Accuracy Improvement of Predictive Neural Networks for Managing Energy in Solar Powered Wireless Sensor Nodes

Total Page:16

File Type:pdf, Size:1020Kb

Accuracy Improvement of Predictive Neural Networks for Managing Energy in Solar Powered Wireless Sensor Nodes Accuracy Improvement of Predictive Neural Networks for Managing Energy in Solar Powered Wireless Sensor Nodes DISSERTATION zur Erlangung des akademischen grades Doktor – Ingenieur (Dr.-Ing) vorgelegt der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Chemnitz von M.Sc. Murad AL_Omary geboren am 09.08.1987 in As Sarih, Jordanien Tag der Einreichung : 14. Oktober 2019 Tag der Verteidigung : 1 6. Dezember 2019 Gutachter : Prof. Dr.-Ing. Olfa Kanoun Prof. Dr.-Ing. Nabil Derbel Acknowledgement It is a great feeling, after finishing the Ph.D. to look backward to all stations I have been through. All the memories passes in front of my eyes as a movie. Oh I’m free now, I have finished my Ph.D. lastly. However, this work was impossible to be done without the support of many people, whom I need to thanks sincerely and from my heart. Above all, I would like to thank God for my success with this chapter of my life. I express my deep sense of gratitude and thanking to Prof. Dr.-Ing. Olfa Kanoun for supervising me all the time, for the extremely motivational conversations as well as the valuable directions and advices. Working with you was and will remain an honor and pride for me all my life. Also, I thank all my colleagues from the MST institute for the unlimited cooperation during the working hours. In particular, the members of energy harvesting group, each according to his own name for granting me a part of their experiences and for the precious feedbacks during our meetings. All the students who worked with me continuously and hardly deserve a thanking words too. I would like to thank German Jordanian University, not only for their partial financial support during my Ph.D. study. But also for giving me the opportunity to be one of its members after obtaining the title (Dr.-Ing). I don’t forget also my lovely university, TU Chemnitz for funding me as a teaching and research assistant and for the beautiful moments I lived in. The financial support from the German Academic Exchange Service (DAAD) through “InProTUC”, “PROMOS” and “STIBET” scholarships are gratefully acknowledged. Last, and certainly not least, I am vastly indebted to my wonderful wife “Eman”. I would like to thank her for understanding me during my Ph.D. work. I would like to thank my mother “Moyasser”, whose love and prayers always strengthen me and push me forward. Many thanks for my brothers, “Yazan” and “Malek”, for their continuous encouragement especially at the difficult times. Murad AL_Omary Chemnitz, Oct. 2019 III Dedication To the spirit of my late father, “Abdullah” To my lovely twins, “Reman” & “Lilian” V Abstract Wireless Sensor Network (WSN) is a technology that measures an environmental or physical parameters in order to use them by decision makers with a possibility of remote monitoring. Normally, sensor nodes that compose these networks are powered by batteries which are no longer feasible, especially when they used as fixed and standalone power source. This is due to the costly replacement and maintenance. Ambient energy harvesting systems can be used with these nodes to support the batteries and to prolong the lifetime of these networks. Due to the high power density of solar energy in comparison with different environmental energies, solar cells are the most utilized harvesting systems. Although that, the fluctuating and intermittent nature of solar energy causes a real challenge against fulfilling a functional and reliable sensor node. In order to operate the sensor node effectively, its energy consumption