Csc-180 (Gordon) Week 1A Notes Key Points: • Consciousness O a “Very

Total Page:16

File Type:pdf, Size:1020Kb

Csc-180 (Gordon) Week 1A Notes Key Points: • Consciousness O a “Very CSc-180 (Gordon) Week 1A notes Key points: • Consciousness o A “very hard problem” that we mostly will ignore o See: “Chinese Room Experiment” by John Searle o See: “Partial Brain Thought Experiment” by Jacques Mallah o See: “Consciousness” by Susan Blackmore (book) • What is intelligence? • Elements of intelligence (partial list): o Reasoning / solving problems o Imagination, new ideas o Ability to generalize o Abiltity to learn o Planning o Human-like behavior (or animal-like) o Rational behavior (able to explain) o Knowledge • Definitions of “Artificial Intelligence” (from various textbooks): o Negnevitsky: “Ability to learn and understand, to solve problems and make decisions.” o Kurzweil: “…machines that perform functions that require intelligence when performed by people.” o Coppin: “…systems that act in a way that to any observer would appear to be intelligent.” o Coppin: “…using methods based on the intelligent behavior of humans and other animals to solve problems” o Russell/Norvig: . Systems that act like humans, OR . Systems that think like humans, OR . Systems that act rationally, OR . Systems that think rationally • “Turing Test” o Human in one room, hooked to an “agent” in another room via computer chat session (keyboard) o Human tries to determine if “agent” is a human or a computer o Human is free to discuss anything, can ask challenging questions (human knows this is a “test”) o Passing presumably requires knowledge base, natural language processing, context understanding • “Eliza” o Computer program written in 1966 (Weizenbaum) o Trivial program (~200 lines of code), simply bounces back human input with minor modifications o Many people thought it was a human o Challenges significance of Turing Test • “Weak AI” vs “Strong AI” o “WEAK” – can machines ACT intelligently? (see Kurzweil, and Coppin #1 definitions) o “STRONG” – can machines really have an underlying understanding? (see Negnevitsky, Coppin #2) o Passing Turing Test might only require weak AI… we don’t know yet. o Open question – does AI require having lots of knowledge? Or is intelligence knowledge-independent? o “Strong” doesn’t mean “perform better”. Many of the best systems are “weak AI”. • Ethical Considerations: o People can lose their jobs to automation o Loss of accountability – what if an AI system makes a fatal mistake? . What if the AI system can’t explain how it made its decision? . Is the programmer liable? The agency that used the software? o Is it ethical to turn off a possibly-conscious system? o “Technical Singluarity” (proposed by Kurzweil) – when computers exceed us, and improve themselves CSc-180 (Gordon) Week 1A notes Some important AI events in history 1800s Ada describes how Babbage’s analytical engine could be programmed to play chess 1930/40s artificial neurons (McCulloch/Pitts) algorithms for playing chess (Turing, Mitchie) 1950s Turing proposes Turing Test Shannon publishes minimax algorithm, including a full spec for a chess program Perceptron learning algorithm (Rosenblatt, problem: linear separability) Term “AI” coined by J. McCarthy McCarthy also defines the LISP language Logic Theorist and General Problem Solver (Newell/Simon/Shaw) Samuels’ learning checker program defeats a strong human player 1960s Blocks World (Minsky/Huffman) Fuzzy Logic (Zadeh) A* (Hart/Nilsson/Raphael) Eliza (Weizenbaum) Shakey the Robot (Stanford) AI skeptics (Lucas, Dreyfus – “What Computers Can’t Do”) 1970s Theory of NP Completeness (Cook/Levin, Hopcroft) Expert Systems (DENDRAL, MYCIN, INTERNIST) Frames (Minsky) STRIPS planning language (Sacerdoti) BKG (Berliner) defeats backgammon world champion Genetic Algorithms (Holland) 1980s Industrial use of expert systems (ALACRITY, NASA/CLIPS) “5th Generation Computing” (Prolog, mostly in Japan) ALVINN (Pomerleau) autonomous land vehicle Backpropagation solves linear separability problem (Rumelhart/McClelland) 1990s Genetic Programming (Koza) Deep Blue (Hsu/IBM) defeats world chess champion PSO / Swarm Intelligence (Kennedy/Eberhart) Ant Colony Optimization (Dorigo) 2000s Chinook solves checkers (Schaeffer) Robotics advances (NASA, ASIMO, Roomba, Nomad) Self-driving cars “Elbot” fools three judges at Loebner competition (Roberts) 2010s “Watson” (Ferucci/IBM) wins at Jeopardy Advances in natural language (Siri, Google Now, Cortana) Advances in multilayer neural networks – “deep learning” Convolutional Neural Networks for image recognition (Ciresan/Meier/Schmidhuber) “Alpha Go” (DeepMind/Google) defeats world Go champions .
