View Highlighting the Importance of a Flexible and Multidisciplinary Approach,” J

Total Page:16

File Type:pdf, Size:1020Kb

View Highlighting the Importance of a Flexible and Multidisciplinary Approach,” J INVESTIGATING CARDIAC METABOLISM IN BARTH SYNDROME USING INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES ERICA M. FATICA Bachelor of Science in Pharmaceutical Science Cleveland State University May 2014 Submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL-BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY May 2019 We hereby approve this dissertation For Erica Marie Fatica Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry And CLEVELAND STATE UNIVERSITY’S College of Graduate Studies by Committee Chairperson, Yana Sandlers Department of Chemistry, April 18th, 2019 Committee Member, Dr. David Anderson Department of Chemistry, April 18th, 2019 Committee Member, Dr. Michael Kalafatis Department of Chemistry, April 18th, 2019 Committee Member, Dr. Christine Moravec Department of Biological, Geological and Environmental Sciences, April 18th, 2019 Committee Member, Dr. Aimin Zhou Department of Chemistry, April 18th, 2019 April 18th, 2019 Date of Defense Dedicated to my parents/biggest fans In loving memory of Angela Grandillo, whose dedication to never stop learning will forever inspire me ACKNOWLEDGEMENTS This degree would not have been possible without the amazing people who have supported me along the way. First, I would like to sincerely thank my advisor, Dr. Yana Sandlers, for taking me into her research group and for being the most supportive, understanding, and wonderful mentor I could have ever asked for. Thank you for all the opportunities you gave me which allowed me to grow as a scientist and as an individual. Thank you for always believing in me and for encouraging me to have more confidence in myself. I would not have been able to go this far without you. I would also like to thank my truly amazing dissertation committee members. Without Dr. David Anderson’s guidance during my undergraduate work, I would not have stayed at Cleveland State to continue my studies. Thank you for your continued support, care, and guidance in all things clinical chemistry. I am extremely grateful to have had such a wonderful and encouraging female role model in Dr. Christine Moravec. I am thankful to Dr. Aimin Zhou, who has always been the most kind person you could hope to know. Thank you to Dr. Michael Kalafatis for always having my back and supporting me. A special thank you to Dr. Vania DePaoli for always being there for me in every aspect of my life and for looking out for me. I will miss our chats in your office. Also, thanks to Dr. DiBello for being so sweet and supportive, encouraging and inspiring. You are a truly great educator and person, and I hope to carry those qualities with me. I also would like to acknowledge my labmates, especially Rohan Shah for being with me every step of the way (and buying us cookies) and Igor Radzikh, for being my right-hand man. Igor, without you, many things would not have been possible. Thank you also to Ryan, Jared, and Jill for helping me along the way. Many thanks to SooYeon Kang, for all her hard work and assistance. Thank you to my mom, Elia Iafelice, who literally kept me alive during these five years. Without you, I probably would not have eaten for five years. Thank you for putting up with me and for reminding me to take care of myself sometimes. Thank you to my dad, Ron, for always being interested in my work and for helping me troubleshoot technological things. Thank you to my brother, Marco, for helping me understand how to do some of the complicated math stuff that I used for my research project. Your and dad’s ability to understand and work with completely new information never ceases to amaze me. Also thank you to Liz Grandillo, the woman who looks like she could be my mom and acts like my sister, gives me cute hand-me down clothes, lets me visit her in New York to raid her closet, and does not understand anything about cardiac function, except for having occasional chest pains (and thanks for dictating your own acknowledgement). To my best friend, Alana, and our daily chats. Thanks for escorting me in and out of school with your ridiculous stories. Thank you, Alwilleed, for supporting me in every way, reminding me to stay tough, and for bringing me so much joy. To everyone else who helped me over the past five years, especially my classmates, your moral support and love helped carry me through. Your presence in my life made a difference and I am truly grateful. INVESTIGATING CARDIAC METABOLISM IN BARTH SYNDROME USING INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES ERICA M. FATICA ABSTRACT Barth syndrome (BTHS) is an X-linked genetic disorder characterized by cardiomyopathy, neutropenia, skeletal muscle weakness, and 