Oral Microbiome in Patients with Oesophageal Squamous Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes. -
Pathogen Challenge and Dietary Shift Alter Microbiota Composition And
fmicb-12-703421 July 19, 2021 Time: 11:40 # 1 ORIGINAL RESEARCH published: 19 July 2021 doi: 10.3389/fmicb.2021.703421 Pathogen Challenge and Dietary Shift Alter Microbiota Composition and Activity in a Mucin-Associated in vitro Model of the Piglet Colon (MPigut-IVM) Simulating Weaning Transition Raphaële Gresse1,2, Frédérique Chaucheyras-Durand1,2, Juan J. Garrido3, Sylvain Denis1, Angeles Jiménez-Marín3, Martin Beaumont4, Tom Van de Wiele5, Evelyne Forano1 and Stéphanie Blanquet-Diot1* 1 INRAE, UMR 454 MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France, 2 Lallemand SAS, Blagnac, France, 3 Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain, 4 GenPhySE, INRAE, ENVT, Université de Toulouse, Castanet-Tolosan, France, 5 Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium Edited by: Wakako Ikeda-Ohtsubo, Tohoku University, Japan Enterotoxigenic Escherichia coli (ETEC) is the principal pathogen responsible for post- Reviewed by: weaning diarrhea in newly weaned piglets. Expansion of ETEC at weaning is thought to Katie Lynn Summers, be the consequence of various stress factors such as transient anorexia, dietary change United States Department or increase in intestinal inflammation and permeability, but the exact mechanisms remain of Agriculture (USDA), United States Åsa Sjöling, to be elucidated. As the use of animal experiments raise more and more ethical Karolinska Institutet (KI), Sweden concerns, we used a recently developed in vitro model of piglet colonic microbiome *Correspondence: and mucobiome, the MPigut-IVM, to evaluate the effects of a simulated weaning Stéphanie Blanquet-Diot [email protected] transition and pathogen challenge at weaning. -
Role of Actinobacteria and Coriobacteriia in the Antidepressant Effects of Ketamine in an Inflammation Model of Depression
Pharmacology, Biochemistry and Behavior 176 (2019) 93–100 Contents lists available at ScienceDirect Pharmacology, Biochemistry and Behavior journal homepage: www.elsevier.com/locate/pharmbiochembeh Role of Actinobacteria and Coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression T Niannian Huanga,1, Dongyu Huaa,1, Gaofeng Zhana, Shan Lia, Bin Zhub, Riyue Jiangb, Ling Yangb, ⁎ ⁎ Jiangjiang Bia, Hui Xua, Kenji Hashimotoc, Ailin Luoa, , Chun Yanga, a Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China b Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China c Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan ARTICLE INFO ABSTRACT Keywords: Ketamine, an N-methyl-D-aspartic acid receptor (NMDAR) antagonist, elicits rapid-acting and sustained anti- Ketamine depressant effects in treatment-resistant depressed patients. Accumulating evidence suggests that gut microbiota Depression via the gut-brain axis play a role in the pathogenesis of depression, thereby contributing to the antidepressant Lipopolysaccharide actions of certain compounds. Here we investigated the role of gut microbiota in the antidepressant effects of Gut microbiota ketamine in lipopolysaccharide (LPS)-induced inflammation model of depression. Ketamine (10 mg/kg) sig- nificantly attenuated the increased immobility time in forced swimming test (FST), which was associated with the improvements in α-diversity, consisting of Shannon, Simpson and Chao 1 indices. In addition to α-diversity, β-diversity, such as principal coordinates analysis (PCoA), and linear discriminant analysis (LDA) coupled with effect size measurements (LEfSe), showed a differential profile after ketamine treatment. -
Supplementary Data TMAO Microbiome R1
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut Content for Supplementary Data Tables Tables Page Annotation guide for taxonomic features. 1 Supplementary Data 1a. Microbial associations with TMAO, and intakes 7 of choline and red meat. Supplementary Data 1b. Microbial associations with TMAO in 8 15 sensitivity analysis models. Supplementary Data 2a. Associations of intakes of choline and red meat, 21 or other TMAO precursors with TMAO levels, stratified by TMAO- associated abundant species, in full models and additionally adjusted for other TMAO precursors or TMAO predicting species. Supplementary Data 2b. Associations of intakes of choline and red meat, 34 or other TMAO precursors with TMAO levels, stratified by TMAO- producer status, additionally adjusted for other TMAO precursors. Supplementary Data 2c. Associations of intakes of choline and red meat, 37 or other TMAO precursors with TMAO levels, stratified by TMAO- producer status, in 6 different sensitivity analysis models. Supplementary Data 2d. Associations of intakes of red meat with HDLC 39 and HBA1c levels, stratified by TMAO-producer status or TMAO- associated abundant species. Supplementary Data 3a. Association of DNA gene clusters within 40 TMAO-associated species with plasma TMAO levels, and intakes of choline and red meat. Supplementary Data 3b. Association of transcriptions of gene clusters 46 (RNA/DNA ratio) within TMAO-associated species with plasma TMAO levels, and intakes of choline and red meat. Supplementary Data 4a. Association of DNA enzyme within TMAO- 62 associated species with plasma TMAO levels, and intakes of choline and red meat. -
Dose-Responses Relationship in Glucose Lowering and Gut