Recommended publications
  • The Evolution of Intelligence
    Review From Homo Sapiens to Robo Sapiens: The Evolution of Intelligence Anat Ringel Raveh * and Boaz Tamir * Faculty of interdisciplinary studies, S.T.S. Program, Bar-Ilan University, Ramat-Gan 5290002, Israel; [email protected] (A.R.R.); [email protected] (B.T.) Received: 30 October 2018; Accepted: 18 December 2018; Published: 21 December 2018 Abstract: In this paper, we present a review of recent developments in artificial intelligence (AI) towards the possibility of an artificial intelligence equal that of human intelligence. AI technology has always shown a stepwise increase in its capacity and complexity. The last step took place several years ago with the increased progress in deep neural network technology. Each such step goes hand in hand with our understanding of ourselves and our understanding of human cognition. Indeed, AI was always about the question of understanding human nature. AI percolates into our lives, changing our environment. We believe that the next few steps in AI technology, and in our understanding of human behavior, will bring about much more powerful machines that are flexible enough to resemble human behavior. In this context, there are two research fields: Artificial Social Intelligence (ASI) and General Artificial Intelligence (AGI). The authors also allude to one of the main challenges for AI, embodied cognition, and explain how it can viewed as an opportunity for further progress in AI research. Keywords: Artificial Intelligence (AI); artificial general intelligence (AGI); artificial social intelligence (ASI); social sciences; singularity; complexity; embodied cognition; value alignment 1. Introduction 1.1. From Intelligence to Super-Intelligence In this paper we present a review of recent developments in AI towards the possibility of an artificial intelligence equals that of human intelligence.
    [Show full text]
  • Ontology-Based Approach to Semantically Enhanced Question Answering for Closed Domain: a Review
    information Review Ontology-Based Approach to Semantically Enhanced Question Answering for Closed Domain: A Review Ammar Arbaaeen 1,∗ and Asadullah Shah 2 1 Department of Computer Science, Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia 2 Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia; [email protected] * Correspondence: [email protected] Abstract: For many users of natural language processing (NLP), it can be challenging to obtain concise, accurate and precise answers to a question. Systems such as question answering (QA) enable users to ask questions and receive feedback in the form of quick answers to questions posed in natural language, rather than in the form of lists of documents delivered by search engines. This task is challenging and involves complex semantic annotation and knowledge representation. This study reviews the literature detailing ontology-based methods that semantically enhance QA for a closed domain, by presenting a literature review of the relevant studies published between 2000 and 2020. The review reports that 83 of the 124 papers considered acknowledge the QA approach, and recommend its development and evaluation using different methods. These methods are evaluated according to accuracy, precision, and recall. An ontological approach to semantically enhancing QA is found to be adopted in a limited way, as many of the studies reviewed concentrated instead on Citation: Arbaaeen, A.; Shah, A. NLP and information retrieval (IR) processing. While the majority of the studies reviewed focus on Ontology-Based Approach to open domains, this study investigates the closed domain.
    [Show full text]
  • Knowledge Elicitation: Methods, Tools and Techniques Nigel R
    This is a pre-publication version of a paper that will appear as Shadbolt, N. R., & Smart, P. R. (2015) Knowledge Elicitation. In J. R. Wilson & S. Sharples (Eds.), Evaluation of Human Work (4th ed.). CRC Press, Boca Raton, Florida, USA. (http://www.amazon.co.uk/Evaluation-Human-Work-Fourth- Wilson/dp/1466559616/). Knowledge Elicitation: Methods, Tools and Techniques Nigel R. Shadbolt1 and Paul R. Smart1 1Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK. Introduction Knowledge elicitation consists of a set of techniques and methods that attempt to elicit the knowledge of a domain expert1, typically through some form of direct interaction with the expert. Knowledge elicitation is a sub-process of knowledge acquisition (which deals with the acquisition or capture of knowledge from any source), and knowledge acquisition is, in turn, a sub-process of knowledge engineering (which is a discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems). Although the elicitation, representation and transmission of knowledge can be considered a fundamental human activity – one that has arguably shaped the entire course of human cognitive and social evolution (Gaines, 2013) – knowledge elicitation had its formal beginnings in the early to mid 1980s in the context of knowledge engineering for expert systems2. These systems aimed to emulate the performance of experts within narrowly specified domains of interest3, and it initially seemed that the design of such systems would draw its inspiration from the broader programme of research into artificial intelligence. In the early days of artificial intelligence, much of the research effort was based around the discovery of general principles of intelligent behaviour.
