Download File

Total Page:16

File Type:pdf, Size:1020Kb

Download File Exploring the String Landscape: The Dynamics, Statistics, and Cosmology of Parallel Worlds Stein Pontus Ahlqvist Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2012 Stein Pontus Ahlqvist All rights reserved ABSTRACT Exploring the String Landscape: The Dynamics, Statistics, and Cosmology of Parallel Worlds Stein Pontus Ahlqvist This dissertation explores various facets of the low-energy solutions in string theory known as the string landscape. Three separate questions are addressed – the tunneling dynamics between these vacua, the statistics of their location in moduli space, and the potential real- ization of slow-roll inflation in the flux potentials generated in string theory. We find that the tunneling transitions that occur between a certain class of supersymmetric vacua related to each other via monodromies around the conifold point are sensitive to the details of warping in the near-conifold regime. We also study the impact of warping on the distribution of vacua near the conifold and determine that while previous work has concluded that the conifold point acts as an accumulation point for vacua, warping highly dilutes the distribution in pre- cisely this regime. Finally we investigate a novel form of inflation dubbed spiral inflation to see if it can be realized near the conifold point. We conclude that for our particular models, spiral inflation seems to rely on a de Sitter-like vacuum energy. As a result, whenever spiral inflation is realized, the inflation is actually driven by a vacuum energy. Contents Introduction 1 1 Background 3 1.1 Extra Dimensions in String Theory . 3 1.1.1 Calabi-Yau Manifolds . 4 1.1.2 Moduli Space of Calabi-Yau Manifolds . 9 1.2 The Type II Superstring . 24 1.2.1 The Open String . 25 1.2.2 The Closed String . 26 1.2.3 Type IIB Supergravity . 28 1.3 Flux Compactification . 30 1.3.1 No-Go Theorem . 31 1.3.2 Adding Local Sources . 33 1.3.3 Tadpole Condition . 34 1.3.4 Four Dimensional Physics . 36 1.3.5 Warping Correction to The Kähler Metric . 39 1.3.6 The Conifold Geometry . 41 1.3.7 Branes and Fluxes on the Conifold . 48 1.3.8 Warping on the Conifold . 51 1.3.9 Warped Kähler Metric on the Deformed Conifold . 53 i 1.4 Tunneling in Quantum Field Theory . 56 1.4.1 Thin Wall Approximation . 58 1.5 Numerical Techniques . 61 1.5.1 The Shooting Method . 62 1.5.2 The Relaxation Method . 64 2 Conifolds and Tunneling in the String Landscape 70 2.1 Introduction . 70 2.2 Flux Compactification of One Parameter Models . 71 2.2.1 The Superpotential, Kähler Potential, and Scalar Potential . 71 2.2.2 Picard-Fuchs Equations . 76 2.2.3 Numerical Computation of Periods . 79 2.3 Near-Conifold Potential and Numerical Data . 81 2.3.1 The Kähler Potential and its Derivatives . 82 2.3.2 The Superpotential and its Derivatives . 83 2.3.3 The Flux Potential Near the Conifold . 84 2.3.4 Mirror Quintic Near-Conifold Numerical Data . 84 2.4 Finding Vacua . 86 2.5 Numerical Conifunneling . 87 2.5.1 Equations of Motion and Setup . 88 2.5.2 Relaxation in the Bulk . 92 2.5.3 Results from Relaxation in the Vicinity of the Conifold Point . 95 2.6 The Physics of Conifunneling . 98 2.6.1 Geometric Interpretation . 98 2.6.2 The Shortest Path . 102 2.7 Discussion . 104 ii 3 Warped Vacuum Statistics 106 3.1 Introduction . 106 3.2 Background . 107 3.3 Analytical Distributions . 108 3.3.1 Counting the Vacua . 108 3.3.2 Incorporating Warping . 123 3.3.3 Finite Fluxes . 127 3.4 Numerical Vacuum Statistics . 137 3.4.1 Unwarped Analysis . 138 3.4.2 Warped Analysis . 140 3.4.3 Monte-Carlo Vacua . 141 3.5 Discussion . 143 4 Exploring Spiral Inflation in String Theory 147 4.1 Introduction . 147 4.2 Spiral Inflation . 148 4.2.1 Slow-Roll Conditions for Multiple Fields . 148 4.2.2 Spiral Trajectories and the Global Properties of the Potential . 150 4.3 Potentials in String Theory . 153 4.3.1 Near Conifold Form of the Metric and Potential . 155 4.4 Spiraling in String Theory . 159 4.4.1 Spiral Inflation Versus de Sitter Space . 160 4.5 Numerical Simulations . 163 4.5.1 Initial Conditions . 165 4.5.2 Duration of Spiral Inflation . 166 4.6 Discussion . 167 Concluding Remarks 170 iii List of Figures 1.1 Cycles of a genus two surface . 21 1.2 An example of a potential with two non-degenerate minima. 57 1.3 The bounce for the Euclidean (inverted) potential . 