3-methylglutaconic aciduria (Sandlers, et al., 2016). The mortality rate of BTHS patients is high during infancy and childhood due to sudden cardiac death. Despite the severity of this disease, there is a lack of targeted therapeutics which can be used to ameliorate symptoms and prolong the lives of BTHS patients. A major obstacle for the discovery of new therapeutic targets is poor understanding of the mechanisms of cardiac pathogenesis and downstream metabolic effects. To overcome this barrier, we developed a model of BTHS, using human-induced pluripotent stem cells (iPSCs), with or without the BTHS-causative TAZ mutation, to produce functional cardiomyocytes (iPS-CMs). iPS-CMs recapitulate the human donor genotype, reproducing the complex metabolic conditions of the hearts of affected individuals, and permitting investigation of molecular and metabolic mechanisms. We further applied stable isotope-labeled energy substrates and mass spectrometric analyses to our TAZ-mutant iPS-CM model to dynamically trace the fates of substrates through metabolic pathways, including fatty acid oxidation, glucose oxidation, and select anaplerotic pathways into the citric acid cycle (CAC). The studies herein provided novel insight into downstream metabolic differences in energy substrate metabolism between vi control and TAZ-mutant iPS-CMs, revealing alterations in several pathways which can be further explored to uncover potential therapeutic targets for BTHS patients. vii TABLE OF CONTENTS Page ABSTRACT………………………………………………………………………...……vi LIST OF FIGURES……………………………………………………………………. xxi CHAPTER I. INTRODUCTION……………………………………………………………... 1 1.1 Barth Syndrome……………………………………………..…..…… 1 1.2 Tafazzin and Cardiolipin………………………………….................. 2 1.3 Current Treatment Strategies for Barth Syndrome Patients………..... 4 1.4 Dilated Cardiomyopathy………………………………….……...…... 6 1.5 Cardiac Metabolism…………………………………………...….….. 6 1.6 Cardiac Metabolism in Pathophysiological Conditions……...…….… 9 1.7 Cardiac Anaplerosis……………………………………...……….… 12 1.8 Therapeutic Strategies for Modulating Cardiac Metabolism…...…... 15 1.9 Induced Pluripotent Stem Cells………………………..………….... 16 1.10 Stable Isotope Metabolomics………………………...……………. 19 1.11 References………………………………………...……………….. 22 II. ESTABLISHING A MODEL OF BARTH SYNDROME USING INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES…..……. 29 2.1 Abstract…………………………………………...…………….…... 29 2.2 Introduction…………………………………...…………….………. 30 2.3 Methods…………………………………...………………….…...… 35 2.4 Results………………………………...……….……….…................ 39 2.5 Discussion……………………………...……………………….…... 44 viii 2.6 References…………………………..…………………………....… 51 III. STABLE ISOTOPE TRACING STUDY IN INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES TO INVESTIGATE METABOLIC ALTERATIONS IN BARTH SYNDROME………………. 51 3.1 Abstract…………………………………………...…………….…... 51 3.2 Introduction…………………………………..……….……………. 52 3.3 Methods…………………………………..……………………....… 54 3.4 Results………………………………..……………….…................. 60 3.5 Discussion………………………...……………………………….... 72 3.6 References……………………...………………………................… 77 IV. ANAPLEROTIC PATHWAYS OF THE CITRIC ACID CYCLE IN TAZ- MUTANT INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES…………..……………………………………...…. 81 4.1 Abstract…………………..………………………….……………... 81 4.2 Introduction…………..……………………………………….……. 82 4.3 Materials and Methods…………..………….…………...…………. 86 4.4 Results………………………..……………………….…................. 89 4.5 Discussion………………..………………………………….……... 99 4.6 References…………..………………………………….……….… 105 V. CALCIUM CHANNEL EXPRESSION IN TAZ-MUTANT INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES..…….. 109 5.1 Abstract………………………………………..………….………. 109 5.2 Introduction to Calcium Channel Proteins…………..….……….... 110 ix 5.3 Materials and Methods………………………………………….… 114 5.4 Results……………………………………..………….…………... 116 5.5 Discussion…………………………..…………………………….. 122 5.6 References……………………..………………………………..… 128 VI. GENERATION OF INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES IN 3D ON A 384-MICROPILLAR PLATE……... 133 6.1 Abstract………………………………..…...…………...…………. 133 6.2 Introduction……………………………....………………………... 134 6.3 Methods…………………………......……...………….…………... 138 6.4 Results………………………………………….…….……………. 143 6.5 Discussion……………………………………….………………… 155 6.6 References………………………………….………….…………... 161 VII. CONCLUSION ……...…………………………………………............... 164 7.1 References…………………………...………………….…………. 166 APPENDICES A. CORRECTION OF MASS ISOTOPOMER DISTRIBUTIONS FOR NATURAL ISOTOPIC ABUNDANCE……………..………………….... 169 B. GAS CHROMATOGRAPHY-MASS SPECTROMETRY METHODS…. 177 x LIST OF FIGURES Figure Page 1.1 Cardiac Energy Substrates ......................................................................................... 8 1.2 ATP Yield and Oxygen Consumption. ...................................................................