should be well managed. One interesting approach for this purpose is to control the future node’s activities according to the prospective energy available. This requires performing a prior prediction of the harvestable solar energy for the upcoming operation periods including the sun’s free times. A few prediction algorithms have been created using stochastic and statistical principles as well as artificial intelligence (AI) methods. A considerable prediction error of 5-70% is realized by these algorithms affecting the reliable operation of the nodes. For example, the stochastic ones use a discrete energy states which are mostly do not fit the actual readings. The statistical methods use a weighting factors for the previous registered readings. Thus, they are convenient only to predict energy profiles under consistent weather conditions. AI methods require large observations to be used in the training process which increase the memory space needed. Accordingly, the performance concerning the prediction accuracy of these algorithms is not sufficient. In this thesis, a prediction algorithm using a neural network has been proposed and implemented in a microcontroller for managing energy consumption of solar cell driven sensor nodes. The utilized neural network has been developed using a combination of meteorological and statistical input parameters. This is to meet a required design criteria for the sensor nodes and to fulfill a performance exceeds in its accuracy the performance of aforementioned traditional algorithms. The prediction accuracy represented by the correlation coefficient has been registered for the developed neural network to be 0.992, which increases the most accurate traditional network which has a value 0.963. VII The developed neural network has been embedded into a sensor node prototype to adjust the operating states or modes over a simulation period of one week. During this period, the sensor node has worked 6 hours more towards normal operation mode. This in its role helped to fulfill an effective use of available energy approximately 3.6% better than the most accurate traditional network. Thus, longer lifetime and more reliable sensor node. Keywords: Wireless Sensor Network (WSN), Energy Harvesting, Energy Management, Artificial Neural Network (ANN), Prediction Algorithms, Global Solar Radiation (퐺푆푅). VIII Kurzfassung Das drahtlose Sensornetzwerk (WSN) ist eine Technologie, die Umgebungsbedingungen oder physikalische Parameter misst, weiterleitet und per Fernüberwachung zur Verfügung stellt. Normalerweise werden die Sensorknoten, die diese Netzwerke bilden, von Batterien gespeist. Diese sollen aus verschiedenen Gründen nicht mehr verwendet werden, sondern es wird auf eine eigenständige Stromversorgung gesetzt. Dies soll den aufwendigen Austausch und die Wartung minimieren. Energy Harvesting kann mit den Knoten verwendet werden, um die Batterien zu unterstützen und die Lebensdauer der Netzwerke zu verlängern. Aufgrund der hohen Leistungsdichte der Solarenergie im Vergleich zu verschiedenen anderen Umweltenergien sind Solarzellen die am häufigsten eingesetzten Wandler, allerdings stellt die schwankende und intermittierende Natur der Solarenergie eine Herausforderung dar, einen funktionalen und zuverlässigen Sensorknoten zu versorgen. Um den Sensorknoten effektiv zu betreiben, sollte sein Energieverbrauch sinnvoll gesteuert werden. Ein interessanter Ansatz zu diesem Zweck ist die Steuerung der Aktivitäten des Knotens in Abhängigkeit von der zukünftig verfügbaren Energie. Dies erfordert eine Vorhersage der wandelbaren Sonnenenergie für die kommenden Betriebszeiten einschließlich der freien Zeiten der Sonne. Einige Vorhersagealgorithmen wurden mit stochastischen und statistischen Prinzipien sowie mit Methoden der künstlichen