58 1.4 Interpolating soliton . 60 1.5 Example of undershooting and overshooting . 62 1.6 Example results of the relaxation method . 66 1.7 Relaxation method near a singular point . 68 1.8 Hard wall modification of the relaxation method . 69 2.1 Results from relaxation method in the bulk. 94 2.2 Relaxation in the bulk superimposed on the potential. 94 2.3 Relaxation near the conifold point. 95 2.4 Relaxation near the conifold point for the axio-dilaton. 96 2.5 Relaxation near the conifold superimposed on potential. 97 2.6 Contributions to the tension from various sources. 99 2.7 Geometrical perspective of conifunneling. 101 2.8 Brane nucleation in conifunneling . 101 3.1 Regions of integration . 145 3.2 Numerical versus analytical distribution . 146 4.1 Near conifold potential . 163 iv 4.2 Spiral potential that does not rely on vacuum energy . 164 4.3 Solutions to the initial conditions for spiral inflation . 165 4.4 Evolution of the spiral condition . 167 4.5 Number of e-foldings for different angular momenta . 168 4.6 Spiral inflation versus vacuum energy . 169 v ACKNOWLEDGMENTS Over the last five years, I have had the pleasure to interact with many wonderful people and am grateful to many of them for their insights, support, and company. First and foremost, I would like to thank my wonderful wife Sheana who has been the most inspiring, thoughtful, and supportive friend I could have ever asked for. I also want to thank my adviser Brian Greene for helping me understand and, perhaps more importantly, appreciate physics. I also want to extend my appreciation to my defense committee for their patience and flexibility as well as their feedback and insights. I also want to thank David Kagan who has been incredibly generous with his time and help and with whom it has been a great pleasure working. I also want to thank Subir Sabharwal, Yonah Lemonik, Arthur Franke, Gary Cheng, Stefanos Marnerides, and Kurt Hinterbichler who besides being great friends have all made learning physics a pleasure. Last, but certainly not least, I want to thank my parents Stein-Göran and Hélène Ahlqvist, as well as my sisters Gabriella Ahlqvist and Alexandra Schönning for their endless love and support. vi DEDICATIONS To Sheana, Mom, and Dad vii 1 Introduction It has been a fundamental and largely unquestioned assumption in physics until the mid 20th century that the constituents of nature are point-like. While it may not seem like a radical idea, introducing extended objects such as strings into physics has given birth to an entire subfield of mathematical physics known as string theory. By simply requiring a quantum mechanical fundamental string to propagate in a Lorentz invariant way one can show that Einstein’s equations of general relativity must be satisfied. What may be even more impressive is that one can also show that consistency can only be achieved in a specific space-time dimension. So, while other theories of physics can be consistently formulated in arbitrary dimensions, string theory requires there to be precisely ten dimensions.1 Clearly, we only experience four such dimensions at low energy so it becomes crucial to understand what happens to the additional six. The most well-studied approach is to compactify the additional dimensions on an internal manifold leaving only four large dimensions. Ideally, one would like to make predictions on how the dynamics of string theory affects low-energy physics in four dimensions. Here we currently reach a roadblock. As it turns out there are many consistent low-energy solutions of string theory, and currently it is not know which, if any, corresponds to our observable universe. This landscape of string theory is in many ways one of the major challenges of modern string theory mainly due to its vast size and computational complexity2. A heuristic argument based on counting the number of 1Interestingly, the fact that this calculation should even yield an integer is not clear at the outset. 2There is actually also a landscape in quantum field theory. See the concluding remarks for a brief discussion of this. 2 inequivalent flux compactifications for a generic Calabi-Yau manifold shows that there may be as many as 10500 distinct solutions, clearly too many to sort through one-by-one. Clearly it is of great importance to understand the structure of this landscape which is what we presently attempt. We begin this dissertation with a review of the required background material. This includes Calabi-Yau manifolds and their associated moduli spaces, an in-depth discussion on warping in the deformed conifold geometry for type IIB supergravity, as well as a brief review of tunneling in quantum field theory and the numerical techniques that are useful in finding these tunneling solutions. In chapter 2 we focus on understanding the tunneling dynamics in the string landscape.
