Mouse Tbrg4 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tbrg4 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tbrg4 Knockout Project (CRISPR/Cas9) Objective: To create a Tbrg4 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tbrg4 gene (NCBI Reference Sequence: NM_001130457 ; Ensembl: ENSMUSG00000000384 ) is located on Mouse chromosome 11. 13 exons are identified, with the ATG start codon in exon 3 and the TGA stop codon in exon 12 (Transcript: ENSMUST00000189268). Exon 3~12 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 0.05% of the coding region. Exon 3~12 covers 100.0% of the coding region. The size of effective KO region: ~7603 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 1011 12 13 Legends Exon of mouse Tbrg4 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(21.85% 437) | C(22.3% 446) | T(27.8% 556) | G(28.05% 561) Note: The 2000 bp section upstream of start codon is analyzed to determine the GC content. Significant high GC-content regions are found. The gRNA site is selected outside of these high GC-content regions. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(22.25% 445) | C(23.65% 473) | T(28.15% 563) | G(25.95% 519) Note: The 2000 bp section downstream of stop codon is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr11 - 6624221 6626220 2000 browser details YourSeq 164 575 746 2000 97.7% chr13 - 55175710 55175881 172 browser details YourSeq 163 576 747 2000 97.7% chr16 - 17852658 17852830 173 browser details YourSeq 163 576 749 2000 97.2% chr11 - 74627326 74627505 180 browser details YourSeq 159 578 747 2000 95.9% chrX - 164367894 164368061 168 browser details YourSeq 159 575 746 2000 96.6% chr11 - 85256585 85256758 174 browser details YourSeq 158 581 746 2000 97.6% chr2 + 33279712 33279877 166 browser details YourSeq 158 577 742 2000 97.6% chr11 + 46901203 46901368 166 browser details YourSeq 156 585 748 2000 97.6% chr7 - 46029531 46029694 164 browser details YourSeq 156 576 746 2000 96.0% chr17 + 26148601 26148778 178 browser details YourSeq 156 576 749 2000 94.9% chr17 + 17065568 17065741 174 browser details YourSeq 155 581 743 2000 97.6% chr2 - 153819366 153819528 163 browser details YourSeq 155 579 743 2000 97.0% chr1 - 82818508 82818672 165 browser details YourSeq 155 576 739 2000 97.6% chr6 + 4968032 4968197 166 browser details YourSeq 154 580 747 2000 95.9% chr4 + 124577706 124577873 168 browser details YourSeq 154 575 747 2000 94.8% chr12 + 91872598 91872771 174 browser details YourSeq 153 573 738 2000 95.8% chr3 - 121965701 121965865 165 browser details YourSeq 153 584 747 2000 95.1% chr17 - 27641975 27642136 162 browser details YourSeq 153 584 746 2000 97.0% chr8 + 71441266 71441428 163 browser details YourSeq 153 577 748 2000 94.8% chr5 + 125390913 125391085 173 Note: The 2000 bp section upstream of start codon is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr11 - 6614616 6616615 2000 browser details YourSeq 152 1411 1945 2000 84.6% chr9 + 69790052 69790433 382 browser details YourSeq 139 1764 1962 2000 91.7% chr2 + 29159721 29160240 520 browser details YourSeq 139 1231 1935 2000 91.2% chr13 + 101274763 101275504 742 browser details YourSeq 137 1778 1966 2000 93.1% chr6 - 99153199 99153517 319 browser details YourSeq 134 1777 1942 2000 91.4% chr1 - 128369189 128369355 167 browser details YourSeq 133 1794 1970 2000 89.3% chr11 + 51618848 51619039 192 browser details YourSeq 132 1777 1941 2000 87.3% chrX + 47951459 47951615 157 browser details YourSeq 130 1806 1964 2000 89.9% chr19 + 6107136 6107287 152 browser details YourSeq 130 1802 1965 2000 89.2% chr10 + 81171440 81171600 161 browser details YourSeq 128 1777 1936 2000 87.4% chr17 + 23624928 23625077 150 browser details YourSeq 126 1802 1939 2000 95.7% chr12 - 8555016 8555153 138 browser details YourSeq 126 1802 1958 2000 91.9% chr10 - 24011157 24011312 156 browser details YourSeq 126 1777 1925 2000 93.2% chr17 + 47569562 47778834 209273 browser details YourSeq 126 1806 1962 2000 87.2% chr1 + 37839911 37840058 148 browser details YourSeq 125 1802 1962 2000 90.9% chr4 + 110003680 110004198 519 browser details YourSeq 125 1802 1940 2000 95.0% chr3 + 137111484 137111622 139 browser details YourSeq 123 1793 1940 2000 91.9% chr3 - 135561849 135562003 155 browser details YourSeq 122 1805 1956 2000 88.9% chr1 - 7087319 7087466 148 browser details YourSeq 122 1806 1966 2000 92.4% chr3 + 87888816 87889120 305 Note: The 2000 bp section downstream of stop codon is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Tbrg4 transforming growth factor beta regulated gene 4 [ Mus musculus (house mouse) ] Gene ID: 21379, updated on 24-Oct-2019 Gene summary Official Symbol Tbrg4 provided by MGI Official Full Name transforming growth factor beta regulated gene 4 provided by MGI Primary source MGI:MGI:1100868 See related Ensembl:ENSMUSG00000000384 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Cpr2; Tb-12; R74877; AA120735; AA408001; AI527316; 2310042P22Rik Expression Ubiquitous expression in colon adult (RPKM 29.8), large intestine adult (RPKM 26.5) and 28 other tissues See more Orthologs human all Genomic context Location: 11; 11 A1 See Tbrg4 in Genome Data Viewer Exon count: 13 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 11 NC_000077.6 (6615598..6626084, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 11 NC_000077.5 (6515601..6526070, complement) Chromosome 11 - NC_000077.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 12 transcripts Gene: Tbrg4 ENSMUSG00000000384 Description transforming growth factor beta regulated gene 4 [Source:MGI Symbol;Acc:MGI:1100868] Gene Synonyms 2310042P22Rik, Cpr2, TB-12 Location Chromosome 11: 6,615,598-6,626,067 reverse strand. GRCm38:CM001004.2 About this gene This gene has 12 transcripts (splice variants), 183 orthologues, 5 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tbrg4- ENSMUST00000189268.6 2347 630aa ENSMUSP00000140835.1 Protein coding CCDS24423 Q91YM4 TSL:1 212 GENCODE basic APPRIS P1 Tbrg4- ENSMUST00000000394.13 2290 630aa ENSMUSP00000000394.7 Protein coding CCDS24423 Q91YM4 TSL:1 201 GENCODE basic APPRIS P1 Tbrg4- ENSMUST00000136682.7 647 158aa ENSMUSP00000114174.1 Protein coding - Q5SWP1 CDS 3' 207 incomplete TSL:3 Tbrg4- ENSMUST00000144463.1 540 112aa ENSMUSP00000120103.1 Protein coding - Q5SWP0 CDS 3' 208 incomplete TSL:3 Tbrg4- ENSMUST00000156969.7 2324 630aa ENSMUSP00000114256.1 Nonsense mediated - Q91YM4 TSL:1 211 decay Tbrg4- ENSMUST00000150697.7 2241 365aa ENSMUSP00000123131.1 Nonsense mediated - E9PUT1 TSL:1 209 decay Tbrg4- ENSMUST00000134016.1 682 No - Retained intron - - TSL:3 206 protein Tbrg4- ENSMUST00000151008.1 652 No - Retained intron - - TSL:1 210 protein Tbrg4- ENSMUST00000132446.1 602 No - Retained intron - - TSL:2 205 protein Tbrg4- ENSMUST00000131815.7 853 No - lncRNA - - TSL:3 204 protein Tbrg4- ENSMUST00000131477.1 582 No - lncRNA - - TSL:5 203 protein Tbrg4- ENSMUST00000131313.1 380 No - lncRNA - - TSL:3 202 protein Page 7 of 9 https://www.alphaknockout.com 30.47 kb Forward strand 6.61Mb 6.62Mb 6.63Mb Contigs AL603787.8 > Genes (Comprehensive set... < Nacad-201protein coding < Tbrg4-211nonsense mediated decay < Wap-201protein coding < Tbrg4-212protein coding < Wap-203lncRNA < Tbrg4-201protein coding < Wap-202lncRNA < Tbrg4-209nonsense mediated decay < Tbrg4-206retained intron < Tbrg4-204lncRNA < Tbrg4-203lncRNA
Recommended publications
  • DF6079-TBRG4 Antibody
    Affinity Biosciences website:www.affbiotech.com order:[email protected] TBRG4 Antibody Cat.#: DF6079 Concn.: 1mg/ml Mol.Wt.: 71kDa Size: 100ul,200ul Source: Rabbit Clonality: Polyclonal Application: WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000 *The optimal dilutions should be determined by the end user. Reactivity: Human,Mouse,Rat Purification: The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific). Specificity: TBRG4 Antibody detects endogenous levels of total TBRG4. Immunogen: A synthesized peptide derived from human TBRG4, corresponding to a region within C-terminal amino acids. Uniprot: Q969Z0 Description: TBRG4 (transforming growth factor beta regulator 4), also known as CPR2 (cell cycle progression restoration protein 2) or FASTKD4 (FAST kinase domain-containing protein 4), is a 631 amino acid protein that contains one RAP domain and belongs to the FAST kinase family. TBRG4 is ubiquitously expressed and may have a role in cell cycle progression. Existing as two alternatively spliced isoforms, the gene encoding TBRG4 maps to human chromosome 7p13. Chromosome 7 is approximately 158 million bases long, encodes over 1000 genes and makes up about 5% of the human genome. Chromosome 7 has been linked to Osteogenesis imperfecta, Pendred syndrome, Lissencephaly, Citrullinemia and Shwachman-Diamond syndrome. The deletion of a portion of the q arm of chromosome 7 is associated with Williams-Beuren syndrome, a condition characterized by mild mental retardation, an unusual comfort and friendliness with strangers and an elfin appearance. Deletions of portions of the q arm of chromosome 7 are also seen in a number of myeloid disorders including cases of acute myelogenous leukemia and myelodysplasia.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Global Mapping of Herpesvirus-‐Host Protein Complexes Reveals a Novel Transcription
    Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Infectious Disease and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Britt A. Glaunsinger, Chair Professor Laurent Coscoy Professor Qiang Zhou Spring 2015 Abstract Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Britt A. Glaunsinger, Chair Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 high-confidence virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. This work revealed many new interactions between viral and host proteins. I have focused on one interaction in particular, that of a previously uncharacterized KSHV protein, ORF24, with cellular RNA polymerase II (RNAP II). All DNA viruses encode a class of genes that are expressed only late in the infectious cycle, following replication of the viral genome.