microorganisms Article Dose-Responses Relationship in Glucose Lowering and Gut Dysbiosis to Saskatoon Berry Powder Supplementation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice Ruozhi Zhao 1, Fei Huang 1 and Garry X. Shen 1,2,* 1 Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada; [email protected] (R.Z.); [email protected] (F.H.) 2 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada * Correspondence: [email protected]; Tel.: +1-204-789-3816; Fax: +1-204-789-3987 Abstract: Administration of freeze-dried powder of Saskatoon berry (SB), a popular fruit enriched with antioxidants, reduced glucose level, inflammatory markers and gut microbiota disorder in high fat-high sucrose (HFHS) diet-induced insulin resistant mice. The present study examined the dose-response relationship in metabolic, inflammatory and gut microbiotic variables to SB power (SBp) supplementation in HFHS diet-fed mice. Male C57 BL/6J mice were fed with HFHS diet supplemented with 0, 1%, 2.5% or 5% SBp for 11 weeks. HFHS diet significantly increased the levels of fast plasma glucose (FPG), cholesterol, triglycerides, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α, monocyte chemotactic protein-1 and plasminogen activator inhibitor-1, but decreased fecal Bacteroidetes phylum bacteria and Muribaculaceae family bacteria compared to low fat diet. SBp dose-dependently reduced metabolic and inflammatory Citation: Zhao, R.; Huang, F.; Shen, variables and gut dysbiosis in mice compared with mice receiving HFHS diet alone. Significant G.X. Dose-Responses Relationship in ≥ Glucose Lowering and Gut Dysbiosis attenuation of HFHS diet-induced biochemical disorders were detected in mice receiving 1% SBp. -
Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature
microorganisms Review Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature Klaudia Tutka, Magdalena Zychowska˙ and Adam Reich * Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland; [email protected] (K.T.); [email protected] (M.Z.)˙ * Correspondence: [email protected]; Tel.: +48-605076722 Received: 30 August 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: Rosacea is a chronic inflammatory skin disorder of a not fully understood pathophysiology. Microbial factors, although not precisely characterized, are speculated to contribute to the development of the condition. The aim of the current review was to summarize the rosacea-associated alterations in the skin, blood, and gut microbiome, investigated using culture-independent, metagenomic techniques. A systematic review of the PubMed, Web of Science, and Scopus databases was performed, according to PRISMA (preferred reporting items for systematic review and meta-analyses) guidelines. Nine out of 185 papers were eligible for analysis. Skin microbiome was investigated in six studies, and in a total number of 115 rosacea patients. Blood microbiome was the subject of one piece of research, conducted in 10 patients with rosacea, and gut microbiome was studied in two papers, and in a total of 23 rosacea subjects. Although all of the studies showed significant alterations in the composition of the skin, blood, or gut microbiome in rosacea, the results were highly inconsistent, or even, in some cases, contradictory. Major limitations included the low number of participants, and different study populations (mainly Asians). Further studies are needed in order to reliably analyze the composition of microbiota in rosacea, and the potential application of microbiome modifications for the treatment of this dermatosis. -
Novel Molecular, Structural and Evolutionary Characteristics of the Phosphoketolases from Bifidobacteria and Coriobacteriales
RESEARCH ARTICLE Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales Radhey S. Gupta*, Anish Nanda, Bijendra Khadka Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 Members from the order Bifidobacteriales, which include many species exhibiting health a1111111111 promoting effects, differ from all other organisms in using a unique pathway for carbohydrate metabolism, known as the ªbifid shuntº, which utilizes the enzyme phosphoketolase (PK) to carry out the phosphorolysis of both fructose-6-phosphate (F6P) and xylulose-5-phosphate (X5P). In contrast to bifidobacteria, the PKs found in other organisms (referred to XPK) are OPEN ACCESS able to metabolize primarily X5P and show very little activity towards F6P. Presently, very lit- Citation: Gupta RS, Nanda A, Khadka B (2017) tle is known about the molecular or biochemical basis of the differences in the two forms of Novel molecular, structural and evolutionary PKs. Comparative analyses of PK sequences from different organisms reported here have characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales. PLoS ONE 12 identified multiple high-specific sequence features in the forms of conserved signature (2): e0172176. doi:10.1371/journal.pone.0172176 inserts and deletions (CSIs) in the PK sequences that clearly distinguish the X5P/F6P phos- Editor: Eugene A. Permyakov, Russian Academy of phoketolases (XFPK) of bifidobacteria from the XPK homologs found in most other organ- Medical Sciences, RUSSIAN FEDERATION isms. Interestingly, most of the molecular signatures that are specific for the XFPK from Received: December 12, 2016 bifidobacteria are also shared by the PK homologs from the Coriobacteriales order of Acti- nobacteria. -
Prokaryotic Gene Start Prediction: Algorithms for Genomes and Metagenomes
