The ARC Solution for Grid Middleware

Total Page:16

File Type:pdf, Size:1020Kb

The ARC Solution for Grid Middleware Innovation on solid grounds broad agreement amongst those in the field At a glance Technology plays such an integral role in our daily lives that many of us give barely a second thought NorduGrid’s success has not been achieved that collaboration and knowledge sharing to the underlying infrastructure on which it depends. Professor Farid-Ould Saada of NorduGrid through standing still. Change is ongoing in bring the prospect of truly interoperable Full Project Title the technology sector, meaning there is a solutions closer. This brings more immediate NorduGrid and related projects explains how their work in improving Grid middleware will bring significant benefits to end users constant need to adapt to new demands and benefits, particularly for open-source evolving concerns. This is something projects like NorduGrid. “Enhancements and Definition explicitly reflected in NorduGrid’s overall new functionalities are being added gradually NorduGrid is a Grid Research and philosophy, which marries solid technological during the lifetime of the middleware,” Development collaboration which foundations with a real commitment to explains Ould-Saada. “Such development is aims to develop, maintain and meeting users needs. “The original ARC usually triggered by user requests, and is support the free Grid middleware. middleware was heavily reliant on some of often done in collaboration with other related The ARC solution the rather old technologies found in the projects, such as the NDGF or the ‘Innovative Objectives Globus Toolkit. We then developed a number Tools and Services for NorduGrid’ project The aim of the NorduGrid collaboration of innovative solutions which deviated (NGin). Good examples of such cooperation is to deliver a robust, scalable, portable significantly from Globus ones. The new are the accounting system developed by and fully featured solution for a global for Grid middleware generation of ARC middleware that is being Swegrid, the Application Portal developed by computational and data Grid system. developed with EU support through the Lund University and the security and data- KnowARC project is a completely new management enhancements that are being Contact solution that has no parallels,” says Ould- developed by Finnish, Norwegian and Professor Farid Ould-Saada, The expectations of technology users Saada. “However, we cannot really call it a Swedish students in the NGIn project.” University of Oslo seem to rise on a virtually continual basis. radical departure as the most radical thing Of course the needs of end users need to Department of Physics No sooner has an innovative, sophisticated about this new middleware is that it complies be kept firmly in mind when developing new Post Office box 1048, Blindern product hit the market than demand is with community Grid standards and is technologies. Users typically only choose 0316 Oslo, NORWAY stimulated for newer, faster, more responsive implemented in the Open Grid Services Grid computing over its conventional technologies. The same holds true for Grid Architecture (OGSA). In the past not many counterpart if it can bring significant added T: +47 2285 5056 computing. Just as cluster computing was Grid development projects relied on standards benefits. Ould-Saada says that the NorduGrid F: +47 2285 6422 the next step for workstation-based – for the simple reason that these standards project have identified some key priorities in W: www.nordugrid.org computation, so the ongoing development of did not really exist, indeed they have only this area. “The primary benefit Grid W: www.knowarc.eu Grid technologies represents an important started to emerge relatively recently. technologies can offer is simple access to E:[email protected] move forward in terms of computing for Contributing to standards development massive computing and storage resources,” advanced research. “By making use of processes is one of the main objectives of he explains. “The key word here is ‘simple’. excellent wide-area networks Grid NorduGrid and related projects.” Users often have no opportunity to learn computing naturally extends the term The pursuit of such goals demands that the complicated procedures; neither can they ‘distributed computing’ from nodes in a project collaborate closely with their easily change their working environment. cluster to clusters in a Grid,” explains European peers. This is something NorduGrid Thus portability comes as a natural Professor Farid Ould-Saada, the chairman recognised at an early stage. “NorduGrid has consequence of the simplicity requirement Professor Farid Ould-Saada of NorduGrid, a collaboration working to historically cooperated closely with a number and vice-versa. If the middleware is simple advance Grid technologies. of European Grid initiatives. This started enough and does not rely on a multitude