Recommended publications
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Role of Tafazzin in Hematopoiesis and Leukemogenesis
    Role of Tafazzin in Hematopoiesis and Leukemogenesis by Ayesh Seneviratne A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by Ayesh Seneviratne 2020 Role of Tafazzin in Hematopoiesis and Leukemogenesis Ayesh Seneviratne Doctor of Philosophy Institute of Medical Science University of Toronto 2020 Abstract Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling (Seneviratne et al., 2019). ii Acknowledgments Firstly, I would like to thank Dr. Aaron Schimmer for his guidance and support during my PhD studies. I really enjoyed our early morning meetings where he provided much needed perspective to navigate the road blocks of my project, whilst continuing to push me. It was a privilege to be mentored by such an excellent clinician scientist. I hope to continue to build on the skills I learned in Dr. Schimmer’s lab as I progress on my path to become a clinician scientist. Working in the Schimmer lab was a wonderful learning environment. I would like to especially thank Dr.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Cloud-Clone 16-17
    Cloud-Clone - 2016-17 Catalog Description Pack Size Supplier Rupee(RS) ACB028Hu CLIA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 74750 AEA044Hu ELISA Kit for Anti-Growth Hormone Antibody (Anti-GHAb) 96T Cloud-Clone 74750 AEA255Hu ELISA Kit for Anti-Apolipoprotein Antibodies (AAHA) 96T Cloud-Clone 74750 AEA417Hu ELISA Kit for Anti-Proteolipid Protein 1, Myelin Antibody (Anti-PLP1) 96T Cloud-Clone 74750 AEA421Hu ELISA Kit for Anti-Myelin Oligodendrocyte Glycoprotein Antibody (Anti- 96T Cloud-Clone 74750 MOG) AEA465Hu ELISA Kit for Anti-Sperm Antibody (AsAb) 96T Cloud-Clone 74750 AEA539Hu ELISA Kit for Anti-Myelin Basic Protein Antibody (Anti-MBP) 96T Cloud-Clone 71250 AEA546Hu ELISA Kit for Anti-IgA Antibody 96T Cloud-Clone 71250 AEA601Hu ELISA Kit for Anti-Myeloperoxidase Antibody (Anti-MPO) 96T Cloud-Clone 71250 AEA747Hu ELISA Kit for Anti-Complement 1q Antibody (Anti-C1q) 96T Cloud-Clone 74750 AEA821Hu ELISA Kit for Anti-C Reactive Protein Antibody (Anti-CRP) 96T Cloud-Clone 74750 AEA895Hu ELISA Kit for Anti-Insulin Receptor Antibody (AIRA) 96T Cloud-Clone 74750 AEB028Hu ELISA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 71250 AEB264Hu ELISA Kit for Insulin Autoantibody (IAA) 96T Cloud-Clone 74750 AEB480Hu ELISA Kit for Anti-Mannose Binding Lectin Antibody (Anti-MBL) 96T Cloud-Clone 88575 AED245Hu ELISA Kit for Anti-Glutamic Acid Decarboxylase Antibodies (Anti-GAD) 96T Cloud-Clone 71250 AEK505Hu ELISA Kit for Anti-Heparin/Platelet Factor 4 Antibodies (Anti-HPF4) 96T Cloud-Clone 71250 CCA005Hu CLIA Kit for Angiotensin II
    [Show full text]
  • Eႇects of Alternative Oxidase on Drosophila Under Environmental
