade ago, and peanuts at more than 37 million MT. Health-driven consumer trends have made waves in recent years becoming largely responsible for securing this positive performance. Allergens Toolkit Introduction The number of people that suffers food allergy or food intolerance to some products is increasing. Approximately 15 million people in the United States have food allergies. The Food Allergy Research & Resource Program (FARRP) currently estima- tes the prevalence of IgE-mediated food allergies in the United States at 3.5 - 4.0% of the overall population (1). In children, it increased by 50 percent between 1997 and 2011. As for nuts, it is estimated that the prevalence of peanut and tree nut allergy in U.S. children more than tripled between 1997 and 2008 (2). In Europe, the prevalence of food allergy/intolerance in adults is approximately 5% (3). But first, it is necessary to clarify the difference between these two concepts: food allergy and food intolerance. What is a Food Allergy? Food allergies are caused by an adverse immune reaction (hypersensitivity) to certain food proteins, an abnormal response to a food induced by the body's immune system.
    [Show full text]
  • Transfusion-Associated Graft-Versus-Host Disease
    Vox Sanguinis (2008) 95, 85–93 © 2008 The Author(s) REVIEW Journal compilation © 2008 Blackwell Publishing Ltd. DOI: 10.1111/j.1423-0410.2008.01073.x Transfusion-associatedBlackwell Publishing Ltd graft-versus-host disease D. M. Dwyre & P. V. Holland Department of Pathology, University of California Davis Medical Center, Sacramento, CA, USA Transfusion-associated graft-versus-host disease (TA-GvHD) is a rare complication of transfusion of cellular blood components producing a graft-versus-host clinical picture with concomitant bone marrow aplasia. The disease is fulminant and rapidly fatal in the majority of patients. TA-GvHD is caused by transfused blood-derived, alloreactive T lymphocytes that attack host tissue, including bone marrow with resultant bone marrow failure. Human leucocyte antigen similarity between the trans- fused lymphocytes and the host, often in conjunction with host immunosuppression, allows tolerance of the grafted lymphocytes to survive the host immunological response. Any blood component containing viable T lymphocytes can cause TA-GvHD, with fresher components more likely to have intact cells and, thus, able to cause disease. Treatment is generally not helpful, while prevention, usually via irradiation of blood Received: 13 December 2007, components given to susceptible recipients, is the key to obviating TA-GvHD. Newer revised 18 May 2008, accepted 21 May 2008, methods, such as pathogen inactivation, may play an important role in the future. published online 9 June 2008 Key words: graft-versus-host, immunosuppression, irradiation, transfusion. along with findings due to marked bone marrow aplasia. Introduction Because of the bone marrow failure, the prognosis of TA- Transfusion-associated graft-versus-host disease (TA-GvHD) GvHD is dismal.
    [Show full text]
  • Angioedema in the Emergency Department: a Practical Guide to Differential Diagnosis and Management Jonathan A
    Bernstein et al. International Journal of Emergency Medicine (2017) 10:15 International Journal of DOI 10.1186/s12245-017-0141-z Emergency Medicine REVIEW Open Access Angioedema in the emergency department: a practical guide to differential diagnosis and management Jonathan A. Bernstein1*, Paolo Cremonesi2, Thomas K. Hoffmann3 and John Hollingsworth4 Abstract Background: Angioedema is a common presentation in the emergency department (ED). Airway angioedema can be fatal; therefore, prompt diagnosis and correct treatment are vital. Objective of the review: Based on the findings of two expert panels attended by international experts in angioedema and emergency medicine, this review aims to provide practical guidance on the diagnosis, differentiation, and management of histamine- and bradykinin-mediated angioedema in the ED. Review: The most common pathophysiology underlying angioedema is mediated by histamine; however, ED staff must be alert for the less common bradykinin-mediated forms of angioedema. Crucially, bradykinin-mediated angioedema does not respond to the same treatment as histamine-mediated angioedema. Bradykinin-mediated angioedema can result from many causes, including hereditary defects in C1 esterase inhibitor (C1-INH), side effects of angiotensin-converting enzyme inhibitors (ACEis), or acquired deficiency in C1-INH. The increased use of ACEis in recent decades has resulted in more frequent encounters with ACEi-induced angioedema in the ED; however, surveys have shown that many ED staff may not know how to recognize or manage bradykinin-mediated angioedema, and hospitals may not have specific medications or protocols in place. Conclusion: ED physicians must be aware of the different pathophysiologic pathways that lead to angioedema in order to efficiently and effectively manage these potentially fatal conditions.