of KnowARC project director, “The main goal of NorduGrid is to develop, with the EU DataGrid (EDG, 2001-2004), additional conditions then it will be pretty NorduGrid Chair maintain and support a free open source where we were one of the associated partners straightforward to deploy it on any Grid middleware, the Advanced Resource The ARC middleware is deployed all over the world and took an active part in middleware underlying system. This is the main principle Farid Ould-Saada works as a Professor Connector (ARC),” he continues. “Although development and integration,” says Ould- of NorduGrid: think simple.” in the Department of physics at the NorduGrid started as a project (2001-2002), Ould-Saada. “A growing number of national fulfil them. This is something of which Ould- Saada. “We have established very close ties This approach may come as a surprise to University of Oslo, a position he has it actually evolved into a long-term R & D and international infrastructure projects have Saada is well aware, indeed he points to with a number of projects, especially in the those who find the world of technology a held since 1999. He has extensive collaboration based on a Memorandum of chosen the non-intrusive, reliable, lightweight NorduGrid’s work in developing middleware area of interoperability. We are also very daunting, disorienting place. However it is experience in different fields of Understanding between the members. ARC ARC as their middleware. Swegrid was the capable of serving multiple platforms as an active in standardisation work and contribute this focus on simplicity that, in large part, particle and nuclear physics and takes is a result of the cooperation between several first, and the decision of a national Grid illustration of the project’s forward-looking to the Open Grid Forum (OGF), proof that we explains why the project has been able to a leading role in NorduGrid-related projects initiated and supported by infrastructure to use ARC middleware was an focus. “The ARC currently being deployed are collaborating not only on the European make the advances that it has. “The success of activities. In particular, he is chair NorduGrid: the EU-funded KnowARC important milestone for NorduGrid. Other runs on most Linux distributions. One of the level but on a wider basis as well. We ARC has been due to the fact that it has of the NorduGrid collaboration and project, the Nordic DataGrid Facility, and Nordic countries quickly followed, including goals of the KnowARC project (the main cooperate closely with the OMII-Europe and followed a bottom-up approach. We have director of the Know ARC EU-project. the Nordunet3-funded NGIn project that Norgrid in Norway, M-Grid in Finland and NorduGrid-related R & D project funded by EGEE projects, and are actively involved in been able to develop functional, non-invasive, focuses on research and education (PhD DCSC in Denmark – all of which rely on ARC. the EU) is to make ARC function on the the EGI Design Study via the middleware cost-efficient, easy to install middleware and programme, Grid school).” This ultimately led to the establishment of the Microsoft Windows and Mac OS platforms task force. Not only do these projects use it on existing heterogeneous computing With the effective operation of national NDGF, which set the goal of providing a as well,” he outlines. “The objectives of the influence NorduGrid strategic decisions, but and storage resources,” says Ould-Saada. Grid infrastructures reliant on their distributed regional computing centre (Tier1) KnowARC project are to create a novel, we in turn have an effect on the development “The good contacts that have developed underlying infrastructures, the provision of for CERN computing. Only ARC middleware powerful Next Generation Grid middleware, direction they take. The overall goal is to between developers, users and system reliable middleware takes on great importance. can make this possible, there are no other to promote Grid standardisation and share knowledge and forces in order to administrators has been instrumental in this This is a role in which NorduGrid has been comparable distributed centres.” interoperability, and to increase the take- converge towards interoperable Grid process. NorduGrid and its related projects notably successful. “ARC has been facilitating Having set such ambitious objectives it is up of Grid technologies and thus bridge the solutions. Standardisation is the key here.” cover the full research chain, from R&D, the reliable implementation of fundamental clear that NorduGrid must maintain a real gaps between business and academia in This goal of enabling interoperability is deployment and support right through to Grid services and utilities since 2002,” says focus on innovation if they are to be able to Grid development.” yet to be fully achieved. However, there is maintenance, application and education.” ★ 14 eStrategies | Projects www.britishpublishers.com 15.