    6,1$6$$5, (ႇHFWVRI$OWHUQDWLYH 2[LGDVHRQDrosophila XQGHU(QYLURQPHQWDO6WUHVV 7DPSHUH8QLYHUVLW\'LVVHUWDWLRQV 7DPSHUH8QLYHUVLW\'LVVHUWDWLRQV 6,1$6$$5, (IIHFWVRI$OWHUQDWLYH 2[LGDVHRQDrosophila XQGHU(QYLURQPHQWDO6WUHVV $&$'(0,&',66(57$7,21 7REHSUHVHQWHGZLWKWKHSHUPLVVLRQRI WKH)DFXOW\RI0HGLFLQHDQG+HDOWK7HFKQRORJ\ RI7DPSHUH8QLYHUVLW\ IRUSXEOLFGLVFXVVLRQLQWKHDXGLWRULXP) RIWKH$UYREXLOGLQJ$UYR<OS|QNDWX7DPSHUH RQ2FWREHUDWR¶FORFN $&$'(0,&',66(57$7,21 7DPSHUH8QLYHUVLW\)DFXOW\RI0HGLFLQHDQG+HDOWK7HFKQRORJ\ )LQODQG Responsible 3URIHVVRU+RZDUG7-DFREV supervisor 7DPSHUH8QLYHUVLW\ and Custos )LQODQG Pre-examiners 3URIHVVRU:LOOLDP-%DOODUG 'RFHQW(LMD3LULQHQ 8QLYHUVLW\RI1HZ6RXWK:DOHV 8QLYHUVLW\RI+HOVLQNL $XVWUDOLD )LQODQG Opponent $VVRFLDWH3URIHVVRU9LOOH+LHWDNDQJDV 8QLYHUVLW\RI+HOVLQNL )LQODQG 7KHRULJLQDOLW\RIWKLVWKHVLVKDVEHHQFKHFNHGXVLQJWKH7XUQLWLQ2ULJLQDOLW\&KHFN VHUYLFH &RS\ULJKWDXWKRU &RYHUGHVLJQ5RLKX,QF ,6%1 SULQW ,6%1 SGI ,661 SULQW ,661 SGI KWWSXUQIL851,6%1 3XQD0XVWD2\±<OLRSLVWRSDLQR 7DPSHUH To Pulla iii iv ABSTRACT The mitochondrion is a unique organelle with a central role in energy production and metabolic homeostasis while regulating the life and death of the entire cell. In mitochondrial dysfunction, deficiencies or abnormalities of the mitochondrial oxidative phosphorylation (OXPHOS) system impair cellular energy production. Due to its ability to bypass Complex III and IV of the OXPHOS system and divert electrons from ubiquinol to oxygen, the mitochondrial alternative oxidase (AOX) has drawn attention as a potential
    [Show full text]
  • The Citric Acid Cycle
    Chapter 16 The Citric Acid Cycle: CAC Kreb’s Cycle Tricarboxylic Acid Cycle: TCA The Citric Acid Cycle Key topics: To Know – Also called Tricarboxylic Acid Cycle (TCA) or Krebs Cycle. Three names for the same thing. – Cellular respiration and intermediates for biosynthesis. – Conversion of pyruvate to activated acetate – Reactions of the citric acid cycle – Anaplerotic reactions to regenerate the acceptor – Regulation of the citric acid cycle – Conversion of acetate to carbohydrate precursors in the glyoxylate cycle Discovered CAC in Pigeon Flight Muscle Cellular Respiration • Process in which cells consume O2 and produce CO2 • Provides more energy (ATP) from glucose than Glycolysis • Also captures energy stored in lipids and amino acids • Evolutionary origin: developed about 2.5 billion years ago • Used by animals, plants, and many microorganisms • Occurs in three major stages: - acetyl CoA production (This chapter) - acetyl CoA oxidation (This chapter) - electron transfer and oxidative phosphorylation (Chapter 19) Overall Picture Overall Picture Acetyl-CoA production The area blocked off all occurs in the takes place in the mitochondria. Mitochondrion. So, first pyruvate has to get Acetyl-CoA enters the transported from the CAC. cytoplasm into the mitochondrion. In this Figure, only Glycolysis is in the Cytoplasm. Pyr DH is a Complex Enzyme Pyruvate Dehydrogenase Model TEM Lipoic Acid is linked to a Lys (K) Remember HSCoA ? from Chapter 1 It is down here One Unit of Pyr DH EOC Problem 6: Tests your knowledge of PyrDH. EOC Problem 7: Thiamin deficiency and blood pyruvate. Pyr DH is a Cool Enzyme EOC Problem 5: NAD+ in oxidation and reduction reactions (a through f should be easy).
