Can Network Embedding of Distributional Thesaurus Be Combined with Word Vectors for Better Representation?

Total Page:16

File Type:pdf, Size:1020Kb

Can Network Embedding of Distributional Thesaurus Be Combined with Word Vectors for Better Representation? Can Network Embedding of Distributional Thesaurus be Combined with Word Vectors for Better Representation? Abhik Jana Pawan Goyal IIT Kharagpur IIT Kharagpur Kharagpur, India Kharagpur, India [email protected] [email protected] Abstract meaningfully similar if the vectors of those words are close in the euclidean space. In recent times, Distributed representations of words learned from text have proved to be successful in var- attempts have been made for dense representa- ious natural language processing tasks in re- tion of words, be it using predictive model like cent times. While some methods represent Word2vec (Mikolov et al., 2013) or count-based words as vectors computed from text using model like GloVe (Pennington et al., 2014) which predictive model (Word2vec) or dense count are computationally efficient as well. Another based model (GloVe), others attempt to rep- stream of representation talks about network like resent these in a distributional thesaurus net- structure where two words are considered neigh- work structure where the neighborhood of a bors if they both occur in the same context above word is a set of words having adequate con- text overlap. Being motivated by recent surge a certain number of times. The words are finally of research in network embedding techniques represented using these neighbors. Distributional (DeepWalk, LINE, node2vec etc.), we turn Thesaurus is one such instance of this type, which a distributional thesaurus network into dense gets automatically produced from a text corpus word vectors and investigate the usefulness and identifies words that occur in similar contexts; of distributional thesaurus embedding in im- the notion of which was used in early work about proving overall word representation. This is distributional semantics (Grefenstette, 2012; Lin, the first attempt where we show that combin- ing the proposed word representation obtained 1998; Curran and Moens, 2002). One such repre- by distributional thesaurus embedding with the sentation is JoBimText proposed by Biemann and state-of-the-art word representations helps in Riedl(2013) that contains, for each word, a list improving the performance by a significant of words that are similar with respect to their bi- margin when evaluated against NLP tasks like gram distribution, thus producing a network rep- word similarity and relatedness, synonym de- resentation. Later, Riedl and Biemann(2013) in- tection, analogy detection. Additionally, we troduced a highly scalable approach for comput- show that even without using any handcrafted ing this network. We mention this representation lexical resources we can come up with repre- sentations having comparable performance in as a DT network throughout this article. With the the word similarity and relatedness tasks com- emergence of recent trend of embedding large net- pared to the representations where a lexical re- works into dense low-dimensional vector space ef- source has been used. ficiently (Perozzi et al., 2014; Tang et al., 2015; Grover and Leskovec, 2016) which are focused 1 Introduction on capturing different properties of the network Natural language understanding has always been like neighborhood structure, community structure, a primary challenge in natural language process- etc., we explore representing DT network in a ing (NLP) domain. Learning word representa- dense vector space and evaluate its useful appli- tions is one of the basic and primary steps in un- cation in various NLP tasks. derstanding text and nowadays there are predomi- There has been attempt (Ferret, 2017) to turn nantly two views of learning word representations. distributional thesauri into word vectors for syn- In one realm of representation, words are vectors onym extraction and expansion but the full uti- of distributions obtained from analyzing their con- lization of DT embedding has not yet been ex- texts in the text and two words are considered plored. In this paper, as a main contribution, we 463 Proceedings of NAACL-HLT 2018, pages 463–473 New Orleans, Louisiana, June 1 - 6, 2018. c 2018 Association for Computational Linguistics investigate the best way of turning a Distributional 2006) which prove to be very useful in differ- Thesaurus (DT) network into word embeddings ent natural language tasks. Even though compu- by applying efficient network embedding meth- tation of sparse count based models used to be ods and analyze how these embeddings gener- inefficient, in this era of high speed processors ated from DT network can improve the representa- and storage, attempts are being made to stream- tions generated from prediction-based model like line the computation with ease. One such effort is Word2vec or dense count based semantic model made by Kilgarriff et al.