L060107 Monitoring and Conservation of Tibetan Antelopes and Other

Total Page:16

File Type:pdf, Size:1020Kb

L060107 Monitoring and Conservation of Tibetan Antelopes and Other Final Report L060107 Monitoring and Conservation of Tibetan Antelopes and Other Mid-large Sized Mammals Along Qinghai-Tibet Railway and Highway Host Country:China Site Location: Hoh-xil National Nature Reserve, Qinghai Province, China Dates in the field: 1st May, 2007 - 1stMarch, 2010 Institutions: Institute of Zoology, the Chinese Academy of Sciences,Beijing Management Office of Hoh-xil National Nature Reserve, Qinghai Authors:Lin Xia, Qian Zhang, Yonghua Wu, Yongjie Wu, Lei Zhu, Long Zhu, Ge Lai,Yongbo Li Contact address: 1 Beichen West Road, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China. E-mail: [email protected] Website: www.ioz.ac.cn 30th September, 2010 Table of Contents Section 1 ....................................................................................................................................5 1.1 Summary ...........................................................................................................................5 1.2 Introduction .......................................................................................................................5 1.3 Project members................................................................................................................8 Section 2:.................................................................................................................................11 2.1 Aim and objectives..........................................................................................................11 2.1.1Main Aim ............................................................................................................................ 11 2.1.2 Objectives: ......................................................................................................................... 11 2. 2 Methodology ..................................................................................................................12 2.2.1 Training..............................................................................................................................12 2.2.2 Field Monitoring ................................................................................................................12 2.2.2.1 Occurrences of chiru and other mid-large mammals along the rail line. .................... 12 2.2.2.2 Impact of the railway and highway on chiru migration .............................................. 12 2.2.2.3 Efficiency of rail crossing structures........................................................................... 13 2.3 Outputs and Results.........................................................................................................14 2.3.1Ecological Output ...............................................................................................................14 2.3.1.1 Disturbances caused by the transportation facility are identified................................ 14 2.3.1.2 The efficiency of wildlife corridors is evaluated......................................................... 16 2.3.1.3: The monitoring of migration of Tibetan Antelopes is continued and improved. ....... 18 2.3.2 Social science output..........................................................................................................19 2.4 Achievements and Impacts..............................................................................................21 Section 3:.................................................................................................................................22 3.1 Conclusion.......................................................................................................................22 3.2 Problems encountered and lessons learnt........................................................................23 3.3 In the future..................................................................................................................24 2 Section 4:.................................................................................................................................26 4.1 Appendices......................................................................................................................26 4.1.1A full account of income and expenditure. .........................................................................26 4.1.2Raw field data: ....................................................................................................................28 4.1.3Copies of any newspaper/magazine articles relating to the project. ...................................31 4.1.4 Papers published or manuscripts proposed based on project data......................................33 4.2 Bibliography....................................................................................................................34 4. 3 Address list and web links..............................................................................................47 4. 