Recommended publications
  • Wall Crossing and M-Theory
    Wall Crossing and M-theory The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Aganagic, Mina, Hirosi Ooguri, Cumrun Vafa, and Masahito Yamazaki. 2011. Wall crossing and M-theory. Publications of the Research Institute for Mathematical Sciences 47(2): 569-584. Published Version doi:10.2977/PRIMS/44 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:7561260 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP CALT-68-2746 IPMU09-0091 UT-09-18 Wall Crossing and M-Theory Mina Aganagic1, Hirosi Ooguri2,3, Cumrun Vafa4 and Masahito Yamazaki2,3,5 1Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA 2California Institute of Technology, Pasadena, CA 91125, USA 3 IPMU, University of Tokyo, Chiba 277-8586, Japan 4Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 5Department of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract arXiv:0908.1194v1 [hep-th] 8 Aug 2009 We study BPS bound states of D0 and D2 branes on a single D6 brane wrapping a Calabi- Yau 3-fold X. When X has no compact 4-cyles, the BPS bound states are organized into a free field Fock space, whose generators correspond to BPS states of spinning M2 branes in M- theory compactified down to 5 dimensions by a Calabi-Yau 3-fold X.
    [Show full text]
  • Abdus Salam Educational, Scientific and Cultural XA0500266 Organization International Centre
    the united nations abdus salam educational, scientific and cultural XA0500266 organization international centre international atomic energy agency for theoretical physics 1 a M THEORY AND SINGULARITIES OF EXCEPTIONAL HOLONOMY MANIFOLDS Bobby S. Acharya and Sergei Gukov Available at: http://www.ictp.it/-pub-off IC/2004/127 HUTP-03/A053 RUNHETC-2003-26 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS M THEORY AND SINGULARITIES OF EXCEPTIONAL HOLONOMY MANIFOLDS Bobby S. Acharya1 The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy and Sergei Gukov2 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA. Abstract M theory compactifications on Gi holonomy manifolds, whilst supersymmetric, require sin- gularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a
    [Show full text]
  • Open Gromov-Witten Invariants and Syz Under Local Conifold Transitions
    OPEN GROMOV-WITTEN INVARIANTS AND SYZ UNDER LOCAL CONIFOLD TRANSITIONS SIU-CHEONG LAU Abstract. For a local non-toric Calabi-Yau manifold which arises as smoothing of a toric Gorenstein singularity, this paper derives the open Gromov-Witten invariants of a generic fiber of the special Lagrangian fibration constructed by Gross and thereby constructs its SYZ mirror. Moreover it proves that the SYZ mirrors and disc potentials vary smoothly under conifold transitions, giving a global picture of SYZ mirror symmetry. 1. Introduction Let N be a lattice and P a lattice polytope in NR. It is an interesting classical problem in combinatorial geometry to construct Minkowski decompositions of P . P v On the other hand, consider the family of polynomials v2P \N cvz for cv 2 C with cv 6= 0 when v is a vertex of P . All these polynomials have P as their Newton polytopes. This establishes a relation between geometry and algebra, and the geometric problem of finding Minkowski decompositions is transformed to the algebraic problem of finding polynomial factorizations. One purpose of this paper is to show that the beautiful algebro-geometric correspondence between Minkowski decompositions and polynomial factorizations can be realized via SYZ mirror symmetry. A key step leading to the miracle is brought by a result of Altmann [3]. First of all, a lattice polytope corresponds to a toric Gorenstein singularity X. Altmann showed that Minkowski decompositions of the lattice polytope correspond to (partial) smoothings of X. From string- theoretic point of view different smoothings of X belong to different sectors of the same stringy K¨ahlermoduli.