PROKARYOTIC GENE START PREDICTION: ALGORITHMS FOR GENOMES AND METAGENOMES A Dissertation Presented to The Academic Faculty By Karl Gemayel In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computational Science and Engineering Georgia Institute of Technology December 2020 © Karl Gemayel 2020 PROKARYOTIC GENE START PREDICTION: ALGORITHMS FOR GENOMES AND METAGENOMES Thesis committee: Dr. Mark Borodovsky Dr. Polo Chau School of Computational Science and En- School of Computational Science and En- gineering and Department of Biomedical gineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Umit¨ C¸atalyurek¨ Dr. King Jordan School of Computational Science and En- School of Biological Sciences gineering Georgia Institute of Technology Georgia Institute of Technology Dr. Pen Qui Department of Biomedical Engineering Georgia Institute of Technology Date approved: October 31, 2020 Wooster: “There are moments, Jeeves, when one asks oneself, ‘Do trousers matter?’” Jeeves: “The mood will pass, sir.” P.G. Wodehouse, The Code Of The Woosters To Mom and Dad, all my ancestors, and the first self-replicating molecule. Without you, this work would literally not have been possible. ACKNOWLEDGMENTS I am bound to forget someone or something and so, in fairness to all, I will forget most things and keep this vague and terse, though not necessarily short. I was very much at the right place at the right time to do this work, a time where these problems had not yet been solved. To the driven students who graduated early enough before such ideas came to them, thank you for being considerate. To my advisor Mark Borodovsky, who insisted that a lack of community funding for prokaryotic gene finding does not mean that the problem has actually been solved, thank you for continuously pushing for rigorous science that questions accepted beliefs. -
Impact of the Cervicovaginal Microbiome on HIV Susceptibility: an Investigation of Mechanisms and Potential Interventions
Impact of the Cervicovaginal Microbiome on HIV Susceptibility: An Investigation of Mechanisms and Potential Interventions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Rice, Justin K. 2020. Impact of the Cervicovaginal Microbiome on HIV Susceptibility: An Investigation of Mechanisms and Potential Interventions. Doctoral dissertation, Harvard Medical School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364793 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Impact of the Cervicovaginal Microbiome on HIV Susceptibility: An Investigation of Mechanisms and Potential Interventions by Justin Rice Harvard-M.I.T. Division of Health Sciences and Technology Submitted in Partial Fulfillment of the Requirements for the M.D. Degree February, 2020 Area of Concentration: Infectious Disease Project Advisor: Douglas S Kwon, MD PhD Prior Degrees: PhD (Linear Algebra/System Dynamics) I have reviewed this thesis. It represents work done by the author under my guidance/supervision. 1 Table of Contents Abstract 3 Introduction 4-7 Methods 8-11 Results 12-26 Discussion 27-29 Conclusions 30 Acknowledgements 30 References 31-40 2 Abstract Sub-Saharan Africa has among the highest HIV infection rates in the world, with an estimated 980,000 new HIV infections in 2017 (Sidebé 2018). Since the majority of HIV transmission occurs through heterosexual sex (UNAIDS, 2014), understanding how HIV infection is established within the female genital tract (FGT) is critical for the development of HIV preventative interventions, and deserves further study. -
Associations Between Acute Gastrointestinal Gvhd and the Baseline Gut Microbiota of Allogeneic Hematopoietic Stem Cell Transplant Recipients and Donors
Bone Marrow Transplantation (2017) 52, 1643–1650 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0268-3369/17 www.nature.com/bmt ORIGINAL ARTICLE Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors C Liu1, DN Frank2, M Horch3, S Chau2,DIr2, EA Horch3, K Tretina3, K van Besien3, CA Lozupone2,4 and VH Nguyen2,3,4 Growing evidence suggests that host-microbiota interactions influence GvHD risk following allogeneic hematopoietic stem cell transplant. However, little is known about the influence of the transplant recipient’s pre-conditioning microbiota nor the influence of the transplant donor’s microbiota. Our study examines associations between acute gastrointestinal GvHD (agGvHD) and 16S rRNA fecal bacterial profiles in a prospective cohort of N = 57 recipients before preparative conditioning, as well as N = 22 of their paired HLA-matched sibling donors. On average, recipients had lower fecal bacterial diversity (P = 0.0002) and different phylogenetic membership (UniFrac P = 0.001) than the healthy transplant donors. Recipients with lower phylogenetic diversity had higher overall mortality rates (hazard ratio = 0.37, P = 0.008), but no statistically significant difference in agGvHD risk. In contrast, high bacterial donor diversity was associated with decreased agGvHD risk (odds ratio = 0.12, P = 0.038). Further investigation is warranted as to whether selection of hematopoietic stem cell transplant donors with high gut microbiota diversity and/or other specific compositional attributes may reduce agGvHD incidence, and by what mechanisms. Bone Marrow Transplantation (2017) 52, 1643–1650; doi:10.1038/bmt.2017.200; published online 2 October 2017 INTRODUCTION reporting GvHD as the primary outcome.