Intelligenz (KI) erstellt. Durch diese Algorithmen bleibt ein erheblicher Vorhersagefehler von 5-70%, der den zuverlässigen Betrieb der Knoten beeinträchtigt. Beispielsweise verwenden die stochastischen Methoden einen diskreten Energiezustand, der meist nicht zu den tatsächlichen Messwerten passt. Die statistischen Methoden verwenden einen Gewichtungsfaktor für die zuvor registrierten Messwerte. Daher sind sie nur geeignet, um Energieprofile bei konstanten Wetterbedingungen vorherzusagen. KI-Methoden erfordern große Beobachtungen im Trainingsprozess, die den benötigten Speicherplatz erhöhen. Dementsprechend ist die Leistung hinsichtlich der Vorhersagegenauigkeit dieser Algorithmen nicht ausreichend. In dieser Arbeit wird ein Vorhersagealgorithmus mit einem neuronalen Netzwerk entwickelt und eingebunden in einen Mikrocontroller, um die Verwaltung des Energieverbrauchs von solarzellengesteuerten Sensorknoten zu optimieren. Das verwendete neuronale Netzwerk wurde mit einer Kombination aus meteorologischen und statistischen Eingangsparametern realisiert. Dies hat zum Ziel, die erforderlichen Designkriterien für Sensorknoten zu erfüllen und eine Leistung zu erreichen, die in IX ihrer Genauigkeit die Leistung der oben genannten traditionellen Algorithmen übersteigt. Die Vorhersagegenauigkeit die durch den Korrelationskoeffizienten repräsentiert wird, wurde für das entwickelte neuronale Netzwerk auf 0,992 bestimmt. Das genaueste traditionelle Netzwerk erreicht nur einen Wert von 0,963. Das entwickelte neuronale Netzwerk wurde in einen Prototyp eines Sensorknotens integriert, um die Betriebszustände oder -modi über einen Simulationszeitraum von einer Woche anzupassen. Während dieser Zeit hat der Sensorknoten 6 Stunden zusätzlich im Normalbetrieb gearbeitet. Dies trug dazu bei, eine effektive Nutzung der verfügbaren Energie um ca. 3,6% besser zu erfüllen als das genaueste traditionelle Netz. Dadurch wird eine längere Lebensdauer und Zuverlässigkeit des Sensorknotens erreicht. Schlagwörter: Drahtlose Sensornetzwerke (Wireless Sensor Network, WSN), Energiegewinnung, Energiemanagement, Künstliche Neuronale Netz (Artificial Neural Network, ANN), Vorhersagealgorithmen, Globale Sonnenstrahlung,
Recommended publications
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NATIONAL AERONAUT106 AND SPACE ADMINI; RATION The Deep Space Network Progress Report 42-24 September and October 1974 N75-14010 (NASA-CR- 141147) THE DEEP SPACE, NETWORK Progress Repert, Sep. - Oct. 1974 (Jet 174 p HC $6.25 `SCL 17B Propulsion Lab.) Onclas G3/32 05039 9 ?011^^,^, h^1 ^ J' MJ;,', G. ! 1 JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA December 15, 1974 i I i i NATIONAL AERONAUTICS AND SPACE ADMINISTRATION The Deep Space Network Progress Report 42-24 September and October 1974 JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY III Prepared Under Contract No, NAS 7•I00 National Aeronautics and Spa(:e Administration l Preface Beginning with Volume XX,. the Deep Space Network Progress Deport changed from the Technical Report 32- series to the Progress Report 42- series.
    [Show full text]
  • The AKARI/IRC Mid-Infrared All-Sky Survey*
    A&A 514, A1 (2010) Astronomy DOI: 10.1051/0004-6361/200913811 & c ESO 2010 Astrophysics Science with AKARI Special feature The AKARI/IRC mid-infrared all-sky survey D. Ishihara1,2, T. Onaka2, H. Kataza3,A.Salama4, C. Alfageme4,, A. Cassatella4,5,6,N.Cox4,, P. García-Lario4, C. Stephenson4,†,M.Cohen7, N. Fujishiro3,8,‡, H. Fujiwara2, S. Hasegawa3,Y.Ita9,W.Kim3,2,§, H. Matsuhara3, H. Murakami3,T.G.Müller10, T. Nakagawa3, Y. Ohyama11,S.Oyabu3,J.Pyo12,I.Sakon2, H. Shibai13,S.Takita3, T. Tanabé14,K.Uemizu3,M.Ueno3,F.Usui3,T.Wada3, H. Watarai15, I. Yamamura3, and C. Yamauchi3 1 Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-860, Japan