    [Show full text]
  • Singlet Glueballs in Klebanov-Strassler Theory
    Singlet Glueballs In Klebanov-Strassler Theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY IVAN GORDELI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy ARKADY VAINSHTEIN April, 2016 c IVAN GORDELI 2016 ALL RIGHTS RESERVED Acknowledgements First of all I would like to thank my scientific adviser - Arkady Vainshtein for his incredible patience and support throughout the course of my Ph.D. program. I would also like to thank my committee members for taking time to read and review my thesis, namely Ronald Poling, Mikhail Shifman and Alexander Voronov. I am deeply grateful to Vasily Pestun for his support and motivation. Same applies to my collaborators Dmitry Melnikov and Anatoly Dymarsky who have suggested this research topic to me. I am thankful to my other collaborator - Peter Koroteev. I would like to thank Emil Akhmedov, A.Yu. Morozov, Andrey Mironov, M.A. Olshanetsky, Antti Niemi, K.A. Ter-Martirosyan, M.B. Voloshin, Andrey Levin, Andrei Losev, Alexander Gorsky, S.M. Kozel, S.S. Gershtein, M. Vysotsky, Alexander Grosberg, Tony Gherghetta, R.B. Nevzorov, D.I. Kazakov, M.V. Danilov, A. Chervov and all other great teachers who have shaped everything I know about Theoretical Physics. I am deeply grateful to all my friends and colleagues who have contributed to discus- sions and supported me throughout those years including A. Arbuzov, L. Kushnir, K. Kozlova, A. Shestov, V. Averina, A. Talkachova, A. Talkachou, A. Abyzov, V. Poberezh- niy, A. Alexandrov, G. Nozadze, S. Solovyov, A. Zotov, Y. Chernyakov, N.
    [Show full text]
  • Black Holes with Lambert W Function Horizons
    Black holes with Lambert W function horizons Moises Bravo Gaete,∗ Sebastian Gomezy and Mokhtar Hassainez ∗Facultad de Ciencias B´asicas,Universidad Cat´olicadel Maule, Casilla 617, Talca, Chile. y Facultad de Ingenier´ıa,Universidad Aut´onomade Chile, 5 poniente 1670, Talca, Chile. zInstituto de Matem´aticay F´ısica,Universidad de Talca, Casilla 747, Talca, Chile. September 17, 2021 Abstract We consider Einstein gravity with a negative cosmological constant endowed with distinct matter sources. The different models analyzed here share the following two properties: (i) they admit static symmetric solutions with planar base manifold characterized by their mass and some additional Noetherian charges, and (ii) the contribution of these latter in the metric has a slower falloff to zero than the mass term, and this slowness is of logarithmic order. Under these hypothesis, it is shown that, for suitable bounds between the mass and the additional Noetherian charges, the solutions can represent black holes with two horizons whose locations are given in term of the real branches of the Lambert W functions. We present various examples of such black hole solutions with electric, dyonic or axionic charges with AdS and Lifshitz asymptotics. As an illustrative example, we construct a purely AdS magnetic black hole in five dimensions with a matter source given by three different Maxwell invariants. 1 Introduction The AdS/CFT correspondence has been proved to be extremely useful for getting a better understanding of strongly coupled systems by studying classical gravity, and more specifically arXiv:1901.09612v1 [hep-th] 28 Jan 2019 black holes. In particular, the gauge/gravity duality can be a powerful tool for analyzing fi- nite temperature systems in presence of a background magnetic field.