    [Show full text]
  • Artificial Intelligence: a Roadmap for California
    Artificial Intelligence: A Roadmap for California Report #245, November 2018 Milton Marks Commission on California State Government Organization and Economy Little Hoover Commission Dedicated to Promoting Economy and Efficiency Pedro Nava Chairman in California State Government Sean Varner Vice Chairman/ Subcommitee Member The Little Hoover Commission, formally known as the Milton Marks “Little Hoover” David Beier Commission on California State Government Organization and Economy, is an Subcommitee Chair independent state oversight agency created in 1962. By statute, the Commission Iveta Brigis is bipartisan and composed of nine public members, two senators and two Subcommitee Member assemblymembers. Cynthia Buiza In creating the Commission, the Legislature declared its purpose: Anthony Cannella Senator [T]o secure assistance for the Governor and itself in promoting Chad Mayes economy, efficiency and improved services in the transaction of Assemblymember the public business in the various departments, agencies and Don Perata instrumentalities of the executive branch of the state government, Bill Quirk and in making the operation of all state departments, agencies and Assemblymember instrumentalities, and all expenditures of public funds, more directly Richard Roth responsive to the wishes of the people as expressed by their elected Senator representatives. Cathy Schwamberger The Commission fulfills this charge by holding public hearings, consulting with experts Janna Sidley and listening to stakeholders. During the course of its studies, the Commission may Former Commissioners Who create subcommittees and conduct site visits. Served During The Study Joshua LaFarga The findings and recommendations of the Commission are submitted to the Governor and the Legislature for their consideration. Recommendations often take the form of Helen Iris Torres legislation, which the Commission supports through the legislative process.
    [Show full text]
  • AI for Autonomous Ships – Challenges in Design and Validation
    VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD AI for Autonomous Ships – Challenges in Design and Validation ISSAV 2018 Eetu Heikkilä Autonomous ships - activities in VTT . Autonomous ship systems . Unmanned engine room . Situation awareness . Autonomous autopilot . Connectivity . Human factors of remote and autonomous systems . Safety assessment 22/03/2018 2 Contents . AI technologies for autonomous shipping . Design & validation challenges . Methodological . Technical . Acknowledgements: Olli Saarela, Heli Helaakoski, Heikki Ailisto, Jussi Martio 22/03/2018 3 AI technologies Definitions - Autonomy Level Name 1 Human operated Autonomy is the ability of a system to 2 Human assisted achieve operational goals in complex domains by making decisions and executing 3 Human delegated actions on behalf of or in cooperation with 4 Supervised humans. (NFA, 2012) 5 Mixed initiative . Target to increase productivity, cost 6 Fully autonomous efficiency, and safety . Not only by reducing human work, but also by enabling new business logic 22/03/2018 5 Definitions - Artificial Intelligence . The Turing test: Can a person tell which of the other parties is a machine . AI is a moving target . When a computer program is able to perform a task, people start to consider the task “merely” computational, not requiring actual intelligence after all. ”AI is all the software we don’t yet know how to write.” . More practically: AI is a collection of technologies facilitating “smart” operation of machines and systems. Conclusions and actions fitting the prevailing
    [Show full text]
  • Overview of Artificial Intelligence
    Updated October 24, 2017 Overview of Artificial Intelligence The use of artificial intelligence (AI) is growing across a Currently, AI technologies are highly tailored to particular wide range of sectors. Stakeholders and policymakers have applications or tasks, known as narrow (or weak) AI. In called for careful consideration of strategies to influence its contrast, general (or strong) AI refers to intelligent behavior growth, reap predicted benefits, and mitigate potential risks. across a range of cognitive tasks, a capability which is This document provides an overview of AI technologies unlikely to occur for decades, according to most analysts. and applications, recent private and public sector activities, Some researchers also use the term “augmented and selected issues of interest to Congress. intelligence” to capture AI’s various applications in physical and connected systems, such as robotics and the AI Technologies and Applications Internet of Things, and to focus on using AI technologies to Though definitions vary, AI can generally be thought of as enhance human activities rather than to replace them. computerized systems that work and react in ways commonly thought to require intelligence, such as solving In describing the course of AI development, the Defense complex problems in real-world situations. According to Advanced Research Projects Agency (DARPA) has the Association for the Advancement of Artificial identified three “waves.” The first wave focused on Intelligence (AAAI), researchers broadly seek to handcrafted knowledge that allowed for system-enabled understand “the mechanisms underlying thought and reasoning in limited situations, though lacking the ability to intelligent behavior and their embodiment in machines.” learn or address uncertainty, as with many rule-based systems from the 1980s.