Recommended publications
  • Usage Statistics and Usage Patterns on the Nordugrid: Analyzing the Logging Information Collected on One of the Largest Production Grids of the World
    CHEP04 Contribution ID: 102 Type: poster Usage statistics and usage patterns on the NorduGrid: Analyzing the logging information collected on one of the largest production Grids of the world. Wednesday, 29 September 2004 10:00 (0 minutes) The Nordic Grid facility (NorduGrid) came into production operation during the summer of 2002 when the Scandinavian Atlas HEP group started to use the Grid for the Atlas Data Challenges and was thus the first Grid ever contributing to an Atlas production. Since then, the Grid facility has been in continuous 24/7 operation offering an increasing number of resources to a growing set of active users coming from various scientific areas including chemistry, biology, informatics. As of today the Grid has grown into one of the largest production Grids of the world continuously running Grid jobs on the more than 30 Grid-connected sites which offer over 2000 CPUs. This article will start with a short overview of the design and implementation of the Advanced Resource Connector (ARC), the NorduGrid middleware, which delivers reliable Grid services to the NorduGrid production facility. This will be followed by a presentation of the logging facility of NorduGrid, describing the logging service and the collected information. The main part of the talk will focus onthe analysis of the collected logging information: usage statistics, usage patterns (what is a typical grid job on the NorduGrid looks like?). Use cases from different application domains will also be discussed. References: -NorduGrid live: www.nordugrid.org -> Grid Monitor -Atlas Data-Challenge 1 on NorduGrid: http://arxiv.org/abs/physics/0306013 Primary authors: KONSTANTINOV, A.
    [Show full text]
  • Performance of the Nordugrid ARC and the Dulcinea Executor in ATLAS Data Challenge 2
    Performance of the NorduGrid ARC and the Dulcinea Executor in ATLAS Data Challenge 2 Sturrock, R.; Eerola, Paula; Konya, Balazs; Smirnova, Oxana; Lindemann, Jonas; et, al. Published in: CERN-2005-002 2005 Link to publication Citation for published version (APA): Sturrock, R., Eerola, P., Konya, B., Smirnova, O., Lindemann, J., & et, A. (2005). Performance of the NorduGrid ARC and the Dulcinea Executor in ATLAS Data Challenge 2. In A. Aimar, J. Harvey, & N. Knoors (Eds.), CERN- 2005-002 (Vol. 2, pp. 1095-1098). CERN. Total number of authors: 6 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00
    [Show full text]
  • Status Report
    Nordic Testbed for Wide Area Computing and Data Handling 9/01/01 NORDIC TESTBED FOR WIDE AREA COMPUTING AND DATA HANDLING (NORDUGRID) Status Report Introduction The purpose of the project is to create the grid computing infrastructure in Nordic countries. Project participants include universities and research centers in Denmark, Sweden, Finland and Norway. The active phase of the project started in May 2001, and involves the Niels Bohr Institute (Denmark), Lund and Uppsala Universities (Sweden), University of Oslo (Norway) and Helsinki Institute of Physics (Finland). From the very beginning, the NorduGrid testbed became an integral part of the EU DataGrid project, initiated at CERN and aimed at creation of the computing infrastructure for the future high−energy physics experiments. This report overviews the status of the NorduGrid project as of September 1, 2001. 1. Organization Due to the considerable geographical spread of the project member sites, the organization and management heavily relies on the Internet and teleconferences. The project Web site (http://www.quark.lu.se/grid) opened in December 2000, and is regularly updated with the most detailed information. 1.1. Responsibilities 1.1.1. Steering Panel Prior to the project’s start, the steering panel was appointed to provide adequate management. It consists of the coordinator, John Renner Hansen, representing Niels Bohr Institute, Denmark; Tord Ekelöf, Paula Eerola and Sten Hellman, representing Uppsala, Lund and Stockholm Universities of Sweden; Farid Ould−Saada from the University of Oslo, Norway, and Matti Heikkurinen, representing Helsinki Institute of Physics, Finland. The group holds regular phone meetings. 1.1.2. New positions Three new postdoctoral positions, funded by the project, were created.