4 Distribution list...............................................................................................................49 4.5 Copies of any media articles relating to the project ....................................................50 3 Acknowledgements I would first and foremost like to thank Qisen Yang, advisor of this project, he gave us fully support and worked with us from the beginning to the end. His abundant field experience on Plateau helped us solve many problems in monitoring and improve our project. I would also like to thank Mr. Gama Chaidan, Wenga ,Long Zhu , Suoang Gelai and Wenxiu, their conservation station is “our home” in Hoh-xil. And we worked and lived like a family. Mr. Li Yongbo, staff of Bureau of Forestry of Qinghai Province, without his help in communication we could not work smoothly in the Reserve. Mr. Da zhihua, staff of Ministry of Railway (MOR), helping in communication with Department of the Railway, setting the working sites, providing us with basic working conditions. All of these individuals made this research possible and I am indebted to them. Finally, thanks to our “old friend” Robyn Dalzen, Lynn Duda, Stuart Paterson, Kiragu Mwangi, Julie Jackson and the whole CLP family, without you without this project, and in the past 5 years the CLP gaved us much more than “money”, this project led us to the conservation world and helped us standing on the starting point of our conservation career. 4 Section 1 1.1 Summary The Qinghai-Tibet Railway and the accompanied Golmud-Lhasa highway went through three national nature reserves and cut cross the migration route of the Tibetan Antelopes. This project aims to reduce the disturbance to migration of Tibetan Antelopes and movements of some large mammals along railway and highway by assessing the impact of traffic. The field monitoring has continued for 3 years after the railway being put into operation in 2006 on to the present. Monitoring results show that the disturbance to movements of animals included barrier effect of the line structure, human activities, road traffic and so on. Animals were much disturbed in the rail construction period, but they readily adapted to the crossing structures after the railway being put into operation, the efficiency of wildlife passages have greatly improved in chiru migration from 56.06% to 100%. The Effectiveness of crossing structures was influenced by its location, structural parameters of passages, approaches to the structures, and human activities. Rail operation have little impact on wildlife movement but chiru migration was greatly affected by the busy traffic and the human activities brought by highway, the successful chiru passes have a negative correlation with the traffic volume on the highway. Field monitoring results were analysied combined with the data we collected in rail construction period during 2004-2006 , a detail final report and conservation recommendations were submitted to the local government and transportation department for making further conservation plan. 1.2 Introduction Linear infrastructures such as roadways and railroads, affect populations in numerous ways from habitat loss and fragmentation to constituting physical barriers to movements and dispersion of terrestrial vertebrates (Oxley et al., 1974; Beckmann et.al, 2010; Walker et al., 2003). With the continuing expanding road and rail system in western China, the conflicts between transportation and wildlife conservation become more and more acute. In July 2006, the newly built Qinghai-Tibet railway was put into use,accompanied with the existing Gumold-Lasha highway. 5 The highway and the rail road went through Hoh-xil, Sanjiangyuan, Qiangtang and Selincuo four national nature reserves, which are the main habitats for tibetan antelope (Pantholops hodgsonii), tibetan wild ass (Equus kiang), wild yaks(Bos grunniens), tibetan gazelle (Procapra picticaudata) , and etc, most of them are endemic to the Qinghai-Tibet Plaetau and under protection of Chinese government. The Tibetan Antelope is listed as Endangered by the IUCN Red List, and the wild ass is listed as Vulnerable ( VU). The railroad and highway bisected the migration corridor of one main chiru migratory population at the boundary of Hoh-xil and Sanjiangyuan National Nature Reserve and also affected the movements of other mid-large mammals. Long-distance seasonal migration is one of the main characteristics of chiru ecology and reproduction. Recent research indicated that chiru migration played an important role in maintaining the gene flow between current isolated geographic
Recommended publications
  • Sichuan/Gansu/Qinghai/Tibet (14 Days) We Love Road Journeys
    Tibetan Highlands: Sichuan/Gansu/Qinghai/Tibet (14 Days) We love road journeys. They are by far our favourite way of traveling. We think the world of western China and the countries that border on this region – think Vietnam, Lao, Thailand, Myanmar, for example. On the Road Experiences is all about sharing with like-minded travelers just how beautiful a road journey in these varied lands can be. Now turn the page to find out what we’ve come to love so much… p2 p3 Itinerary Map …where you will travel… p. 006 Yes, it is possible… p. 008 Journey of Discovery… p. 010 Day-by-day… p. 056 In closing... Any car you like, so long as it is an SUV… p. 077 Adventures and discoveries in local cuisines p. 078 What’s included/Best Months to Go... p. 080 Photo credits p. 083 p5 Itinerary Map Day1 Day8 Arrival in Chengdu – Dulan to Golmud – Apply for your temporary driving Across the Qaidam Basin to Golmud license and visit Chengdu’s beautiful Panda Reserve Day9 Golmud to Tuotuohe – Day2 Up, up, up - Onto the Plateau and Chengdu to Maerkang – into the highlands of Qinghai Through the valleys to the Gyarong Tibetan region Day10 Tuotuohe to Naqu – Day3 Cross the famous Tanggula Pass on Maerkang to Ruoergai – your way to Tibet itself Towards the very north of Sichuan on the way to Gansu Day11 Naqu to Damxung – Day4 Visit one of Tibet’s holiest lakes, Ruoergai to Xiahe – Lake Nam-tso Your first and only stop in Gansu province Day12 Damxung to Lhasa – Day5 Complete your journey with Xiahe to Qinghai’s capital, Xining – a beautiful drive to your final On your way to Qinghai destination Day6 Day13 Xining – In and around Lhasa – Spend a day in and around Xining for Visit Potala Palace and explore the a bit of rest and visit the spectacular old city of Lhasa Ta’er Monastery Day14 Day7 Depart from Lhasa – Xining to Dulan – Lift must go on...Farewell Lhasa On the way to Golmud..