    [Show full text]
  • Universit`A Degli Studi Di Perugia the Lambert W Function on Matrices
    Universita` degli Studi di Perugia Facolta` di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica The Lambert W function on matrices Candidato Relatore MassimilianoFasi BrunoIannazzo Contents Preface iii 1 The Lambert W function 1 1.1 Definitions............................. 1 1.2 Branches.............................. 2 1.3 Seriesexpansions ......................... 10 1.3.1 Taylor series and the Lagrange Inversion Theorem. 10 1.3.2 Asymptoticexpansions. 13 2 Lambert W function for scalar values 15 2.1 Iterativeroot-findingmethods. 16 2.1.1 Newton’smethod. 17 2.1.2 Halley’smethod . 18 2.1.3 K¨onig’s family of iterative methods . 20 2.2 Computing W ........................... 22 2.2.1 Choiceoftheinitialvalue . 23 2.2.2 Iteration.......................... 26 3 Lambert W function for matrices 29 3.1 Iterativeroot-findingmethods. 29 3.1.1 Newton’smethod. 31 3.2 Computing W ........................... 34 3.2.1 Computing W (A)trougheigenvectors . 34 3.2.2 Computing W (A) trough an iterative method . 36 A Complex numbers 45 A.1 Definitionandrepresentations. 45 B Functions of matrices 47 B.1 Definitions............................. 47 i ii CONTENTS C Source code 51 C.1 mixW(<branch>, <argument>) ................. 51 C.2 blockW(<branch>, <argument>, <guess>) .......... 52 C.3 matW(<branch>, <argument>) ................. 53 Preface Main aim of the present work was learning something about a not- so-widely known special function, that we will formally call Lambert W function. This function has many useful applications, although its presence goes sometimes unrecognised, in mathematics and in physics as well, and we found some of them very curious and amusing. One of the strangest situation in which it comes out is in writing in a simpler form the function .
    [Show full text]
  • The Strange Properties of the Infinite Power Tower Arxiv:1908.05559V1
    The strange properties of the infinite power tower An \investigative math" approach for young students Luca Moroni∗ (August 2019) Nevertheless, the fact is that there is nothing as dreamy and poetic, nothing as radical, subversive, and psychedelic, as mathematics. Paul Lockhart { \A Mathematician's Lament" Abstract In this article we investigate some "unexpected" properties of the \Infinite Power Tower 1" function (or \Tetration with infinite height"): . .. xx y = f(x) = xx where the \tower" of exponentiations has an infinite height. Apart from following an initial personal curiosity, the material collected here is also intended as a potential guide for teachers of high-school/undergraduate students interested in planning an activity of \investigative mathematics in the classroom", where the knowledge is gained through the active, creative and cooperative use of diversified mathematical tools (and some ingenuity). The activity should possibly be carried on with a laboratorial style, with no preclusions on the paths chosen and undertaken by the students and with little or no information imparted from the teacher's desk. The teacher should then act just as a guide and a facilitator. The infinite power tower proves to be particularly well suited to this kind of learning activity, as the student will have to face a challenging function defined through a rather uncommon infinite recursive process. They'll then have to find the right strategies to get around the trickiness of this function and achieve some concrete results, without the help of pre-defined procedures. The mathematical requisites to follow this path are: functions, properties of exponentials and logarithms, sequences, limits and derivatives.