(2004) where they pro- like GloVe. We experiment with several combina- pose Sketch Engine, a corpus tool which takes as tion techniques and find that DT network embed- input a corpus of any language and corresponding ding can be combined with Word2vec and GloVe grammar patterns, and generates word sketches for to outperform the performances when used inde- the words of that language and a thesaurus. Re- pendently. Further, we show that we can use DT cently, Riedl and Biemann(2013) introduce a network embedding as a proxy of WordNet em- new highly scalable approach for computing qual- bedding in order to improve the already exist- ity distributional thesauri by incorporating prun- ing state-of-the-art word representations as both ing techniques and using a distributed computation of them achieve comparable performance as far framework. They prepare distributional thesaurus as word similarity and word relatedness tasks are from Google book corpus in a network structure concerned. Considering the fact that the vocabu- and make it publicly available. lary size of WordNet is small and preparing Word- In another stream of literature, word embed- Net like lexical resources needs huge human en- dings represent words as dense unit vectors of real gagement, it would be useful to have a represen- numbers, where vectors that are close together in tation which can be generated automatically from euclidean space are considered to be semantically corpus. We also attempt to combine both Word- related. In this genre of representation, one of Net and DT embeddings to improve the existing the captivating attempt is made by Mikolov et al. word representations and find that DT embedding (2013), where they propose Word2vec, basically a still has some extra information to bring in leading set of two predictive models for neural embedding to better performance when compared to combina- whereas Pennington et al.(2014) propose GloVe, tion of only WordNet embedding and state-of-the- which utilizes a dense count based model to art word embeddings. While most of our exper- come up with word embeddings that approximate iments are focused on word similarity and relat- this. Comparisons have also been made between edness tasks, we show the usefulness of DT em- count-based and prediction-based distributional beddings on synonym detection and analogy de- models (Baroni et al., 2014) upon various tasks tection as well. In both the tasks, combined rep- like relatedness, analogy, concept categorization resentation of GloVe and DT embeddings shows etc., where researchers show that prediction-based promising performance gain over state-of-the-art word embeddings outperform sparse count-based embeddings. methods used for computing distributional seman- tic models. In other study, Levy and Goldberg 2 Related Work (2014) show that dense count-based methods, us- ing PPMI weighted co-occurrences and SVD, ap- The core idea behind the construction of dis- proximates neural word embeddings. Later, Levy tributional thesauri is the distributional hypothe- et al.(2015) show the impact of various parame- sis (Firth, 1957): “You should know a word by ters and the best performing parameters for these the company it keeps”. The semantic neighbors methods. All these approaches are completely of a target word are words whose contexts over- text based; no external knowledge source has been lap with the context of a target word above a cer- used. tain threshold. Some of the initial attempts for preparing distributional thesaurus are made by Lin More recently, a new direction of investigation (1998), Curran and Moens(2002), Grefenstette has been opened up where researchers are try- (2012). The semantic relation between a target ing to combine knowledge extracted from knowl- word and its neighbors can be of different types, edge bases, images with distributed word repre- e.g., synonymy, hypernymy, hyponymy or other sentations prepared from text with the expecta- relations (Adam et al., 2013; Budanitsky and Hirst, tion of getting better representation. Some use 464 Knowledge bases like WordNet (Miller, 1995), tional Thesaurus (DT) network applying network FreeBase (Bollacker et al., 2008), PPDB (Gan- representation learning model. Next we com- itkevitch et al., 2013), ConceptNet (Speer et al., bine this thesaurus embedding with state-of-the- 2017), whereas others use ImageNet (Frome et al., art vector representations prepared using GloVe 2013; Kiela and Bottou, 2014; Both et al., 2017; and Word2vec model for analysis. Thoma et al., 2017) for capturing visual represen- tation of lexical items. There are various ways of combining multiple representations. Some of 3.1 Distributional Thesaurus (DT) Network the works extract lists of relations from knowledge bases and use those to either
Recommended publications
  • Automatic Feature Learning Using Recurrent Neural Networks
    Predicting purchasing intent: Automatic Feature Learning using Recurrent Neural Networks Humphrey Sheil Omer Rana Ronan Reilly Cardiff University Cardiff University Maynooth University Cardiff, Wales Cardiff, Wales Maynooth, Ireland [email protected] [email protected] [email protected] ABSTRACT influence three out of four major variables that affect profit. Inaddi- We present a neural network for predicting purchasing intent in an tion, merchants increasingly rely on (and pay advertising to) much Ecommerce setting. Our main contribution is to address the signifi- larger third-party portals (for example eBay, Google, Bing, Taobao, cant investment in feature engineering that is usually associated Amazon) to achieve their distribution, so any direct measures the with state-of-the-art methods such as Gradient Boosted Machines. merchant group can use to increase their profit is sorely needed. We use trainable vector spaces to model varied, semi-structured input data comprising categoricals, quantities and unique instances. McKinsey A.T. Kearney Affected by Multi-layer recurrent neural networks capture both session-local shopping intent and dataset-global event dependencies and relationships for user Price management 11.1% 8.2% Yes sessions of any length. An exploration of model design decisions Variable cost 7.8% 5.1% Yes including parameter sharing and skip connections further increase Sales volume 3.3% 3.0% Yes model accuracy. Results on benchmark datasets deliver classifica- Fixed cost 2.3% 2.0% No tion accuracy within 98% of state-of-the-art on one and exceed state-of-the-art on the second without the need for any domain / Table 1: Effect of improving different variables on operating dataset-specific feature engineering on both short and long event profit, from [22].