e-mail: [email protected] 2 Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 3 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan 4 European Space Astronomy Center (ESAC), Villanueva de la Cañada, PO Box 78, 28691 Madrid, Spain 5 INAF, Istituto di Fisica dello Spazio Interplanetario, via del Fosso del Cavaliere 100, 00133 Roma, Italy 6 Dipartimento di Fisica, Universita’ Roma Tre, via della Vasca Navale 100, 00146 Roma, Italy 7 Radio Astronomy Laboratory, University of California, Berkeley, USA 8 Department of Physics, Faculty of Science, University of Tokyo, 3-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0003, Japan 9 National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan 10 Max-Planck-Institut
    [Show full text]
  • A Large Rotating Disk Galaxy At
    Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago† R.Genzel1,2*, N.M. Förster Schreiber1*, H.Übler1, P.Lang1, T.Naab3, R.Bender4,1, L.J.Tacconi1, E.Wisnioski1, S.Wuyts1,5, T.Alexander6, A. Beifiori4,1, S.Belli1, G. Brammer7, A.Burkert3,1, C.M.Carollo8, J. Chan1, R.Davies1, M. Fossati1,4, A.Galametz1,4, S.Genel9, O.Gerhard1, D.Lutz1, J.T. Mendel1,4, I.Momcheva10, E.J.Nelson1,10, 11 1,4 12 8 1 4,1 A.Renzini , R.Saglia , A.Sternberg , S.Tacchella , K.Tadaki & D.Wilman 1Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr.1, 85748 Garching, Germany ([email protected], [email protected]) 2Departments of Physics and Astronomy, University of California, 94720 Berkeley, USA 3Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching, Germany 4Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, München, D-81679, Germany 5Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom 6Dept of Particle Physics & Astrophysics, Faculty of Physics, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel 7 Space Telescope Science Institute, Baltimore, MD 21218, USA 8Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH Zürich, CH-8093, Switzerland 9Center for Computational Astrophysics, 160 Fifth Avenue, New York, NY 10010, USA 10Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA 11Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, Padova, I-35122, Italy 12School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel In the cold dark matter cosmology, the baryonic components of galaxies - stars and gas - are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark matter halo1.
    [Show full text]
  • Study of Ephemeris Accuracy of the Minor Planets
    LMSC-0420943 27 APRIL 1974 NASA CR-132455 STUDY OF EPHEMERIS ACCURACY OF THE MINOR PLANETS (NASA-CR-132455) STUDY OF EPHEMERIS N74-32264 ACCURACY OF THE MINOR PLANETS (Lockheed Missiles and Space Co.) 173 p HC $11.75 CSCL 03B Unclas G3/30 46739 STUDY PERFORMED UNDER CONTRACT NAS111609, 0 For NASA-LANGLEY RESEARCH CENTER HAMPTON, VIRGINIA Prepared by SPACE SYSTEMS DIVISION LOCKHEED MISSILES & SPACE COMPANY, INC. (A SUBSIDIARY OF LOCKHEED AIRCRAFT CORPORATION) SUNNYVALE, CALIFORNIA 94088 LMSC-D420943 27 April 1974 NASA CR-132455 STUDY OF EPHEMERIS ACCURACY OF THE MINOR PLANETS Study Performed Under Contract NAS1-11609 For NASA-Langley Research Center Hampton, Virginia Prepared by Space Systems Division LOCKHEED MISSILES & SPACE COMPANY, INC. (A Subsidiary of Lockheed Aircraft Corporation) Sunnyvale, California 94088 LOCKHEED MISSILES & SPACE COMPANY LMSC-D420943 FOREWORD The study described in this report was conducted by Lockheed Missiles & Space Company, Inc. (LMSC) for Langley Research Center, National Aeronautics and Space Administration, Hampton, Virginia, under Contract NAS1-11609. The study was conducted under the direction of D. R. Brooks of the Space Technology Division. L. E. Cunningham, Professor of Astronomy at the University of California, Berkeley, contributed signifi- cantly to the effort under a consulting agreement with LMSC. iii O DING PAGE BLANK NOT FILMED LOCKHEED MISSILES & SPACE COMPANY LMSC-D420943 CONTENTS Section Page FOREWORD iii 1 INTRODUCTION AND SUMMARY 1-1 2 HISTORICAL PROCEDURES 2-1 2.1 Astronomical Position