    [Show full text]
  • String Cosmology
    ��������� � ������ ������ �� ��������� ��� ������������� ������� �� � �� ���� ���� ������ ��������� ���� � �� ������� ���������� �� �������� ���������� �� ������� ��������� �� ���������� ������ Lecture 2 Stabilization of moduli in superstring theory Fluxes NS (perturbative string theory) RR (non-perturbative string theory) Non-perturbative corrections to superpotential and Kahler potential Start 2008 Higgs?Higgs? MSSM?MSSM? SplitSplit susysusy?? NoNo susysusy?? IFIF SUSYSUSY ISIS THERETHERE…… The significance of discovery of supersymmetry in nature, which will manifests itself via existence of supersymmetric particles, would be a discovery of the fermionicfermionic dimensionsdimensions ofof spacetimespacetime ItIt willwill bebe thethe mostmost fundamentalfundamental discoverydiscovery inin physicsphysics afterafter EinsteinEinstein’’ss relativityrelativity SUPERSYMMETRY: GravityGravity Supergravity/StringSupergravity/String theorytheory There are no single scalars fields in susy models! Scalars come in pairs, they are always complex in supersymmetry. For example, axion and dilaton or axion and radial modulus. Generically, multi-dimensional moduli space. An effective inflaton may be a particular direction in moduli space. In string theory scalars often have geometrical meaning: distance between branes, size of internal dimensions, size of supersymmetric cycles on which branes can be wrapped, etc StabilizationStabilization ofof modulimoduli isis necessarynecessary forfor stringstring theorytheory toto describedescribe thethe effectiveeffective
    [Show full text]
  • Note on De Sitter Vacua from Perturbative and Non-Perturbative Dynamics in Type IIB/F-Theory Compactifications ∗ Vasileios Basiouris, George K
    Physics Letters B 810 (2020) 135809 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Note on de Sitter vacua from perturbative and non-perturbative dynamics in type IIB/F-theory compactifications ∗ Vasileios Basiouris, George K. Leontaris Physics Department, University of Ioannina, 45110, Ioannina, Greece a r t i c l e i n f o a b s t r a c t Article history: The properties of the effective scalar potential are studied in the framework of type IIB string theory, Received 1 August 2020 taking into account perturbative and non-perturbative corrections. The former modify the Kähler Received in revised form 21 September potential and include α and logarithmic corrections generated when intersecting D7branes are part of 2020 the internal geometric configuration. The latter add exponentially suppressed Kähler moduli dependent Accepted 23 September 2020 terms to the fluxed superpotential. The possibility of partial elimination of such terms which may Available online 1 October 2020 happen for particular choices of world volume fluxes is also taken into account. That being the case, Editor: A. Volovichis a simple set up of three Kähler moduli is considered in the large volume regime, where only one of them is assumed to induce non-perturbative corrections. It is found that the shape of the F-term potential crucially depends on the parametric space associated with the perturbative sector and the volume modulus. De Sitter vacua can be obtained by implementing one of the standard mechanisms, i.e., either relying on D-terms related to U (1) symmetries associated with the D7branes, or introducing D3 branes.
    [Show full text]
  • Conifold Transitions and Five-Brane Condensation in M-Theory on Spin(7
    INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 20 (2003) 665–705 PII: S0264-9381(03)53801-1 Conifold transitions and five-brane condensation in M-theory on Spin(7) manifolds Sergei Gukov1,JamesSparks2 and David Tong3 1 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 2 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK 3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected], [email protected] and [email protected] Received 23 September 2002, in final form 6 January 2003 Published 28 January 2003 Online at stacks.iop.org/CQG/20/665 Abstract We conjecture a topology-changing transition in M-theory on a non-compact asymptotically conical Spin(7) manifold, where a 5-sphere collapses and a CP2 bolt grows. We argue that the transition may be understood as the condensation of M5-branes wrapping S5.Upon reduction to ten dimensions, it has a physical interpretation as a transition of D6-branes lying on calibrated submanifolds of flat space. In yet another guise, it may be seen as a geometric transition between two phases of type IIA string theory on a G2 holonomy manifold with either wrapped D6-branes, or background Ramond–Ramond flux. This is the first non-trivial example of a topology-changing transition with only 1/16 supersymmetry. PACS numbers: 11.25.Mj, 11.30.Pb, 11.15.Tk Contents 1. Introduction 666 2. D6-branes, M-theory and Spin(7) conifolds 670 2.1.