    [Show full text]
  • Exploring the Potential of Sparse Coding for Machine Learning
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 10-19-2020 Exploring the Potential of Sparse Coding for Machine Learning Sheng Yang Lundquist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Applied Mathematics Commons, and the Computer Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Lundquist, Sheng Yang, "Exploring the Potential of Sparse Coding for Machine Learning" (2020). Dissertations and Theses. Paper 5612. https://doi.org/10.15760/etd.7484 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Exploring the Potential of Sparse Coding for Machine Learning by Sheng Y. Lundquist A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Melanie Mitchell, Chair Feng Liu Bart Massey Garrett Kenyon Bruno Jedynak Portland State University 2020 © 2020 Sheng Y. Lundquist Abstract While deep learning has proven to be successful for various tasks in the field of computer vision, there are several limitations of deep-learning models when com- pared to human performance. Specifically, human vision is largely robust to noise and distortions, whereas deep learning performance tends to be brittle to modifi- cations of test images, including being susceptible to adversarial examples. Addi- tionally, deep-learning methods typically require very large collections of training examples for good performance on a task, whereas humans can learn to perform the same task with a much smaller number of training examples.
    [Show full text]
  • Text-To-Speech Synthesis
    Generative Model-Based Text-to-Speech Synthesis Heiga Zen (Google London) February rd, @MIT Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Text-to-speech as sequence-to-sequence mapping Automatic speech recognition (ASR) “Hello my name is Heiga Zen” ! Machine translation (MT) “Hello my name is Heiga Zen” “Ich heiße Heiga Zen” ! Text-to-speech synthesis (TTS) “Hello my name is Heiga Zen” ! Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Speech production process text (concept) fundamental freq voiced/unvoiced char freq transfer frequency speech transfer characteristics magnitude start--end Sound source fundamental voiced: pulse frequency unvoiced: noise modulation of carrier wave by speech information air flow Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Typical ow of TTS system TEXT Sentence segmentation Word segmentation Text normalization Text analysis Part-of-speech tagging Pronunciation Speech synthesis Prosody prediction discrete discrete Waveform generation ) NLP Frontend discrete continuous SYNTHESIZED ) SEECH Speech Backend Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Rule-based, formant synthesis []
    [Show full text]
  • Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
    1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17].
    [Show full text]
  • Sparse Feature Learning for Deep Belief Networks
    Sparse Feature Learning for Deep Belief Networks Marc'Aurelio Ranzato1 Y-Lan Boureau2,1 Yann LeCun1 1 Courant Institute of Mathematical Sciences, New York University 2 INRIA Rocquencourt {ranzato,ylan,[email protected]} Abstract Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have cer- tain desirable properties (e.g. low dimension, sparsity, etc). Others are based on approximating density by stochastically reconstructing the input from the repre- sentation. We describe a novel and efficient algorithm to learn sparse represen- tations, and compare it theoretically and experimentally with a similar machine trained probabilistically, namely a Restricted Boltzmann Machine. We propose a simple criterion to compare and select different unsupervised machines based on the trade-off between the reconstruction error and the information content of the representation. We demonstrate this method by extracting features from a dataset of handwritten numerals, and from a dataset of natural image patches. We show that by stacking multiple levels of such machines and by training sequentially, high-order dependencies between the input observed variables can be captured. 1 Introduction One of the main purposes of unsupervised learning is to produce good representations for data, that can be used for detection, recognition, prediction, or visualization. Good representations eliminate irrelevant variabilities of the input data, while preserving the information that is useful for the ul- timate task. One cause for the recent resurgence of interest in unsupervised learning is the ability to produce deep feature hierarchies by stacking unsupervised modules on top of each other, as pro- posed by Hinton et al.
    [Show full text]
  • Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
    sensors Article Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors Frédéric Li 1,*, Kimiaki Shirahama 1 ID , Muhammad Adeel Nisar 1, Lukas Köping 1 and Marcin Grzegorzek 1,2 1 Research Group for Pattern Recognition, University of Siegen, Hölderlinstr 3, 57076 Siegen, Germany; [email protected] (K.S.); [email protected] (M.A.N.); [email protected] (L.K.); [email protected] (M.G.) 2 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-226 Katowice, Poland * Correspondence: [email protected]; Tel.: +49-271-740-3973 Received: 16 January 2018; Accepted: 22 February 2018; Published: 24 February 2018 Abstract: Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers.