    [Show full text]
  • The Nordugrid Architecture and Middleware for Scientific Applications
    The NorduGrid Architecture And Middleware for Scientific Applications O. Smirnova1, P. Eerola1, T. Ekel¨of2, M. Ellert2, J. R. Hansen3, A. Konstantinov4, B. K´onya1, J. L. Nielsen3, F. Ould-Saada5, and A. W¨a¨an¨anen3 1 Particle Physics, Institute of Physics, Lund University, Box 118, 22100 Lund, Sweden 2 Department of Radiation Sciences, Uppsala University, Box 535, 75121 Uppsala, Sweden 3 Niels Bohr Institutet for Astronomi, Fysik og Geofysik, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark 4 Vilnius University, Institute of Material Science and Applied Research, Saul˙etekio al. 9, Vilnius 2040, Lithuania 5 University of Oslo, Department of Physics, P. O. Box 1048, Blindern, 0316 Oslo, Norway Abstract. The NorduGrid project operates a production Grid infras- tructure in Scandinavia and Finland using own innovative middleware solutions. The resources range from small test clusters at academic in- stitutions to large farms at several supercomputer centers, and are used for various scientific applications. This talk reviews the architecture and describes the Grid services, implemented via the NorduGrid middleware. 1 Introduction The NorduGrid project [1] started in May 2001, initiated by academic institutes in Scandinavia and Finland, aiming to build a Nordic testbed for wide area com- puting and data handling. After evaluating the existing Grid solutions (such as the Globus ToolkitTM [2] and the EU Datagrid (EDG) [3]), the NorduGrid devel- opers came up with an original architecture and implementation proposal [4, 5]. The NorduGrid testbed was set up accordingly in May 2002, and is in continuous operation and development since August 2002. By now it has grown into one of the largest operational Grids in the world, including not only test sites, but also several large production clusters.
    [Show full text]
  • Nordugrid ARC Tutorial
    ARARCC TTututoorriialal Aleksandr Konstantinov Vilnius University/Lithuania and University of Oslo/Norway CoContnteentntss What is Grid? – NorduGrid – What changes? ARC • How it works Misunderstandings. • Job's definition Applications • Preparation Middleware • Simple job – Legion • Sophisticated job – Unicore – Globus Grid users – Authentication – Authorization 2005-03-17 www.nordugrid.org 2 WhatWhat iiss GGrriidd?? Relatively new term – definition is fuzzy. – Many users, many definitions – Common misunderstandings – Standardization just http://www.globalgridforum.org/. Old idea – Uniform and safe access to geographically remote and inhomogeneous computing resources. – Dynamic pool of users and resources. – Distributed management. – Resources belonging to different institutions are linked into system. – Collaboration and social networking are as important as technology Grid environment is usually formed a layer over operating system installed on participating resources and other services. – Term used - “middleware”. I. Foster and C. Kesselmann, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufman Publishers, 1998 2005-03-17 www.nordugrid.org 3 WhatWhat changechangess?? Physical location of computing and data resources not important. Unification is important – Usernames and passwords are not used – Unification of resources: virtualization or unified interfaces. • A lot of unsolved problems. • Standardization just started. • Maybe virtual computers can help. • What should adapt, user's application or Grid environment? 2005-03-17 www.nordugrid.org 4 CoCommmmoonn mmiissundundeerrssttandandiingsngs Grid increases resources – One computing resource won't be able to compute more if put on a Grid. – But resources can be used more effectively. Grid is black box and everything inside it happens automatically. – So far in future plans only – In reality users still have to learn about peculiarities of implementation.