    [Show full text]
  • Accelerated Hydrological Cycle Over the Sanjiangyuan Region Induces More Streamflow Extremes at Different Global Warming Levels
    Hydrol. Earth Syst. Sci., 24, 5439–5451, 2020 https://doi.org/10.5194/hess-24-5439-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels Peng Ji1,2, Xing Yuan3, Feng Ma3, and Ming Pan4 1Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China 4Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA Correspondence: Xing Yuan ([email protected]) Received: 7 July 2020 – Discussion started: 24 July 2020 Revised: 12 October 2020 – Accepted: 13 October 2020 – Published: 20 November 2020 Abstract. Serving source water for the Yellow, Yangtze and tance of ecological processes in determining future changes Lancang-Mekong rivers, the Sanjiangyuan region affects 700 in streamflow extremes and suggests a “dry gets drier, wet million people over its downstream areas. Recent research gets wetter” condition over the warming headwaters. suggests that the Sanjiangyuan region will become wetter in a warming future, but future changes of streamflow ex- tremes remain unclear due to the complex hydrological pro- cesses over high-land areas and limited knowledge of the in- 1 Introduction fluences of land cover change and CO2 physiological forc- ing. Based on high-resolution land surface modeling dur- Global temperature has increased at a rate of 0.17◦C per ing 1979–2100 driven by the climate and ecological projec- decade since 1970, contrary to the cooling trend over the past tions from 11 newly released Coupled Model Intercompari- 8000 years (Marcott et al., 2013).
    [Show full text]
  • Tibet Outside the TAR Page 2159
    CFP-W, Chentsa Chinese: Jianza Xian Alliance for Research in Tibet (ART) Tibet Outside the TAR page 2159 roll/neg: 54:15 subject: wide angle view of the town location: Chentsa Dzong CFP-W-éE,, Malho -é, Tibetan Autonomous Prefecture, Tsongön UWê-¢éP, [Ch: Jianza , Huangnan TAP, Qinghai Province] approx. date: winter 1995/1996 comment: In the distance is the Machu (Huanghe, Yellow R.). Across the river is Haidong Prefecture with two million inhabitants, at least two thirds of them Chinese and Hui. Official population in Chentsa is about 49,000, with a 60% Tibetan majority claimed. The true Tibetan proportion is probably lower. Demographic pressure is intense: population density in Chentsa, the nearest to Xining and Haidong, is 28 persons/km2 . The next county, the capital, Regong, has 21. In Tsekhog it is 7 and only 4 in Yülgan. (Viewed from the south.) © 1997 Alliance for Research in Tibet (ART), all rights reserved Alliance for Research in Tibet (ART) Tibet Outside the TAR page 2161 b. Chentsa [Ch: Jianza] i. Brief description and impressions Chentsa CFP-W-éE, (Ch. Jianza Xian ) is one of the most vulnerable of all the Tibetan counties to patterns of development preferred by China. Only the Yellow River (Ma Chu), edging its northern border, now divides it from the densely-populated Chinese and Hui region of Haidong Prefecture. This geographical feature once served as a clear and formidable marker between a totally Tibetan world to the south and a region which, though sinicizing gradually over the centuries, did not overleap the Yellow River until the Communist Chinese occupation.
    [Show full text]
  • Mapping and Evaluating Human Pressure Changes in the Qilian Mountains
    remote sensing Article Mapping and Evaluating Human Pressure Changes in the Qilian Mountains Quntao Duan 1,2 , Lihui Luo 1,2,* , Wenzhi Zhao 1,2,3, Yanli Zhuang 1,3 and Fang Liu 1,2 1 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (Q.D.); [email protected] (W.Z.); [email protected] (Y.Z.); [email protected] (F.L.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Linze Inland River Basin Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China * Correspondence: [email protected] Abstract: Human activities have dramatically changed ecosystems. As an irreplaceable ecological barrier in western China, the Qilian Mountains (QLM) provide various ecosystem services for humans. To evaluate the changes in the intensity of human activities in the QLM and their impact on the ecosystem, the human footprint (HF) method was used to conduct a spatial dataset of human activity intensity. In our study, the NDVI was used to characterize the growth of vegetation, and six categories of human pressures were employed to create the HF map in the QLM for 2000–2015 at a 1-km scale. The results showed that the mean NDVI during the growing season showed a significant increasing trend over the entire QLM in the period 2000–2015, while the NDVI showed a significant declining trend of more than 70% concentrated in Qinghai. Human pressure throughout the QLM occurred at a low level during 2000–2015, being greater in the eastern region than the western region, while the Qinghai area had greater human pressure than the Gansu area.