    [Show full text]
  • PACS Routine Phase Calibration Plan Page 1
    Document: PICC-MA-PL-002 PACS Date: May 8, 2014 Herschel Issue: 4.01, final version PACS Routine Phase Calibration Plan Page 1 PACS Routine Phase Calibration Plan PACS ICC Calibration Working Group: Ulrich Klaas (MPIA), Markus Nielbock (MPIA), Bruno Altieri (ESAC), Zoltan Balog (MPIA), Joris Blommaert (KUL), Alessandra Contursi (MPE), Vanessa Doublier Pritchard (MPE), Helmut Feuchtgruber (MPE), Dieter Lutz (MPE), Thomas M¨uller(MPE), Koryo Okumura (CEA), Pierre Royer (KUL), Marc Sauvage (CEA), Bart Vandenbussche (KUL) and Roland Vavrek (ESAC) custodians: Ulrich Klaas & Markus Nielbock Document: PICC-MA-PL-002 PACS Date: May 8, 2014 Herschel Issue: 4.01, final version PACS Routine Phase Calibration Plan Page 2 Document: PICC-MA-PL-002 PACS Date: May 8, 2014 Herschel Issue: 4.01, final version PACS Routine Phase Calibration Plan Page 3 Change Record Version Date Changes Remarks Issue 0.05 January 16, 2009 − New document Issue 0.07 March 29, 2009 5 Add more calibration items 4 Extend overview on celestial standards 8.1 Overview from model PV iteration 2 timeline added Issue 0.08 April 21, 2009 3.2 Add contents 1.3.2 Add ref. doc 4.1.1 Add visibility plots Issue 0.10 May 13, 2009 3.2.4 Update 4.1.1 Update visibility plots 4.1.3 Add info on faint standards 4.3 Add info on dark field 5 Add overview table 5.2 Add details 5.3 Add details 5.4 Add details 5.6 Add details 5.7 Add details 5.8 Add details 5.9 Add details 7 Add overview table Issue 0.20 December 21, 2009 Glossary Extension 1.3 Update document list 2 Update objectives 3.1 Routine Phase
    [Show full text]
  • Accelerated Reader Quiz List - Reading Practice Page 1 of 311 Accelerated Reader Quiz List - Reading Practice Book Quiz No
    Accelerated Reader Quiz List - Reading Practice Page 1 of 311 Accelerated Reader Quiz List - Reading Practice Book Quiz No. Title Author Points Level 46456 EN Come Here, Tiger! Moran, Alex 0.3 0.5 9318 EN Ice Is...Whee! Greene, Carol 0.3 0.5 9340 EN Snow Joe Greene, Carol 0.3 0.5 31847 EN Are You a Ladybug? (Sunshine Level 1) Cutting, Brian/Jillian 0.4 0.5 62237 EN At the Carnival Hall, Kirsten 0.4 0.5 31602 EN Ball Game, The Packard, David 0.4 0.5 31584 EN Big Brown Bear McPhail, David 0.4 0.5 9306 EN Bugs! McKissack, Patricia C. 0.4 0.5 41850 EN Clifford Makes a Friend Bridwell, Norman 0.4 0.5 31598 EN I See, You Saw Karlin, Nurit 0.4 0.5 9329 EN Oh No, Otis! Frankel, Julie 0.4 0.5 9333 EN Pet for Pat, A Snow, Pegeen 0.4 0.5 9334 EN Please, Wind? Greene, Carol 0.4 0.5 9336 EN Rain! Rain! Greene, Carol 0.4 0.5 9338 EN Shine, Sun! Greene, Carol 0.4 0.5 9353 EN Birthday Car, The Hillert, Margaret 0.5 0.5 9305 EN Bonk! Goes the Ball Stevens, Philippa 0.5 0.5 64100 EN Daniel's Pet Ada, Alma Flor 0.5 0.5 35988 EN Day I Had to Play with My Sister, The Bonsall, Crosby 0.5 0.5 49483 EN Down on the Farm Lascaro, Rita 0.5 0.5 45497 EN Happy and Honey Godwin, Laura 0.5 0.5 9314 EN Hi, Clouds Greene, Carol 0.5 0.5 62252 EN It's Too Windy! Wilhelm, Hans 0.5 0.5 9382 EN Little Runaway, The Hillert, Margaret 0.5 0.5 31542 EN Mine's the Best Bonsall, Crosby 0.5 0.5 49858 EN Sit, Truman! Harper, Dan 0.5 0.5 Pérez-Mercado, Mary 46636 EN Splat! 0.5 0.5 Margaret 60939 EN Tiny Goes to the Library Meister, Cari 0.5 0.5 35665 EN What Day Is It? Trimble, Patti 0.5 0.5 9349 EN Whisper Is Quiet, A Lunn, Carolyn 0.5 0.5 50094 EN Big, Big Wall, The Howard, Reginald 0.6 0.5 45429 EN Cleo the Cat Blackstone/Mockford 0.6 0.5 74854 EN Cooking with the Cat Worth, Bonnie 0.6 0.5 44644 EN Fledgling Blake, Robert J.