    [Show full text]
  • Convex Multi-Task Feature Learning
    Convex Multi-Task Feature Learning Andreas Argyriou1, Theodoros Evgeniou2, and Massimiliano Pontil1 1 Department of Computer Science University College London Gower Street London WC1E 6BT UK [email protected] [email protected] 2 Technology Management and Decision Sciences INSEAD 77300 Fontainebleau France [email protected] Summary. We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the well-known single- task 1-norm regularization. It is based on a novel non-convex regularizer which controls the number of learned features common across the tasks. We prove that the method is equivalent to solving a convex optimization problem for which there is an iterative algorithm which converges to an optimal solution. The algorithm has a simple interpretation: it alternately performs a super- vised and an unsupervised step, where in the former step it learns task-speci¯c functions and in the latter step it learns common-across-tasks sparse repre- sentations for these functions. We also provide an extension of the algorithm which learns sparse nonlinear representations using kernels. We report exper- iments on simulated and real data sets which demonstrate that the proposed method can both improve the performance relative to learning each task in- dependently and lead to a few learned features common across related tasks. Our algorithm can also be used, as a special case, to simply select { not learn { a few common variables across the tasks3. Key words: Collaborative Filtering, Inductive Transfer, Kernels, Multi- Task Learning, Regularization, Transfer Learning, Vector-Valued Func- tions.
    [Show full text]
  • Visual Word2vec (Vis-W2v): Learning Visually Grounded Word Embeddings Using Abstract Scenes
    Visual Word2Vec (vis-w2v): Learning Visually Grounded Word Embeddings Using Abstract Scenes Satwik Kottur1∗ Ramakrishna Vedantam2∗ Jose´ M. F. Moura1 Devi Parikh2 1Carnegie Mellon University 2Virginia Tech 1 2 [email protected],[email protected] {vrama91,parikh}@vt.edu Abstract w2v : farther We propose a model to learn visually grounded word em- eats beddings (vis-w2v) to capture visual notions of semantic stares at relatedness. While word embeddings trained using text have vis-w2v : closer been extremely successful, they cannot uncover notions of eats semantic relatedness implicit in our visual world. For in- stance, although “eats” and “stares at” seem unrelated in stares at text, they share semantics visually. When people are eating Word Embedding something, they also tend to stare at the food. Grounding diverse relations like “eats” and “stares at” into vision re- mains challenging, despite recent progress in vision. We girl girl note that the visual grounding of words depends on seman- eats stares at tics, and not the literal pixels. We thus use abstract scenes ice cream ice cream created from clipart to provide the visual grounding. We find that the embeddings we learn capture fine-grained, vi- sually grounded notions of semantic relatedness. We show Figure 1: We ground text-based word2vec (w2v) embed- improvements over text-only word embeddings (word2vec) dings into vision to capture a complimentary notion of vi- on three tasks: common-sense assertion classification, vi- sual relatedness. Our method (vis-w2v) learns to predict sual paraphrasing and text-based image retrieval. Our code the visual grounding as context for a given word.
    [Show full text]
  • Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier
    algorithms Article Deep Learning with a Recurrent Network Structure in the Sequence Modeling of Imbalanced Data for ECG-Rhythm Classifier Annisa Darmawahyuni 1, Siti Nurmaini 1,* , Sukemi 2, Wahyu Caesarendra 3,4 , Vicko Bhayyu 1, M Naufal Rachmatullah 1 and Firdaus 1 1 Intelligent System Research Group, Universitas Sriwijaya, Palembang 30137, Indonesia; [email protected] (A.D.); [email protected] (V.B.); [email protected] (M.N.R.); [email protected] (F.) 2 Faculty of Computer Science, Universitas Sriwijaya, Palembang 30137, Indonesia; [email protected] 3 Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei; [email protected] 4 Mechanical Engineering Department, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia * Correspondence: [email protected]; Tel.: +62-852-6804-8092 Received: 10 May 2019; Accepted: 3 June 2019; Published: 7 June 2019 Abstract: The interpretation of Myocardial Infarction (MI) via electrocardiogram (ECG) signal is a challenging task. ECG signals’ morphological view show significant variation in different patients under different physical conditions. Several learning algorithms have been studied to interpret MI. However, the drawback of machine learning is the use of heuristic features with shallow feature learning architectures. To overcome this problem, a deep learning approach is used for learning features automatically, without conventional handcrafted features. This paper presents sequence modeling based on deep learning with recurrent network for ECG-rhythm signal classification. The recurrent network architecture such as a Recurrent Neural Network (RNN) is proposed to automatically interpret MI via ECG signal. The performance of the proposed method is compared to the other recurrent network classifiers such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).