    [Show full text]
  • The Advanced Resource Connector User Guide
    NORDUGRID NORDUGRID-MANUAL-6 7/12/2010 The NorduGrid/ARC User Guide Advanced Resource Connector (ARC) usage manual 2 Contents 1 Preface 11 2 Roadmap 13 3 Client Installation 15 3.1 Beginner Installation . 15 3.1.1 Download . 15 3.1.2 Unpack . 15 3.1.3 Configure . 16 3.2 System-wide installation . 16 3.2.1 Installation via repositories . 17 3.2.2 Globus Toolkit . 18 3.2.3 Download the client . 18 3.2.4 Build . 19 3.2.5 Install the client . 20 3.3 Client configuration files . 21 3.3.1 client.conf . 21 3.3.2 srms.conf . 23 3.3.3 Deprecated configuration files . 24 4 Grid Certificates 25 4.1 Quick start with certificates . 25 4.1.1 Certificates in local standalone client . 25 4.1.2 Certificates for system-wide client installation . 27 4.1.3 Obtain a personal certificate . 27 4.2 Grid Authentication And Certificate Authorities . 28 4.2.1 Grid Login, Proxies . 28 4.2.2 Certificate Authorities . 29 4.2.3 Globus Grid certificates . 29 4.2.4 Associating yourself with a proper CA . 30 4.2.5 Friendly CAs . 31 4.2.6 Certificate Request . 32 4.2.7 Working with certificates: examples . 33 3 4 CONTENTS 5 Getting Access to Grid Resources: Virtual Organisations 35 5.1 NorduGrid Virtual Organisation . 35 5.2 Other Virtual Organisations . 36 6 Grid Session 37 6.1 Logging Into The Grid . 37 6.1.1 Proxy Handling Tips . 38 6.2 First Grid test . 38 6.3 Logging Out .
    [Show full text]
  • Pos(ACAT08)046
    The Advanced Resource Connector for Distributed LHC Computing PoS(ACAT08)046 David Cameron∗ab, Aleksandr Konstantinova, Farid Ould-Saadaa, Katarina Pajchela, Alexander Reada, Bjørn Samseta, Adrian Tagaa † aDepartment of Physics, University of Oslo, P.b. 1048 Blindern, N-0316 Oslo, Norway bNordic Data Grid Facility, Kastruplundgade 22, DK-2770 Kastrup, Denmark E-mail: [email protected] The NorduGrid collaboration and its middleware product, ARC (the Advanced Resource Con- nector), span institutions in Scandinavia and several other countries in Europe and the rest of the world. The innovative nature of the ARC design and flexible, lightweight distribution make it an ideal choice to connect heterogeneous distributed resources for use by HEP and non-HEP appli- cations alike. ARC has been used by scientific projects for many years and through experience it has been hardened and refined to a reliable, efficient software product. In this paper we present the architecture and design of ARC and show how ARC’s simplicity eases application integration and facilitates taking advantage of distributed resources. Example applications are shown along with some results from one particular application, simulation production and analysis for the ATLAS experiment, as an illustration of ARC’s common usage today. These results demonstrate ARC’s ability to handle significant fractions of the computing needs of the LHC experiments today and well into the future. XII Advanced Computing and Analysis Techniques in Physics Research November 3-7, 2008 Erice, Italy ∗Speaker. †This work was partly supported by the Nordic Data Grid Facility and EU KnowARC (contract nr. 032691). c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
    [Show full text]
  • The Nordugrid: Building a Production Grid in Scandinavia P
    ATL-SOFT-2003-002 29 March 2003 1 The NorduGrid: Building a Production Grid in Scandinavia P. Eerola∗, T. Ekelof¨ †, M. Ellert†, J. R. Hansen‡, A. Konstantinov§, B. Konya´ ∗, J. L. Nielsen‡, F. Ould-Saada§, O. Smirnova∗, A. Wa¨an¨ anen¨ ‡ ∗Particle Physics, Institute of Physics, Lund University, Box 118, 22100 Lund, Sweden †Department of Radiation Sciences, Uppsala University, Box 535, 75121 Uppsala, Sweden ‡Niels Bohr Institutet for Astronomi, Fysik og Geofysik, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark §University of Oslo, Department of Physics, P. O. Box 1048, Blindern, 0316 Oslo, Norway Abstract— The aim of the NorduGrid project is to build and A. Hardware resources operate a production Grid infrastructure in Scandinavia and Finland. The innovative middleware solutions allowed setting up The NorduGrid environment consists of five core sites, a working testbed, which connects a dynamic set of computing mostly dedicated to development and testing of the middle- resources by providing uniform access to them. The resources ware, and several production clusters, scattered across the range from small test clusters at academic institutions to large Nordic countries. The core sites run small test clusters (a farms at several supercomputer centers. This paper reviews the few CPUs) and comprised the initial testbed, put up in May architecture and describes the Grid services, implemented via the NorduGrid middleware. As an example of a demanding 2002. Since this testbed was shown to be stable, reliable and application, a real use case of a High Energy Physics study is capable of executing production-level tasks, more sites have described. joined with large production clusters.