    [Show full text]
  • Restoration Prospects for Heitutan Degraded Grassland in the Sanjiangyuan
    J. Mt. Sci. (2013) 10(4): 687–698 DOI: 10.1007/s11629-013-2557-0 Restoration Prospects for Heitutan Degraded Grassland in the Sanjiangyuan LI Xi-lai1*, PERRY LW George2,3, BRIERLEY Gary2, GAO Jay2, ZHANG Jing1, YANG Yuan-wu1 1 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China 2 School of Environment, University of Auckland, New Zealand Private Bag 92019, Auckland, New Zealand 3 School of Biological Sciences, University of Auckland, New Zealand Private Bag 92019, Auckland, New Zealand *Corresponding author, e-mail: [email protected] © Science Press and Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2013 Abstract: In many ecosystems ungulates have yield greatest success if moderately and severely coexisted with grasslands over long periods of time. degraded areas are targeted as the first priority in However, high densities of grazing animals may management programmes, before these areas are change the floristic and structural characteristics of transformed into extreme Heitutan. vegetation, reduce biodiversity, and increase soil erosion, potentially triggering abrupt and rapid Keywords: Heitutan degraded grassland; Alpine changes in ecosystem condition. Alternate stable state meadow; Restoration/rehabilitation; Sanjiangyuan; theory provides a framework for understanding this Qinghai-Tibet Plateau (QTP) type of dynamic. In the Sanjiangyuan atop the Qinghai-Tibetan plateau (QTP), grassland degradation has been accompanied by irruptions of Introduction native burrowing
    [Show full text]
  • China PROJECT DOCUMENT
    United Nations Development Programme Country: China PROJECT DOCUMENT Project Title: Strengthening the effectiveness of the protected area system in Qinghai Province, China to conserve globally important biodiversity UNDAF Outcome(s): Outcome 1.2. Policy and implementation mechanisms to manage natural resources are strengthened, with special attention to poor and vulnerable groups UNDP Strategic Plan Environment and Sustainable Development Primary Outcome: Mobilizing environmental financing UNDP Strategic Plan Secondary Outcome: Mainstreaming environment and energy Expected CP Outcome(s ): Low carbon and other environmentally sustainable strategies and technologies are adopted widely to meet China’s commitments and compliance with Multilateral Environmental Agreements. Provincial capacities of key institutions are strengthened to implement global environmental commitments at regional level through integration of biodiversity and other environmental concerns into regional policies and programmes involved. Expected CPAP Output(s): Capacity to implement local climate change action plans for mitigation and adaptation, and sustainable development built. Executing Entity/Implementing Partner: Department of Forestry, Qinghai Province Government, China Implementing Entity/Responsible Partners: Ministry of Environmental Protection (through umbrella project China Biodiversity Partnership and Framework for Action) UNDP GEF PIMS 4179 GEF Project ID 3992 Brief description As the fourth largest province in China, with a total area of 720,000 km 2, Qinghai serves as a significant store of the national biodiversity, exhibits some unique high altitude grassland, mountain, wetland, desert and forest ecosystems, and serves as a significant controller of the Asian monsoon system that affects the climate of 3 billion people. The province includes the headwaters of three of Asia’s major rivers – the Yellow, Yangtze and Mekong rivers.
    [Show full text]
  • The Thickness and Structural Characteristics of the Crust Across Tibetan Plateau from Active-Sources Seismic Profiles∗
    Earthq Sci (2009)22: 21−31 21 Doi: 10.1007/s11589-009-0021-6 The thickness and structural characteristics of the crust across Tibetan plateau from ∗ active-sources seismic profiles Qiusheng Li 1,2, Rui Gao 1,2 Zhanwu Lu 1,2 Ye Guan 1,2 Jisheng Zhang 1,2 Pengwu Li 1,2 Haiyan Wang 1,2 Rizheng He 1,2 and Marianne Karplus3 1 Lithosphere Research Center, Institute of Geology, Chinese Academy of Geology Science,Beijing 100037, China 2 Earthprobe and Geodynamics Open Laboratory of Chinese Academy of Geology Science, Beijing 100037, China 3 Crustal Geophysics Group, Stanford University, Stanford CA 94305, USA Abstract The Tibetan plateau as one of the youngest orogen on the Earth was considered as the result of conti- nent-continent collision between the Eurasian and Indian plates. The thickness and structure of the crust beneath Tibetan pla- teau is essential to understand deformation behavior of the plateau. Active-source seismic profiling is most available geo- physical method for imaging the structure of the continental crust. The results from more than 25 active-sources seismic pro- files carried out in the past twenty years were reviewed in this article. A preliminary cross crustal pattern of the Tibetan Pla- teau was presented and discussed. The Moho discontinuity buries at the range of 60−80 km on average and have steep ramps located roughly beneath the sutures that are compatible with the successive stacking/accretion of the former Cenozoic blocks northeastward. The deepest Moho (near 80 km) appears closely near IYS and the crustal scale thrust system beneath southern margin of Tibetan plateau suggests strong dependence on collision and non-distributed deformation there.