    [Show full text]
  • Custom Book List
    Custom Book List School: Your District Name Goes Here MANAGEMENT BOOK AUTHOR LEXILE® POINTS WORD COUNT $1.00 Word Riddle Book, The Burns, Marilyn 800 3 1,317 1,000 Reasons Never To Kiss A Freeman, Martha 790 15 58,937 1001 Cranes Hirahara, Naomi 720 12 43,080 101 Tips For - A Best Friend Krulik, Nancy 760 3 5,366 12 Again Corbett, Sue 800 13 52,996 12 Brown Boys Tyree, Omar 760 13 46,245 13 Howe, James 740 14 56,355 13 Gifts Mass, Wendy 720 21 88,827 13 Little Blue Envelopes Johnson, Maureen 770 15 62,401 13 Scary Ghost Stories Carus, Marianne 730 7 25,560 13 To Life Delany, Shannon 720 20 81,319 13 Treasures Harrison, Michelle 770 18 73,562 145th Street: Short Stories Myers, Walter Dean 760 10 36,397 17 Things I'm Not Allowed Offill, Jenny 750 1 444 17: A Novel in Prose Poems Rosenberg, Liz 800 8 24,492 18-Wheelers Maifair, Linda Lee 710 3 5,293 18th Emergency, The Byars, Betsy 750 6 24,108 20,000 Leagues (Great Illustra Vogel, Malvina G. 770 6 16,431 2061: Photographing Mars Brightfield, Richard 730 2 1,902 24 Hours Mahy, Margaret 790 12 44,054 26 Fairmount Avenue dePaola, Tomie 760 3 6,602 31 Chestnut Street Scott, Janine 790 3 1,538 48 Shades of Brown Earls, Nick 790 16 65,327 4B Goes Wild Gilson, Jamie 770 7 29,729 A La Carte Davis, Tanita S. 780 14 53,609 A-10 Thunderbolts (Torque) Zobel, Derek 780 1 427 A.