    [Show full text]
  • On the Lambert W Function and Its Utility in Biochemical Kinetics
    Biochemical Engineering Journal 63 (2012) 116–123 Contents lists available at SciVerse ScienceDirect Biochemical Engineering Journal j ournal homepage: www.elsevier.com/locate/bej Review On the Lambert W function and its utility in biochemical kinetics ∗ Marko Golicnikˇ Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia a r t i c l e i n f o a b s t r a c t Article history: This article presents closed-form analytic solutions to three illustrative problems in biochemical kinetics Received 6 October 2011 that have usually been considered solvable only by various numerical methods. The problems solved Received in revised form concern two enzyme-catalyzed reaction systems that obey diversely modified Michaelis–Menten rate 20 December 2011 equations, and biomolecule surface binding that is limited by mass transport. These problems involve Accepted 21 January 2012 the solutions of transcendental equations that include products of variables and their logarithms. Such Available online 3 February 2012 equations are solvable by the use of the Lambert W(x) function. Thus, these standard kinetics examples are solved in terms of W(x) to show the applicability of this commonly unknown function to the biochemical Keywords: Biokinetics community. Hence, this review first of all describes the mathematical definition and properties of the W(x) Biosensors function and its numerical evaluations, together with analytical approximations, and then it describes the Enzymes use of the W(x) function in biochemical kinetics. Other applications of the function in various engineering Integrated rate equation sciences are also cited, although not described.
    [Show full text]
  • On the Lambert W Function 329
    On the Lambert W function 329 The text below is the same as that published in Advances in Computational Mathematics, Vol 5 (1996) 329 – 359, except for a minor correction after equation (1.1). The pagination matches the published version until the bibliography. On the Lambert W Function R. M. Corless1,G.H.Gonnet2,D.E.G.Hare3,D.J.Jeffrey1 andD.E.Knuth4 1Department of Applied Mathematics, University of Western Ontario, London, Canada, N6A 5B7 2Institut f¨ur Wissenschaftliches Rechnen, ETH Z¨urich, Switzerland 3Symbolic Computation Group, University of Waterloo, Waterloo, Canada, N2L 3G1 4Department of Computer Science, Stanford University, Stanford, California, USA 94305-2140 Abstract The Lambert W function is defined to be the multivalued inverse of the function w → wew. It has many applications in pure and applied mathematics, some of which are briefly described here. We present a new discussion of the complex branches of W ,an asymptotic expansion valid for all branches, an efficient numerical procedure for evaluating the function to arbitrary precision, and a method for the symbolic integration of expressions containing W . 1. Introduction In 1758, Lambert solved the trinomial equation x = q +xm by giving a series develop- ment for x in powers of q. Later, he extended the series to give powers of x as well [48,49]. In [28], Euler transformed Lambert’s equation into the more symmetrical form xα − xβ =(α − β)vxα+β (1.1) by substituting x−β for x and setting m = α/β and q =(α − β)v. Euler’s version of Lambert’s series solution was thus n 1 2 x =1+nv + 2 n(n + α + β)v + 1 n(n + α +2β)(n +2α + β)v3 6 (1.2) 1 4 + 24 n(n + α +3β)(n +2α +2β)(n +3α + β)v +etc.
    [Show full text]