Diseases of the Immune System 813
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 19 | Diseases of the Immune System 813 Chapter 19 Diseases of the Immune System Figure 19.1 Bee stings and other allergens can cause life-threatening, systemic allergic reactions. Sensitive individuals may need to carry an epinephrine auto-injector (e.g., EpiPen) in case of a sting. A bee-sting allergy is an example of an immune response that is harmful to the host rather than protective; epinephrine counteracts the severe drop in blood pressure that can result from the immune response. (credit right: modification of work by Carol Bleistine) Chapter Outline 19.1 Hypersensitivities 19.2 Autoimmune Disorders 19.3 Organ Transplantation and Rejection 19.4 Immunodeficiency 19.5 Cancer Immunobiology and Immunotherapy Introduction An allergic reaction is an immune response to a type of antigen called an allergen. Allergens can be found in many different items, from peanuts and insect stings to latex and some drugs. Unlike other kinds of antigens, allergens are not necessarily associated with pathogenic microbes, and many allergens provoke no immune response at all in most people. Allergic responses vary in severity. Some are mild and localized, like hay fever or hives, but others can result in systemic, life-threatening reactions. Anaphylaxis, for example, is a rapidly developing allergic reaction that can cause a dangerous drop in blood pressure and severe swelling of the throat that may close off the airway. Allergies are just one example of how the immune system—the system normally responsible for preventing disease—can actually cause or mediate disease symptoms. In this chapter, we will further explore allergies and other disorders of the immune system, including hypersensitivity reactions, autoimmune diseases, transplant rejection, and diseases associated with immunodeficiency. 814 Chapter 19 | Diseases of the Immune System 19.1 Hypersensitivities Learning Objectives • Identify and compare the distinguishing characteristics, mechanisms, and major examples of type I, II, III, and IV hypersensitivities In Adaptive Specific Host Defenses, we discussed the mechanisms by which adaptive immune defenses, both humoral and cellular, protect us from infectious diseases. However, these same protective immune defenses can also be responsible for undesirable reactions called hypersensitivity reactions. Hypersensitivity reactions are classified by their immune mechanism. • Type I hypersensitivity reactions involve immunoglobulin E (IgE) antibody against soluble antigen, triggering mast cell degranulation. • Type II hypersensitivity reactions involve IgG and IgM antibodies directed against cellular antigens, leading to cell damage mediated by other immune system effectors. • Type III hypersensitivity reactions involve the interactions of IgG, IgM, and, occasionally, IgA[1] antibodies with antigen to form immune complexes. Accumulation of immune complexes in tissue leads to tissue damage mediated by other immune system effectors. • Type IV hypersensitivity reactions are T-cell–mediated reactions that can involve tissue damage mediated by activated macrophages and cytotoxic T cells. Type I Hypersensitivities When a presensitized individual is exposed to an allergen, it can lead to a rapid immune response that occurs almost immediately. Such a response is called an allergy and is classified as a type I hypersensitivity. Allergens may be seemingly harmless substances such as animal dander, molds, or pollen. Allergens may also be substances considered innately more hazardous, such as insect venom or therapeutic drugs. Food intolerances can also yield allergic reactions as individuals become sensitized to foods such as peanuts or shellfish (Figure 19.2). Regardless of the allergen, the first exposure activates a primary IgE antibody response that sensitizes an individual to type I hypersensitivity reaction upon subsequent exposure. Clinical Focus Part 1 Kerry, a 40-year-old airline pilot, has made an appointment with her primary care physician to discuss a rash that develops whenever she spends time in the sun. As she explains to her physician, it does not seem like sunburn. She is careful not to spend too much time in the sun and she uses sunscreen. Despite these precautions, the rash still appears, manifesting as red, raised patches that get slightly scaly. The rash persists for 7 to 10 days each time, and it seems to largely go away on its own. Lately, the rashes have also begun to appear on her cheeks and above her eyes on either side of her forehead. • Is Kerry right to be concerned, or should she simply be more careful about sun exposure? • Are there conditions that might be brought on by sun exposure that Kerry’s physician should be considering? Jump to the next Clinical Focus box. 1. D.S. Strayer et al (eds). Rubin’s Pathology: Clinicopathologic Foundations of Medicine. 