    [Show full text]
  • Is the Artificial Intelligent? a Perspective on AI-Based Natural Language Processors
    Pobrane z czasopisma New Horizons in English Studies http://newhorizons.umcs.pl Data: 16/03/2020 15:10:20 New Horizons in English Studies 4/2019 LANGUAGE • Wojciech Błachnio Maria Curie-SkłodowSka univerSity, LubLin [email protected] Is the Artificial Intelligent? A Perspective on AI-based Natural Language Processors Abstract. The issue of the relation between AI and human mind has been riddling the scientific world for ages. Having been an innate and exclusive faculty of the human mind, language is now manifested in a countless number of ways, transcending beyond the human-only production. There are applica- tions that can not only understand what is meant by an utterance, but also engage in a quasi-humane discourse. The manner of their operating is perfectly organised and can be accounted for by incorporat- ing linguistic theories. The main theory used in this article is Fluid Construction Grammar, which has been developed by Luc Steels. It is concerned with parsing and the segmentation of any utterance – two processes that are pivotalUMCS in AI’s understanding and production of language. This theory, in addition to five main facets of languages (phonological, morphological, semantic, syntactic and pragmatic), provides valuable insight into discrepancies between the natural and artificial perceptions of language. Though there are similarities between them, the article shall conclude with what makes two adjacent capabilities different. The aim of this paper is to display the mechanisms of AI natural language proces- sors with the aid of contemporary linguistic theories, and present possible issues which may ensue from using artificial language-recognising systems.
    [Show full text]
  • Evolutionary Psychology As of September 15
    Evolutionary Psychology In its broad sense, the term ‘evolutionary psychology’ stands for any attempt to adopt an evolutionary perspective on human behavior by supplementing psychology with the central tenets of evolutionary biology. The underlying idea is that since our mind is the way it is at least in part because of our evolutionary past, evolutionary theory can aid our understanding not only of the human body, but also of the human mind. In the narrow sense, Evolutionary Psychology (with capital ‘E’ and ‘P’, to distinguish it from evolutionary psychology in the broad sense) is an adaptationist program which regards our mind as an integrated collection of cognitive mechanisms that are adaptations , i.e., the result of evolution by natural selection. Adaptations are traits present today because they helped to solve recurrent adaptive problems in the past. Evolutionary Psychology is interested in those adaptations that have evolved in response to characteristically human adaptive problems like choosing and securing a mate, recognizing emotional expressions, acquiring a language, distinguishing kin from non-kin, detecting cheaters or remembering the location of edible plants. Its purpose is to discover and explain the cognitive mechanisms that guide current human behavior because they have been selected for as solutions to these adaptive problems in the evolutionary environment of our ancestors. 1. Historic and Systematic Roots 1a. The Computational Model of the Mind 1b. The Modularity of Mind 1c. Adaptationism 2. Key Concepts and Arguments 2a. Adaptation and Adaptivity 1 2b. Functional Analysis 2c. The Environment of Evolutionary Adaptedness 2d. Domain-specificity and Modularity 2e. Human Nature 3.
    [Show full text]
  • Artificial Intelligence in Health Care Islam Haythem Salama Osama Jumaa Alzway Supervisor : Dr
    Artificial intelligence in Health Care Islam Haythem Salama Osama Jumaa Alzway Supervisor : Dr. Abdelmonem Abdelnabi Objectives 1. General View of Artificial Intelligence 2. Artificial Intelligence in Health Care 3. Artificial Intelligence in Dentistry General View of AI - Islam Salama So , What is the AI ? The theory and development of a computer systems that is able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision- making, translation between languages ,and concept making . AI Revelation AI Revelation Human Conscious Levels 1.Information's 2.Believe 3.Ideas 4.Thinking 5.Conscious Classification of AI : 1. Strong AI 2. Weak AI Strong AI Artificial general intelligence a multitask system or machine with skillful and flexible as humans do and with ability to apply intelligence to any problem, rather than just one specific problem IBM Watson • -Watson is a question answering computer system capable of answering questions posed in natural language, developed in IBM's DeepQA project. • -Won 2011 Jeopardy Google Deep Mind • Company in UK now under alphabet group • mimics the short-term memory of the human brain • Won in Go Game “ Alfa Go “ 2016 Weak AI “Narrow AI” is artificial intelligence that is focused on one narrow task. Weak AI is defined in contrast to either. All currently existing systems considered artificial intelligence of any sort are weak AI at most. e.g: Weak AI “Narrow AI” Intelligence levels of machines 1. Optimal AI = good at his application e.g: scaning method can scans every letter. 2. Super Strong = better than other humans. 3. Strong = at his app not all people but some of them = face rec.