    [Show full text]
  • Lecture 9: Citric Acid Cycle/Fatty Acid Catabolism
    Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 9 Reading: Ch. 16 & 17 of Principles of Biochemistry, “The Citric Acid Cycle” & “Fatty Acid Catabolism.” Symmetric Citrate. The left and right half are the same, having mirror image acetyl groups (-CH2COOH). Radio-label Experiment. The Krebs Cycle was tested by 14C radio- labeling experiments. In 1941, 14C-Acetyl-CoA was used with normal oxaloacetate, labeling only the right side of drawing. But none of the label was released as CO2. Always the left carboxyl group is instead released as CO2, i.e., that from oxaloacetate. This was interpreted as proof that citrate is not in the 14 cycle at all the labels would have been scrambled, and half of the CO2 would have been C. Prochiral Citrate. In a two-minute thought experiment, Alexander Ogston in 1948 (Nature, 162: 963) argued that citrate has the potential to be treated as chiral. In chemistry, prochiral molecules can be converted from achiral to chiral in a single step. The trick is an asymmetric enzyme surface (i.e. aconitase) can act on citrate as through it were chiral. As a consequence the left and right acetyl groups are not treated equivalently. “On the contrary, it is possible that an asymmetric enzyme which attacks a symmetrical compound can distinguish between its identical groups.” Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY [STEP 4] α-Keto Glutarate Dehydrogenase.
    [Show full text]
  • Renal Mitochondrial Cytopathies
    SAGE-Hindawi Access to Research International Journal of Nephrology Volume 2011, Article ID 609213, 10 pages doi:10.4061/2011/609213 Review Article Renal Mitochondrial Cytopathies Francesco Emma,1 Giovanni Montini,2 Leonardo Salviati,3 and Carlo Dionisi-Vici4 1 Division of Nephrology and Dialysis, Department of Nephrology and Urology, Bambino Gesu` Children’s Hospital and Research Institute, piazza Sant’Onofrio 4, 00165 Rome, Italy 2 Nephrology and Dialysis Unit, Pediatric Department, Azienda Ospedaliera di Bologna, 40138 Bologna, Italy 3 Clinical Genetics Unit, Department of Pediatrics, University of Padova, 35128 Padova, Italy 4 Division of Metabolic Diseases, Department of Pediatric Medicine, Bambino Gesu` Children’s Hospital and Research Institute, 00165 Rome, Italy Correspondence should be addressed to Francesco Emma, [email protected] Received 19 April 2011; Accepted 3 June 2011 Academic Editor: Patrick Niaudet Copyright © 2011 Francesco Emma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debre-Fanconi´ syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > GtRNALEU mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect.