    [Show full text]
  • Promoting Biodiversity Conservation and Community Development in the Sanjiangyuan Region
    Promoting Biodiversity Conservation and Community Development in the Sanjiangyuan Region Proceedings of a conservation planning meeting, with agreed priority action points Dr J Marc Foggin (translated by Liu Lingjun and Gai Caiwang Qujie) Planning meeting co-hosted by Plateau Perspectives, Upper Yangtze Organization, Government of Zhiduo County and the Sanjiangyuan National Nature Reserve Management Bureau September 30 - October 13, 2005 THE YANGTZE RIVER HEADWATERS SUSTAINABLE DEVELOPMENT PROJECT www.plateauperspectives.org [email protected] © Plateau Perspectives December 2005 Table of Contents List of Tables, Figures, and Boxes page iii EXECUTIVE SUMMARY page v 1. BACKGROUND Plateau Perspectives page 1 The Sanjiangyuan Region page 4 Sanjiangyuan National Nature Reserve (SNNR) page 6 Yangtze River Headwaters Sustainable Development Project page 9 2. PROCEEDINGS OF THE BIODIVERSITY CONSERVATION PLANNING MEETING Training workshop (Sep 30 Oct 3, 2005) page 13 Fieldtrip to nature reserve (Oct 5 10, 2005) page 13 Biodiversity Conservation Planning Meeting (Oct 13-15, 2005) page 14 3. PRIORITY CONSERVATION ACTION POINTS page 17 Action 1. Responsive training workshops page 19 Action 2. Identification of biodiversity hotspots page 19 Action 3. Monitoring wildlife and grassland page 20 Action 4. Meeting on grassland management practices page 21 Action 5. Development of a community co-management plan page 21 Action 6. Tibetan Conservation & Development Centre page 22 Selected references page 24 Acknowledgements page 26 List of appendices page 27 ii List of Tables Table 1. Land areas, with international comparisons page 6 Table 2. Catchment areas and human population of three major rivers page 6 Table 3. Sanjiangyuan National Nature Reserves 18 Conservation Areas page 8 Table 4.
    [Show full text]
  • Studies on Ethnic Groups in China
    Kolas&Thowsen, Margins 1/4/05 4:10 PM Page i studies on ethnic groups in china Stevan Harrell, Editor Kolas&Thowsen, Margins 1/4/05 4:10 PM Page ii studies on ethnic groups in china Cultural Encounters on China’s Ethnic Frontiers Edited by Stevan Harrell Guest People: Hakka Identity in China and Abroad Edited by Nicole Constable Familiar Strangers: A History of Muslims in Northwest China Jonathan N. Lipman Lessons in Being Chinese: Minority Education and Ethnic Identity in Southwest China Mette Halskov Hansen Manchus and Han: Ethnic Relations and Political Power in Late Qing and Early Republican China, 1861–1928 Edward J. M. Rhoads Ways of Being Ethnic in Southwest China Stevan Harrell Governing China’s Multiethnic Frontiers Edited by Morris Rossabi On the Margins of Tibet: Cultural Survival on the Sino-Tibetan Frontier Åshild Kolås and Monika P. Thowsen Kolas&Thowsen, Margins 1/4/05 4:10 PM Page iii ON THE MARGINS OF TIBET Cultural Survival on the Sino-Tibetan Frontier Åshild Kolås and Monika P. Thowsen UNIVERSITY OF WASHINGTON PRESS Seattle and London Kolas&Thowsen, Margins 1/7/05 12:47 PM Page iv this publication was supported in part by the donald r. ellegood international publications endowment. Copyright © 2005 by the University of Washington Press Printed in United States of America Designed by Pamela Canell 12 11 10 09 08 07 06 05 5 4 3 2 1 All rights reserved. No part of this publication may be repro- duced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any infor- mation storage or retrieval system, without permission in writ- ing from the publisher.