    [Show full text]
  • Human Antibody-Dependent Cellular Cytotoxicity
    Human Antibody - Dependent Cellular Cytotoxicity ISOLATION AND IDENTIFICATION OF A SUBPOPULATION OF PERIPHERAL BLOOD LYMPHOCYTES WHICH KILL ANTIBODY-COATED AUTOLOGOUS TARGET CELLS ARNOLD M. BRIER, LEONARD CHESS, and STUART F. SCIHLOSSMIAN From the Departmetnt of Medicitnc, Beth Israel Hospital, atnd Division of Tumor Immunology, Sidney Farber Catncer Center, and Department of Medicine, Harvard Medical School, Boston, Massachtusetts 02115 A B S T R A C T Antibody-dependent cellular cytotoxicity rabbit gam1ma globulin, but not by rabbit F (ab)2 anti- (ADCC), has been shown to be independent in vitro hunmain F (ab)2 or media. This supports the contention of thymus-derived lymphocytes, but the precise nature previously suggested in studies usiing unfractionated of the effector lymphocyte has not been fully clarified. lmniphocyte populations that the ADCC effector cell rec- To further study the identity of the ADCC effector cell ognizes the Fc portion of the antibody mzolecule. The type(s), peripheral blood leukocvtes were purified by variable and low level of activity noted in the Jg(+) Ficoll-Hypaque density centrifugation and fractionated populations is unexplained but possibly due to a variable into surface immunoglobulin-positive [Jg(+)] and sur- population of null cell-derived Ig(+) lmphocytes face immunoglobulin-niegative [Ig (-) ] populations by within the Nhole Ig(+) population. In conclusioin, these chromatographic separation on Sephadex G-200 anti- experimlenits demonstrate that, in vitro, the major human immunoglobulin columns. After column fraction- ADCC effector activity of circulating hulmian peripheral ation, the ADC( effector activity against antibody- blood lymnphocytes resides in the Ig(-), E(-), EAC- coated autologous lymphocytes was predominantl-y and (±) subpopulatioin terImed 'null cells." Since it has been consistently found in the Jg(-) fractioin.
    [Show full text]
  • Hypersensitivity Mechanisms: an Overview
    Hypersensitivity Mechanisms: An Overview Stephen Canfield, MD, PhD Asst. Prof. Medicine Pulmonary, Allergy, and Critical Care Medicine 1 Origins of Hypersensitivity “Hypersensitivity” first used clinically in 1893: • attempting to protect against diphtheria toxin • test animals suffered enhanced responses, even death following second toxin exposure Emil von • at miniscule doses not harmful to untreated Behring animals The term “Allergy” is coined in 1906: • postulated to be the product of an “allergic” response • from Greek allos ergos (altered reactivity) Clemens von Pirquet os from Silverstein, AM. 1989. A History of Immunology. Academic Press, San Diego 2 First Task of the Immune System Dangerous Innocuou ? s? 3 Modern Use • Hypersensitivity: • Aberrant or excessive immune response to foreign antigens • Primary mediator is the adaptive immune system • T & B lymphocytes • Damage is mediated by the same attack mechanisms that mediate normal immune responses to pathogen 4 Mechanisms of Hypersensitivity Gell & Coombs Classification G&C Common Term Mediator Example Class Type I Immediate Type IgE monomers Anaphylaxis IgG/IgM Drug-induced Type II Cytotoxic Type monomers hemolysis Immune Complex IgG/IgM Type III Serum sickness Type multimers PPD rxn Type IV Delayed Type T cells Contact Dermatitis 5 Common to All Types Adaptive (T & B Cell) Immune Responses • Reactions occur only in sensitized individuals • Generally at least one prior contact with the offending agent • Sensitization can be long lived in the absence of re-exposure (>10 years)
    [Show full text]
  • Diseases of the Immune System 813