    [Show full text]
  • Performance of the Nordugrid ARC and the Dulcinea Executor in ATLAS Data Challenge 2
    Performance of the NorduGrid ARC and the Dulcinea Executor in ATLAS Data Challenge 2 Robert Sturrock, University of Melbourne, Australia Henrik Jensen, Josva Kleist, Alborg˚ University, Denmark John Renner Hansen, Jakob Langgaard Nielsen, Anders Wa¨an¨ anen,¨ NBI, Copenhagen, Denmark Daniel Kalici, University of Southern Denmark, Odense, Denmark Arto Teras,¨ CSC, Helsinki, Finland Helmut Heller, Leibniz-Rechenzentrum, Munich, Germany John Kennedy, Gunter¨ Duckeck, Ludwig-Maximilians-Universitat,¨ Munich, Germany Aleksandr Konstantinov, University of Oslo, Norway and Vilnius University, Lithuania Jan-Frode Myklebust, University of Bergen, Norway Farid Ould-Saada, Katarzyna Pajchel, Alex Read, Haakon Riiser, University of Oslo, Norway Morten Hanshaugen, Sturle Sunde, USIT, University of Oslo, Norway Andrej Filipciˇ c,ˇ Matevzˇ Tadel, Jozefˇ Stefan Institute, Ljubljana, Slovenia Leif Nixon, NSC, Linkoping¨ University, Sweden Paula Eerola, Balazs´ Konya,´ Oxana Smirnova, Lund University, Sweden Jonas Lindemann, LUNARC, Lund University, Sweden Lars Malinowsky, Nils Smeds, PDC, KTH, Stockholm, Sweden Ake˚ Sandgren, Mattias Wadenstein, HPC2N, Umea˚ University, Sweden Tord Ekelof,¨ Uppsala University, Sweden Christian Haberli,¨ University of Bern, Switzerland Mattias Ellert∗, CERN, Geneva, Switzerland Abstract dedicated resources across the world in order to enable ef- fective participation in ATLAS DC2. This was the first at- This talk describes the various stages of ATLAS Data tempt to harness large amounts of strongly heterogeneous Challenge 2 (DC2) in what concerns usage of resources resources in various countries for a single collaborative ex- deployed via NorduGrid’s Advanced Resource Connector ercise using Grid tools. This talk addresses various issues (ARC). It also describes the integration of these resources that arose during different stages of DC2 in this environ- with the ATLAS production system using the Dulcinea ex- ment: preparation, such as ATLAS software installation; ecutor.
    [Show full text]
  • Innovative Services and Tools for Nordugrid (Ngin)
    Innovative services and tools for NorduGrid (NGIn) (rehearsal of talk at) Nordunet 2008, 11.04.08 Jon Kerr Nilsen e-mail: [email protected] University of Oslo, Department of Physics PhD student, NGIn The NorduGrid Collaboration A research collaboration that: Develops and supports ARC middleware Provides middleware to research groups and national Grids Coordinates the various inputs to the KnowARC code Nordic Grid Neighbourhood 3/28/2008 www.nordugrid.org 2 ARC middleware deployed on 50+ sites in 15+ countries all around the world http://www.nordugrid.org/monitor 28/03/2008 www.nordugrid.org 3 Nordic Data Grid Facility NDGF pilot project started 2003 Goal: Create a Nordic Grid infrastructure Builds on history and competence of Nordic Grid collaboration NorduGrid/ARC middleware chosen as basis Funded (2 M.EUR/year) by National Research Councils of the Nordic countries Coordinates and hosts major Grid projects (e.g. the Nordic LHC Tier-1) Operates Nordic storage facility for major projects NOS-N Develops grid middleware and DK SF N S services Nordic Data Grid Facility 28/03/2008 www.nordugrid.org 4 NDGF Facility - 2007Q3 EU KnowARC project: 10 partners from 7 countries NorduGrid members and research teams in medicine, bioinformatics, physics, engineering, automotive industry apps, IT Univ. of Oslo Norway Univ. of Lund Sweden Univ. of Copenhagen Denmark Univ. of Uppsala Sweden NIIF Hungary Geneva Univ. Hospitals Switzerland Univ. of Kosice Slovakia Univ. of Lübeck Germany science+computing ag Germany SUN Microsystems Hungary 28/03/2008 www.nordugrid.org 6 Goals of KnowARC The mission of KnowARC is .