    [Show full text]
  • Prohibitins: a Critical Role in Mitochondrial Functions and Implication in Diseases
    cells Review Prohibitins: A Critical Role in Mitochondrial Functions and Implication in Diseases Anna Signorile 1,*, Giuseppe Sgaramella 2, Francesco Bellomo 3 and Domenico De Rasmo 4,* 1 Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy 2 Water Research Institute (IRSA), National Research Council (CNR), Viale F. De Blasio, 5, 70132 Bari, Italy; [email protected] 3 Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children’s Hospital, Viale di S. Paolo, 15, 00149 Rome, Italy; [email protected] 4 Institute of Biomembrane, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy * Correspondence: [email protected] (A.S.); [email protected] (D.D.R.); Tel.: +39-080-544-8516 (A.S. & D.D.R.) Received: 7 December 2018; Accepted: 15 January 2019; Published: 18 January 2019 Abstract: Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are ubiquitously expressed, and are present in the nucleus, cytosol, and mitochondria. Depending on the cellular localization, PHB1 and PHB2 have distinctive functions, but more evidence suggests a critical role within mitochondria. In fact, PHB proteins are highly expressed in cells that heavily depend on mitochondrial function. In mitochondria, these two proteins assemble at the inner membrane to form a supra-macromolecular structure, which works as a scaffold for proteins and lipids regulating mitochondrial metabolism, including bioenergetics, biogenesis, and dynamics in order to determine the cell fate, death, or life. PHB alterations have been found in aging and cancer, as well as neurodegenerative, cardiac, and kidney diseases, in which significant mitochondrial impairments have been observed.
    [Show full text]
  • Mitochondria Targeting As an Effective Strategy for Cancer Therapy
    International Journal of Molecular Sciences Review Mitochondria Targeting as an Effective Strategy for Cancer Therapy Poorva Ghosh , Chantal Vidal, Sanchareeka Dey and Li Zhang * Department of Biological Sciences, the University of Texas at Dallas, Richardson, TX 75080, USA; [email protected] (P.G.); [email protected] (C.V.); [email protected] (S.D.) * Correspondence: [email protected]; Tel.: +972-883-5757 Received: 25 February 2020; Accepted: 6 May 2020; Published: 9 May 2020 Abstract: Mitochondria are well known for their role in ATP production and biosynthesis of macromolecules. Importantly, increasing experimental evidence points to the roles of mitochondrial bioenergetics, dynamics, and signaling in tumorigenesis. Recent studies have shown that many types of cancer cells, including metastatic tumor cells, therapy-resistant tumor cells, and cancer stem cells, are reliant on mitochondrial respiration, and upregulate oxidative phosphorylation (OXPHOS) activity to fuel tumorigenesis. Mitochondrial metabolism is crucial for tumor proliferation, tumor survival, and metastasis. Mitochondrial OXPHOS dependency of cancer has been shown to underlie the development of resistance to chemotherapy and radiotherapy. Furthermore, recent studies have demonstrated that elevated heme synthesis and uptake leads to intensified mitochondrial respiration and ATP generation, thereby promoting tumorigenic functions in non-small cell lung cancer (NSCLC) cells. Also, lowering heme uptake/synthesis inhibits mitochondrial OXPHOS and effectively reduces oxygen consumption, thereby inhibiting cancer cell proliferation, migration, and tumor growth in NSCLC. Besides metabolic changes, mitochondrial dynamics such as fission and fusion are also altered in cancer cells. These alterations render mitochondria a vulnerable target for cancer therapy. This review summarizes recent advances in the understanding of mitochondrial alterations in cancer cells that contribute to tumorigenesis and the development of drug resistance.
    [Show full text]
  • CDC5L Drives FAH Expression to Promote Metabolic Reprogramming in Melanoma
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 69), pp: 114328-114343 Research Paper CDC5L drives FAH expression to promote metabolic reprogramming in melanoma Zhichao Gu1, Huafeng Zhang2, Yong Li3, Susu Shen1, Xiaonan Yin4, Wei Zhang1, Ruimin Cheng1, Yong Zhang1, Xiaoyan Zhang1, Hui Chen1, Bo Huang4 and Yuchun Cao1 1Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 3Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China 4National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China Correspondence to: Yuchun Cao, email: [email protected] Keywords: fumarylacetoacetate hydrolase (FAH); anaplerotic reactions; cell division cycle 5-like protein (CDC5L); tumor metabolic reprogramming; melanoma Received: August 09, 2017 Accepted: November 15, 2017 Published: December 07, 2017 Copyright: Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Metabolic reprogramming allows tumor cells to thrive in the typically hypoxic tumor microenvironment. Using immunodetection and clinical data analyses, we demonstrate here that fumarylacetoacetate hydrolase (FAH) is highly expressed in melanoma and correlates with poor survival. FAH knockdown inhibits proliferation and migration, while promoting apoptosis in melanoma cells, result in prolonged survival in tumor-bearing mice.
    [Show full text]