    [Show full text]
  • 20200227141213545.Pdf
    Founded in 2007, SHAN SHUI Conservation Center is a Chinese NGO homegrown and dedicated to conservation practices. Together with our partners - communities, academic institutions, governments, companies, and media, we support local initiatives to defend the land we depend on. We focus our work on the most biologically diverse areas: Sanjiangyuan, the Mountains of Southwest China, and the Lancang River Basin. CONTENTS Nature Watch 22 Nature Watch Joint Action Base 23 The Chairman’s Foreword 01 Nature Watch Databases 24 The Executive Director’s Message 03 Nature Watch Data Application 25 Work Map 05 Snow Leopard Survey and Conservation Report 25 EIA Early Warning 25 Highlights 2018 07 An Urgent Call to Updat China Red 25 Lists (Fauna & Flora) Community-based Conservation 09 26 Snow Leopards and Grassland 10 Urban Biodiversity Recovery Snow Leopard Research and Conservation 11 Guilin Esquel Shi Ru Park 27 Wetland Research and Conservation 12 Beijing’s Urban Wetland Ecosystem 28 Sustainable Grassland Management 13 National Park Pilot Program 14 Communication and Fundraising 29 Communication 30 Giant Pandas and Forest 15 Fundraising Monitor and Patrol 16 31 Community Development 17 About Us 32 Policy Advocacy 18 Board Members 33 Forest Conservation and Recovery in Yunnan 19 Financial Overview 35 Yunlong : Multi-Value Forest Recovery 20 Staff and Awards 36 Menglian Heishan Initiative 21 Acknowledgments 37 Naren and Sayong Community Protected Areas 21 The Chairman's Foreword A March Through Uncertainty Since it was founded in 2007, Shanshui Conservation
    [Show full text]
  • Integrated Land Governance for Eco-Urbanization
    sustainability Article Integrated Land Governance for Eco-Urbanization Zhan Wang 1,2,3, Xiangzheng Deng 2,3,* and Cecilia Wong 4 1 School of Economics & Management, Beijing Forestry University, Beijing 100083, China; [email protected] 2 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 3 Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China 4 Centre for Urban Policy Studies, School of Environment, Education and Development, University of Manchester, Manchester M13 9PL, UK; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64888980; Fax: +86-10-64856533 Academic Editor: Tan Yigitcanlar Received: 4 May 2016; Accepted: 23 August 2016; Published: 7 September 2016 Abstract: “Eco-urbanization” emphasizes the importance of the ecological and environmental aspects of urbanization, which is to approach a balanced and healthy ecosystem through paying attention to the ecological intercorrelation of many factors. This involves balancing the stocks and utilization of multi-resources and balancing the efficiency and equality of multi-resources allocation to improve the quality of life for both urban and rural areas. In this dynamic process, resource allocations are carried out at different administrative levels, which have posed challenges of developing an integrated approach for eco-urbanization. Due to interaction and intersection of ecological activities among adjacent regions, a complex ecosystem tends to be in a fluid catchment area with dynamic flows of activities that transcend rigid administrative boundaries. The management of ecosystem sensitively impinges on the effectiveness of having an integrated approach of land governance in a comprehensive planning of urban–rural development.
    [Show full text]
  • Abstract a Geographic Analysis of The
    ABSTRACT A GEOGRAPHIC ANALYSIS OF THE VULNERABILITIES AND COPING STRATEGIES OF TIBETAN HERDERS IN GANSU, CHINA by Luci Xi Lu A dominant narrative of rangeland degradation in western China is that degradation is caused by overstocking and poor land use practices. Consequently, the state has designed and implemented a series of grassland policies (e.g., privatizing common grazing land, depopulating livestock, and relocating herders) in pastoral regions of China. Although the government sees communal rangeland management as inefficient and unsustainable, collective rangeland management persists. Using Machu County in Gansu Province as a case study, I examined the differences between de jure and de facto land tenure on eastern Tibetan Plateau. This study employed semi-structured interviews and extensive participant observation with 43 Amdo Tibetan herders in Machu County, Gansu province, Western China. I also triangulated the first-hand empirical data with the secondary data I obtained from Bureau of Poverty Alleviation and Bureau of Animal Husbandry in Machu. Research findings show that instead of herding individually and maximizing the economic benefit, the majority of herders are pooling resources communally in kin-based encampments in order to avoid risks. Because of the spatio- temporal variation of precipitation, certain encampments perceive themselves more vulnerable to water shortage and topography-related hazards. Renting pastures and seeking alternative livelihoods then become the key strategies for herders to restore mobility and
    [Show full text]