    [Show full text]
  • Nordugrid and Related Projects – There Have Been 3 New Projects That Started This Summer
    NorduGridNorduGrid andand relatedrelated Projects:Projects: OverviewOverview forfor IHEPCCCIHEPCCC Farid Ould-Saada University of Oslo NorduGrid and ATLAS A research collaboration that develops and supports Advanced Resource Connector middelware and coordinates the various inputs to the ARC code Provides middleware to research groups, national Grid projects: ARC on 50 sites in 14 countries NorduGrid: yesterday, today, tomorrow From ... ... To EDG >ARC 4Nordic >14 countries Tesbed >50 sites 20cpu’s >5000 cpu’s ... fromHEP a research project to a >research + Bio,Chem.,... collaboration 2001 >2003 ... from a Grid testbed to a major middleware provider May 01 Oct 02 Apr 03 06/06 ... It is NOT an infrastructure, Nordic–does Council not of operate ministers or controlNatural Science resourcesCollaboration of Nordic NDGF (Nordunet 2 program) Research Councils HEP institutes+ others NorduGrid (NOS-N) NGN networkÆ Nordunet3 ... Now several related projects KnowARC 05/10/2006 www.nordugrid.org 3 TheThe bigbig picturepicture aroundaround NorduGridNorduGrid Researh Projects N e Group tw o rk s N3 N G N Partner ARC middleware Institute Home Coder KnowARC NDGF 05/10/2006 www.nordugrid.org 4 WhyWhy furtherfurther developdevelop ARC?ARC? • Lightweight standalone client package, easy to install and use • Reliable resource for scientific applications in many research fields • Available on a wide range of Linux platforms • Non-centralised architecture ARC middleware architecture • Needs no centralized operations infrastructure • Non-intrusive, coexists with other softwares and configurations See Top 10 Reasons to Use ARC for more details Æ Suits needs of heterogeneous distributed shared resources Æ Is in many aspects interoperable with other middlewares 05/10/2006 www.nordugrid.org 5 HEP vs Non HEP: Example of applications run simultaneously on NorduGrid Although HEP initiated, Non HEP applications dominate • Applications "gridified" with NorduGrid include various non HEP examples • biomedical sciences (e.g.
    [Show full text]
  • Grid Technology
    GRID TECHNOLOGY Grid Technology Research Assistant, Dr Oxana Smirnova, sings the praises of the distributed supercomputer… t was only a few years ago when the tendency of deploying bigger and bigger supercomputers for scientific Iresearch and industry started to give way to a new paradigm, the Grid. The idea of joining the existing variety of computing resources by using a layer of dedicated tools, the Grid middleware, became particularly appealing for large multinational collaborations, eager to merge their distributed computing power into a single, well managed facility. Applications from such areas as aeronautics, space sciences, interactive visualisation and teleimmersion were the first to try the emerging Globus Toolkit™ (www.globus.org), which became a defacto standard for the Grid middleware. In 2001, the huge community of high energy physics, famous for inventing the world wide web, made a bold step, to provide the researchers with a reliable, distributed facility, committing resources to the EU-sponsored DataGrid project to be used in their daily work. However, during the evaluation [www.eu-datagrid.org], aiming at developing a solution of existing and developing tools, it became clear that none satisfying their needs of high-throughput, data-intensive satisfies these requirements. Meanwhile, the needs of the distributed computing. ATLAS collaboration to start computing simulation of the physics processes and the detector performance were For us, the high energy physicists in the Nordic countries, the pressing, and by no means
    [Show full text]