7th ed. 2Philadelphia, PA: Lippincott, Williams & Wilkins, 2014. This OpenStax book is available for free at http://cnx.org/content/col12087/1.4 Chapter 19 | Diseases of the Immune System 815 Figure 19.2 (a) Allergens in plant pollen, shown here in a colorized electron micrograph, may trigger allergic rhinitis or hay fever in sensitive individuals. (b) Skin rashes are often associated with allergic reactions. (c) Peanuts can be eaten safely by most people but can provoke severe allergic reactions in sensitive individuals. For susceptible individuals, a first exposure to an allergen activates a strong TH2 cell response (Figure 19.3). Cytokines interleukin (IL)-4 and IL-13 from the TH2 cells activate B cells specific to the same allergen, resulting in clonal proliferation, differentiation into plasma cells, and antibody-class switch from production of IgM to production of IgE. The fragment crystallizable (Fc) regions of the IgE antibodies bind to specific receptors on the surface of mast cells throughout the body. It is estimated that each mast cell can bind up to 500,000 IgE molecules, with each IgE molecule having two allergen-specific fragment antigen-binding (Fab) sites available for binding allergen on subsequent exposures. By the time this occurs, the allergen is often no longer present and there is no allergic reaction, but the mast cells are primed for a subsequent exposure and the individual is sensitized to the allergen. On subsequent exposure, allergens bind to multiple IgE molecules on mast cells, cross-linking the IgE molecules. Within minutes, this cross-linking of IgE activates the mast cells and triggers degranulation, a reaction in which the contents of the granules in the mast cell are released into the extracellular environment. Preformed components that are released from granules include histamine, serotonin, and bradykinin (Table 19.1). The activated mast cells also release newly formed lipid mediators (leukotrienes and prostaglandins from membrane arachadonic acid metabolism) and cytokines such as tumor necrosis factor (Table 19.2). The chemical mediators released by mast cells collectively cause the inflammation and signs and symptoms associated with type I hypersensitivity reactions. Histamine stimulates mucus secretion in nasal passages and tear formation from lacrimal glands, promoting the runny nose and watery eyes of allergies. Interaction of histamine with nerve endings causes itching and sneezing. The vasodilation caused by several of the mediators can result in hives, headaches, angioedema (swelling that often affects the lips, throat, and tongue), and hypotension (low blood pressure). Bronchiole constriction caused by some of the chemical mediators leads to wheezing, dyspnea (difficulty breathing), coughing, and, in more severe cases, cyanosis (bluish color to the skin or mucous membranes). Vomiting can result from stimulation of the vomiting center in the cerebellum by histamine and serotonin. Histamine can also cause relaxation of intestinal smooth muscles and diarrhea. Selected Preformed Components of Mast Cell Granules Granule Activity Component Heparin Stimulates the generation of bradykinin, which causes increased vascular permeability, vasodilation, bronchiole constriction, and increased mucus secretion Histamine Causes smooth-muscle contraction, increases vascular permeability, increases mucus and tear formation Serotonin Increases vascular permeability, causes vasodilation and smooth-muscle contraction Table 19.1 816 Chapter 19 | Diseases of the Immune System Selected Newly Formed Chemical Mediators of Inflammation and Allergic Response Chemical Activity Mediator Leukotriene Causes smooth-muscle contraction and mucus secretion, increases vascular permeability Prostaglandin Causes smooth-muscle contraction and vasodilation TNF-α (cytokine) Causes inflammation and stimulates cytokine production by other cell types Table 19.2 Figure 19.3 On first exposure to an allergen in a susceptible individual, antigen-presenting cells process and present allergen epitopes with major histocompatibility complex (MHC) II to T helper cells. B cells also process and present the same allergen epitope to TH2 cells, which release cytokines IL-4 and IL-13 to stimulate proliferation and differentiation into IgE-secreting plasma cells. The IgE molecules bind to mast cells with their Fc region, sensitizing the mast cells for activation with subsequent exposure to the allergen. With each subsequent exposure, the allergen cross-links IgE molecules on the mast cells, activating the mast cells and causing the release of preformed chemical mediators from granules (degranulation), as well as newly formed chemical mediators that collectively cause the signs