    [Show full text]
  • Og Raunvísindasvið - Líftækni
    Háskólinn á Akureyri Viðskipta- og raunvísindasvið - Líftækni Námskeið LOK1126 og LOK1226 Heiti verkefnis Characterization of cathelicidin gene family members in Rock Ptarmigan (Lagopus muta) Verktími Janúar – maí 2017 Nemandi Hallgrímur Steinsson Leiðbeinandi Kristinn Pétur Magnússon Upplag Rafrænt auk þriggja prentaðra eintaka Blaðsíðufjöldi 53 Fjöldi viðauka 1 Fylgigögn Engin Útgáfu- og notkunarréttur Opið verkefni Yfirlýsingar „Ég lýsi því yfir að ég einn er höfundur þessa verkefnis og að það er afrakstur eigin rannsókna“ _________________________________ Hallgrímur Steinsson, 210878-5649 „Það staðfestist að verkefni þetta fullnægir að mínum dómi kröfum til prófs í námskeiðunum LOK1126 og LOK1226“ __________________________________ Kristinn P. Magnússon, leiðbeinandi ii Abstract Cathelicidins are a class of antimicrobial peptides expressed in vertebrate species which are part of the innate immune system. The aim of this thesis was to resolve genomic organization of the cathelicidin gene cluster in rock ptarmigan (Lagopus muta) and to predict the amino sequence of the mature peptides and analyze expression. To locate the cathelicidin genes the chicken (Gallus gallus) genome sequences were used to blast a novel draft genome of rock ptarmigan. The draft genome was subsequently used to design primers for PCR and sequencing, to enable obtaining the entire cathelicidin cluster. The characterization of the cathelicidin cluster in rock ptarmigan revealed all four cathelicidin genes orthologues found in chicken and turkey (Meleagris gallopavo), namely CATHL1, CATH2, CATH3, CATHB1, flanked by KLH18 and TBRG4, in the same order on chromosome 2. The genes map to a 15kb region, which is of similar size in chicken. The quality of the region is good except for two minor gaps of ~100bp.
    [Show full text]
  • Product Data Sheet
    For research purposes only, not for human use Product Data Sheet Anti-TBRG4 Antibody Catalog # Source Reactivity Applications CQA1006 Rabbit H, M, R WB, IF/IC Description Rabbit polyclonal antibody to TBRG4 Immunogen Recombinant full length protein of human TBRG4 Purification The antibody was purified by immunogen affinity chromatography. Specificity Recognizes endogenous levels of TBRG4 protein. Clonality Polyclonal Conjugation Form Liquid in 0.42% Potassium phosphate, 0.87% Sodium chloride, pH 7.3, 30% glycerol, and 0.01% sodium azide. Dilution WB (1/500 - 1/2000), IF/IC (1/50 - 1/200) Gene Symbol TBRG4 Alternative Names CPR2; FASTKD4; KIAA0948; Protein TBRG4; Cell cycle progression restoration protein 2; Cell cycle progression protein 2; FAST kinase domain-containing protein 4; Transforming growth factor beta regulator 4 Entrez Gene 9238 (Human); 21379 (Mouse); 360977 (Rat) SwissProt Q969Z0 (Human); Q91YM4 (Mouse); Q5M9G9 (Rat) Storage/Stability Shipped at 4°C. Upon delivery aliquot and store at -20°C for one year. Avoid freeze/thaw cycles. Application key: E- ELISA, WB- Western blot, IH- Immunohistochemistry, IF- Immunofluorescence, FC- Flow cytometry, IC- Immunocytochemistry, IP- Immunoprecipitation, ChIP- Chromatin Immunoprecipitation, EMSA- Electrophoretic Mobility Shift Assay, BL- Blocking, SE- Sandwich ELISA, CBE- Cell-based ELISA, RNAi- RNA interference Species reactivity key: H- Human, M- Mouse, R- Rat, B- Bovine, C- Chicken, D- Dog, G- Goat, Mk- Monkey, P- Pig, Rb- Rabbit, S- Sheep, Z- Zebrafish COHESION BIOSCIENCES LIMITED WEB ORDER SUPPORT CUSTOM www.cohesionbio.com [email protected] [email protected] [email protected] For research purposes only, not for human use Product Data Sheet Western blot analysis of TBRG4 expression in Hela (A), HepG2 (B) whole cell lysates.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • A Mitochondria-Specific Isoform of FASTK Is Present In