    [Show full text]
  • Eye on the Prize
    AI Magazine Volume 16 Number 2 (1995) (© AAAI) Articles Eye on the Prize Nils J. Nilsson ■ In its early stages, the field of AI had as its main sufficiently powerful to solve large problems goal the invention of computer programs having of real-world consequence. In their efforts to the general problem-solving abilities of humans. get past the barrier separating toy problems Along the way, a major shift of emphasis devel- from real ones, AI researchers became oped from general-purpose programs toward per- absorbed in two important diversions from formance programs, ones whose competence was their original goal of developing general, highly specialized and limited to particular areas intelligent systems. One diversion was toward of expertise. In this article, I claim that AI is now developing performance programs, ones whose at the beginning of another transition, one that competence was highly specialized and limit- will reinvigorate efforts to build programs of gen- eral, humanlike competence. These programs will ed to particular areas of expertise. Another use specialized performance programs as tools, diversion was toward refining specialized much like humans do. techniques beyond those required for general- purpose intelligence. In this article, I specu- ver 40 years ago, soon after the birth late about the reasons for these diversions of electronic computers, people began and then describe growing forces that are Oto think that human levels of intelli- pushing AI to resume work on its original gence might someday be realized in computer goal of building programs of general, human- programs. Alan Turing (1950) was among the like competence.
    [Show full text]
  • Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry
    watchit Expertenforum 2. Veröffentlichung Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry Udo Milkau and Jürgen Bott BD 2-MOS-Umschlag-RZ.indd 1 09.08.19 08:51 Impressum DHBW Mosbach Lohrtalweg 10 74821 Mosbach www.mosbach.dhbw.de/watchit www.digital-banking-studieren.de Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry von Udo Milkau und Jürgen Bott Herausgeber: Jens Saffenreuther Dirk Saller Wolf Wössner Mosbach, im August 2019 BD 2-MOS-Umschlag-RZ.indd 2 09.08.19 08:51 BD 2 - MOS - Innen - RZ_HH.indd 1 02.08.2019 10:37:52 Decision-Making with Artificial Intelligence in the Social Context 1 Decision-Making with Artificial Intelligence in the Social Context Responsibility, Accountability and Public Perception with Examples from the Banking Industry Udo Milkau and Jürgen Bott Udo Milkau received his PhD at Goethe University, Frankfurt, and worked as a research scientist at major European research centres, including CERN, CEA de Saclay and GSI, and has been a part-time lecturer at Goethe University Frankfurt and Frankfurt School of Finance and Management. He is Chief Digital Officer, Transaction Banking at DZ BANK, Frankfurt, and is chairman of the Digitalisation Work- ing Group and member of the Payments Services Working Group of the European Association of Co- operative Banks (EACB) in Brussels. Jürgen Bott is professor of finance management at the University of Applied Sciences in Kaiserslau- tern. As visiting professor and guest lecturer, he has associations with several other universities and business schools, e.g.
    [Show full text]
  • Artificial Intelligence [R18a1205] Lecture Notes B.Tech Iii Year
    ARTIFICIAL INTELLIGENCE [R18A1205] LECTURE NOTES B.TECH III YEAR – I SEM (R18) (2020-2021) MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY III Year B. Tech CSE ‐ I Sem L T/P/D C 3 -/-/- 3 (R18A1205) ARTIFICIAL INTELLIGENCE OBJECTIVES: To Learn the significance of intelligence systems. To understand the concepts of heuristic search techniques &logic programming. To know the various knowledge representation techniques. UNIT - I Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving Agents Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth-First, Depth-First Search, Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*), Constraint Satisfaction (Backtracking, Local Search) UNIT - II Advanced Search: Constructing Search Trees, Stochastic Search, A* Search Implementation, Minimax Search, Alpha-Beta Pruning Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic, Forward Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem UNIT – III Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues, Nonmonotonic Reasoning, Other Knowledge Representation Schemes Reasoning Under Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge in an Uncertain Domain, Bayesian Networks UNIT - IV Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem Solving, Learning from Examples, Winston’s Learning Program, Decision Trees. UNIT - V Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge Acquisition.
    [Show full text]