    Chapter 19 | Diseases of the Immune System 813 Chapter 19 Diseases of the Immune System Figure 19.1 Bee stings and other allergens can cause life-threatening, systemic allergic reactions. Sensitive individuals may need to carry an epinephrine auto-injector (e.g., EpiPen) in case of a sting. A bee-sting allergy is an example of an immune response that is harmful to the host rather than protective; epinephrine counteracts the severe drop in blood pressure that can result from the immune response. (credit right: modification of work by Carol Bleistine) Chapter Outline 19.1 Hypersensitivities 19.2 Autoimmune Disorders 19.3 Organ Transplantation and Rejection 19.4 Immunodeficiency 19.5 Cancer Immunobiology and Immunotherapy Introduction An allergic reaction is an immune response to a type of antigen called an allergen. Allergens can be found in many different items, from peanuts and insect stings to latex and some drugs. Unlike other kinds of antigens, allergens are not necessarily associated with pathogenic microbes, and many allergens provoke no immune response at all in most people. Allergic responses vary in severity. Some are mild and localized, like hay fever or hives, but others can result in systemic, life-threatening reactions. Anaphylaxis, for example, is a rapidly developing allergic reaction that can cause a dangerous drop in blood pressure and severe swelling of the throat that may close off the airway. Allergies are just one example of how the immune system—the system normally responsible for preventing disease—can actually cause or mediate disease symptoms. In this chapter, we will further explore allergies and other disorders of the immune system, including hypersensitivity reactions, autoimmune diseases, transplant rejection, and diseases associated with immunodeficiency.
    [Show full text]
  • Late Post-Operative Occurrence of Dentin Hypersensitivity in Adult Patients Following Allogeneic Hematopoietic Stem Cell Transplantation—A Preliminary Report
    International Journal of Environmental Research and Public Health Article Late Post-Operative Occurrence of Dentin Hypersensitivity in Adult Patients Following Allogeneic Hematopoietic Stem Cell Transplantation—A Preliminary Report Agnieszka Bogusławska-Kapała 1 , Barbara Kocha ´nska 2 , Ewa Rusyan 3 , Grzegorz Władysław Basak 4 and Izabela Struzycka˙ 1,* 1 Department of Comprehensive Dental Care, Medical University of Warsaw, 02-091 Warsaw, Poland; [email protected] 2 Department of Conservative Dentistry, Medical University of Gda´nsk,80-210 Gda´nsk,Poland; [email protected] 3 Department of Conservative Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland; [email protected] 4 Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Allogeneic hematopoietic stem cell transplantation (alloHSCT) is one of the most commonly performed transplantation procedures nowadays. Despite the significant progress made in the Citation: Bogusławska-Kapała, A.; treatment, alloHSCT is still associated with numerous complications also affecting the oral cavity. Kocha´nska,B.; Rusyan, E.; Basak, One of them is dentin hypersensitivity (DH)—a sharp, short-term pain that occurs when stimuli act G.W.; Struzycka,˙ I. Late on exposed dentin. Various authors point out that DH may result in a significantly lower quality of Post-Operative Occurrence of Dentin life, among other things by impeding the consumption of food as well as causing difficulties in daily Hypersensitivity in Adult Patients oral hygiene. The aim of the study was a preliminary analysis of the incidence rate and severity of following Allogeneic Hematopoietic Stem Cell Transplantation—A DH pain in adult patients during late period after alloHSCT.
    [Show full text]