    Article A Mitochondria-Specific Isoform of FASTK Is Present In Mitochondrial RNA Granules and Regulates Gene Expression and Function Graphical Abstract Authors Alexis A. Jourdain, Mirko Koppen, ..., Maria Simarro, Jean-Claude Martinou Correspondence [email protected] In Brief The mitochondrial genome is required for ATP production, but little is known about its expression. Jourdain et al. report that FASTK localizes to mitochondrial RNA granules and is essential for ND6 mRNA biogenesis and complex I activity via a mechanism of mRNA 30 end processing in human mitochondria. Highlights d A mitochondrial isoform of FASTK co-localizes with mitochondrial RNA granules d FASTK binds multiple sites along ND6 mRNA and its precursors d FASTK modulates degradosome activity to generate mature ND6 mRNA d ND6 mRNA levels and complex I activity are decreased in the absence of FASTK Jourdain et al., 2015, Cell Reports 10, 1110–1121 February 24, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.01.063 Cell Reports Article A Mitochondria-Specific Isoform of FASTK Is Present In Mitochondrial RNA Granules and Regulates Gene Expression and Function Alexis A. Jourdain,1 Mirko Koppen,1,6 Christopher D. Rodley,1 Kinsey Maundrell,1 Naı¨gGueguen,2 Pascal Reynier,2 Adela M. Guaras,3 Jose´ A. Enriquez,3 Paul Anderson,4 Maria Simarro,4,5 and Jean-Claude Martinou1,* 1Department of Cell Biology, University of Geneva, 30 quai Ernest-Ansermet, 1211 Gene` ve 4, Switzerland 2UMR CNRS 6214 - INSERM 1083, De´ partement de Biochimie et Ge´ ne´ tique,
    [Show full text]
  • Controversies in Multiple Myeloma Outline
    Controversies in Multiple Myeloma Outline • Myeloma: Introduction • Relapsed refractory case • Definition of relapsed/refractory • When to treat • Why treatment • The Who, When, and Why of Treatment • https://www.ashclinicalnews.org/features/controversies-myeloma- treatment/ Multiple Myeloma • Median age at diagnosis: 69 yrs • 5-yr survival has improved substantially (43% in 2002- 2008 vs 28% in 1987-1989) due to novel agents • Sensitive to treatment, but not curable • Progression inevitable Multiple Myeloma • Median age at diagnosis: 69 yrs • 5-yr survival has improved substantially (43% in 2002- 2008 vs 28% in 1987-1989) due to novel agents • Sensitive to treatment, but not curable • Progression inevitable • Goal of treatment: induce a long-term, disease-free survival with normal quality of life • For a long-term, disease-free survival depth of response is important Natural History of Multiple Myeloma Asymptomatic Symptomatic 100 ACTIVE 2. RELAPSE MYELOMA REFRACTORY 50 1. RELAPSE RELAPSE MGUS or M Protein (g/L) M Protein smoldering myeloma Plateau 20 remission First-line Rx Second-line Rx Third-line Rx Newly Dx15,000/year in US 45,000/year in US IMWG Criteria for Diagnosis of Multiple Myeloma MGUS Smoldering Myeloma Multiple Myeloma § M protein < 3 g/dL § M protein ≥ 3 g/dL § Clonal BM plasma cell > § Clonal plasma cells in BM (serum) or ≥ 500 mg/24 10% or Extramedullary < 10% hrs (urine) plasmacytoma § No myeloma defining § Clonal plasma cells in § AND 1 or more events BM ≥ 10% to 60% myeloma defining § No myeloma defining events events § ≥ 1 CRAB* or § SLiM feature *C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN) R: Renal insufficiency (creatinine clearance < 40 mL/min or serum creatinine > 2 mg/dL) A: Anemia (Hb < 10 g/dL or 2 g/dL < normal) B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET-CT) § SLiM: Sixty percent of plasma cells in BM; Serum free Liight chain ratio ≥ 100; > 1 MRI focal lesion (>5 mm each) § MDE Rajkumar SV, et al.