    [Show full text]
  • Annual Auction a Sale of Two Year Old Bloodstock N N U a L
    RWITC ANNUAL AUCTION A SALE OF TWO YEAR OLD BLOODSTOCK N N U A L S A L 4-5 FEB, 2019 E MAHALAXMI RACECOURSE, MUMBAI 2 19 Rochester Winning The Kingfisher Ultra Indian Derby 2018 2019 R.W.I.T.C., LTD. ANNUAL AUCTION SALE OF TWO YEAR OLD BLOODSTOCK 171 LOTS ROYAL WESTERN INDIA TURF CLUB, LTD. Mahalakshmi Race Course 6 Arjun Marg MUMBAI - 400 034 PUNE - 411 001 2019 TWO YEAR OLDS TO BE SOLD BY AUCTION BY ROYAL WESTERN INDIA TURF CLUB, LTD. IN THE Race Course, Mahalakshmi, Mumbai - 400 034 ON MONDAY, Commencing at 4.00 p.m. FEBRUARY, 04TH (LOT NUMBERS 1 TO 85) AND TUESDAY, Commencing at 4.00 p.m. FEBRUARY, 05TH (LOT NUMBERS 86 TO 171) Published by: N.H.S. Mani Secretary & CEO, Royal Western India Turf Club, Ltd. Registered Office: Race Course, Mahalakshmi, Mumbai - 400 034. Printed at: MUDRA 383, Narayan Peth, Pune - 411 030. IMPORTANT NOTICES ALLOTMENT OF RACING STABLES Acceptance of an entry for the Sale does not automatically entitle the Vendor/Owner of a 2-Year-Old for racing stable accommodation in Western India. Racing stable accommodation in Western India will be allotted as per the norms being formulated by the Stewards of the Club and will be at their sole discretion. THIS CLAUSE OVERRIDES ANY OTHER RELEVANT CLAUSE. For application of Ownership under the Royal Western India Turf Club Limited, Rules of Racing, Individuals may apply on the prescribed form, available on the RWITC website (i.e.www.rwitc.com/downloads/forms.php). Requirements 1.
    [Show full text]
  • December 2019
    Page: 1 Redox D.A.S. Artist List for period: 01.12.2019 - 31.12.2019 Date time: Number: Title: Artist: Publisher Lang: 01.12.2019 00:03:06 HD 10072 I MASCHI GIANNA NANNINI ITA 01.12.2019 00:07:20 HD 14286 YOU ALL DAT BAHA MEN ANG 01.12.2019 00:10:40 HD 62332 NO TEARS LEFT TO CRY ARIANA GRANDE ANG 01.12.2019 00:14:08 HD 05349 EMOTIONS MARIAH CAREY ANG 01.12.2019 00:18:14 HD 21034 NA PRIMORSKO REQUIEM SLO 01.12.2019 00:23:18 HD 13520 SHE'S SO HIGH KURT NILSEN ANG 01.12.2019 00:27:20 HD 33297 ABRACADABRA STEVE MILLER ANG 01.12.2019 00:30:59 HD 60614 ATTENTION CHARLIE PUTH ANG 01.12.2019 00:34:25 HD 45281 CAKAL SN TE KO KRETEN MI2 SLO 01.12.2019 00:38:42 HD 06037 MERCY MERCY ME ROBERT PALMER ANG 01.12.2019 00:44:28 HD 56521 HEROES MANS ZELMERLOW ANG 01.12.2019 00:47:40 HD 03278 KOKOMO BEACH BOYS ANG 01.12.2019 00:51:07 HD 50270 VEC OD LAJFA ZLATKO SLO 01.12.2019 00:55:07 HD 61566 LEAVE A LIGHT ON TOM WALKER ANG 01.12.2019 00:58:10 HD 63959 CRAZY TO LOVE YOU DECCO, ALEX CLARE ANG 01.12.2019 01:00:58 HD 06769 UN-BREAK MY HEART TONI BRAXTON ANG 01.12.2019 01:05:16 HD 13010 NOCOJ LJUBILA BI SE S TEBOJ C'EST LA VIE SLO 01.12.2019 01:10:00 HD 40201 REHAB RIHANNA ANG 01.12.2019 01:13:56 HD 35226 HAPPY HOUR AGAIN THE HOUSEMARTINS ANG 01.12.2019 01:16:17 HD 63697 I DON'T CARE ED SHEERAN & JUSTIN BIEBER ANG 01.12.2019 01:19:50 HD 13145 ENKRAT V ZIVLJENJU AVTOMOBILI SLO 01.12.2019 01:24:14 HD 07270 ENGLISHMAN IN NEW YORK STING ANG 01.12.2019 01:28:25 HD 61052 OUTTA MY MIND ZEBRA DOTS ANG 01.12.2019 01:31:50 HD 19168 EVERYBODY HURTS R.E.M.
    [Show full text]