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]
  • CREB-Dependent Transcription in Astrocytes: Signalling Pathways, Gene Profiles and Neuroprotective Role in Brain Injury
    CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Tesis doctoral Luis Pardo Fernández Bellaterra, Septiembre 2015 Instituto de Neurociencias Departamento de Bioquímica i Biologia Molecular Unidad de Bioquímica y Biologia Molecular Facultad de Medicina CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Memoria del trabajo experimental para optar al grado de doctor, correspondiente al Programa de Doctorado en Neurociencias del Instituto de Neurociencias de la Universidad Autónoma de Barcelona, llevado a cabo por Luis Pardo Fernández bajo la dirección de la Dra. Elena Galea Rodríguez de Velasco y la Dra. Roser Masgrau Juanola, en el Instituto de Neurociencias de la Universidad Autónoma de Barcelona. Doctorando Directoras de tesis Luis Pardo Fernández Dra. Elena Galea Dra. Roser Masgrau In memoriam María Dolores Álvarez Durán Abuela, eres la culpable de que haya decidido recorrer el camino de la ciencia. Que estas líneas ayuden a conservar tu recuerdo. A mis padres y hermanos, A Meri INDEX I Summary 1 II Introduction 3 1 Astrocytes: physiology and pathology 5 1.1 Anatomical organization 6 1.2 Origins and heterogeneity 6 1.3 Astrocyte functions 8 1.3.1 Developmental functions 8 1.3.2 Neurovascular functions 9 1.3.3 Metabolic support 11 1.3.4 Homeostatic functions 13 1.3.5 Antioxidant functions 15 1.3.6 Signalling functions 15 1.4 Astrocytes in brain pathology 20 1.5 Reactive astrogliosis 22 2 The transcription
    [Show full text]
  • Identification of Neoepitopes Recognized by Tumor-Infiltrating Lymphocytes (Tils) from Patients with Glioma
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 28), pp: 19469-19480 Research Paper: Immunology Identification of neoepitopes recognized by tumor-infiltrating lymphocytes (TILs) from patients with glioma Davide Valentini1, Martin Rao2, Qingda Meng2, Anna von Landenberg2, Jiri Bartek Jr3,4, Georges Sinclair4, Georgia Paraschoudi2, Elke Jäger5, Inti Harvey-Peredo4, Ernest Dodoo4 and Markus Maeurer1,2,5 1Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden 2Therapeutic Immunology Unit (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden 3Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark 4Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden 5 Krankenhaus Nordwest, Division of Oncology and Hematology, Frankfurt, Germany Correspondence to: Markus Maeurer, email: [email protected] Keywords: tumor-infiltrating lymphocytes; immunotherapy; neoepitopes; glioblastoma; interferon gamma; Immunology Received: September 11, 2017 Accepted: February 24, 2018 Published: April 13, 2018 Copyright: Valentini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Neoepitope-specific T-cell responses have been shown to induce durable clinical responses in patients with advanced cancers. We explored the recognition patterns of tumor-infiltrating T lymphocytes (TILs) from patients with glioblastoma multiforme (GBM), the most fatal form of tumors of the central nervous system. Whole-genome sequencing was used for generating DNA sequences representing the entire spectrum of ‘private’ somatic mutations in GBM tumors from five patients, followed by 15-mer peptide prediction and subsequent peptide synthesis.
    [Show full text]
  • TBRG4 (NM 030900) Human Tagged ORF Clone – RC222933L4 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC222933L4 TBRG4 (NM_030900) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: TBRG4 (NM_030900) Human Tagged ORF Clone Tag: mGFP Symbol: TBRG4 Synonyms: CPR2; FASTKD4 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC222933). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_030900 ORF Size: 1563 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 TBRG4 (NM_030900) Human Tagged ORF Clone – RC222933L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_030900.2 RefSeq Size: 1961 bp RefSeq ORF: 1566 bp Locus ID: 9238 UniProt ID: Q969Z0, Q969Z0-2 MW: 58.4 kDa Gene Summary: Plays a role in processing of mitochondrial RNA precursors and in stabilization of a subset of mature mitochondrial RNA species, such as MT-CO1, MT-CO2, MT-CYB, MT-CO3, MT-ND3, MT- ND5 and MT-ATP8/6.
    [Show full text]