    [Show full text]
  • Deep Graphical Feature Learning for the Feature Matching Problem
    Deep Graphical Feature Learning for the Feature Matching Problem Zhen Zhang∗ Wee Sun Lee Australian Institute for Machine Learning Department of Computer Science School of Computer Science National University of Singapore The University of Adelaide [email protected] [email protected] Feature Point Coordinate Local Abstract Geometric Feature The feature matching problem is a fundamental problem in various areas of computer vision including image regis- Geometric Feature Net Feature tration, tracking and motion analysis. Rich local represen- Similarity tation is a key part of efficient feature matching methods. However, when the local features are limited to the coor- dinate of key points, it becomes challenging to extract rich Local Feature Point Geometric local representations. Traditional approaches use pairwise Coordinate Feature or higher order handcrafted geometric features to get ro- Figure 1: The graph neural netowrk transforms the coordinates bust matching; this requires solving NP-hard assignment into features of the points, so that a simple inference algorithm problems. In this paper, we address this problem by propos- can successfully do feature matching. ing a graph neural network model to transform coordi- nates of feature points into local features. With our local ference problem in geometric feature matching, previous features, the traditional NP-hard assignment problems are works mainly focus on developing efficient relaxation meth- replaced with a simple assignment problem which can be ods [28, 13, 12, 4, 31, 14, 15, 26, 30, 25, 29]. solved efficiently. Promising results on both synthetic and In this paper, we attack the geometric feature match- real datasets demonstrate the effectiveness of the proposed ing problem from a different direction.
    [Show full text]
  • Unsupervised, Backpropagation-Free Convolutional Neural Networks for Representation Learning
    CSNNs: Unsupervised, Backpropagation-free Convolutional Neural Networks for Representation Learning Bonifaz Stuhr Jurgen¨ Brauer University of Applied Sciences Kempten University of Applied Sciences Kempten [email protected] [email protected] Abstract—This work combines Convolutional Neural Networks (CNNs), clustering via Self-Organizing Maps (SOMs) and Heb- Learner Problem bian Learning to propose the building blocks of Convolutional Feedback Value Self-Organizing Neural Networks (CSNNs), which learn repre- sentations in an unsupervised and Backpropagation-free manner. Fig. 1. The Scalar Bow Tie Problem: With this term we describe the current Our approach replaces the learning of traditional convolutional problematic situation in Deep Learning in which most training approaches for layers from CNNs with the competitive learning procedure of neural networks and agents depend only on a single scalar loss or feedback SOMs and simultaneously learns local masks between those value. This single value is used to subsume the performance of an entire layers with separate Hebbian-like learning rules to overcome the neural network or agent even for very complex problems. problem of disentangling factors of variation when filters are learned through clustering. We investigate the learned represen- tation by designing two simple models with our building blocks, parameters. In contrast, humans use multiple feedback types to achieving comparable performance to many methods which use Backpropagation, while we reach comparable performance learn, e.g., when they learn representations of objects, different on Cifar10 and give baseline performances on Cifar100, Tiny sensor modalities are used. With the Scalar Bow Tie Problem ImageNet and a small subset of ImageNet for Backpropagation- we refer to the current situation for training neural networks free methods.
    [Show full text]
  • Sparse Estimation and Dictionary Learning (For Biostatistics?)
    Sparse Estimation and Dictionary Learning (for Biostatistics?) Julien Mairal Biostatistics Seminar, UC Berkeley Julien Mairal Sparse Estimation and Dictionary Learning Methods 1/69 What this talk is about? Why sparsity, what for and how? Feature learning / clustering / sparse PCA; Machine learning: selecting relevant features; Signal and image processing: restoration, reconstruction; Biostatistics: you tell me. Julien Mairal Sparse Estimation and Dictionary Learning Methods 2/69 Part I: Sparse Estimation Julien Mairal Sparse Estimation and Dictionary Learning Methods 3/69 Sparse Linear Model: Machine Learning Point of View i i n i Rp Let (y , x )i=1 be a training set, where the vectors x are in and are called features. The scalars y i are in 1, +1 for binary classification problems. {− } R for regression problems. We assume there is a relation y w⊤x, and solve ≈ n 1 min ℓ(y i , w⊤xi ) + λψ(w) . w∈Rp n Xi=1 regularization empirical risk | {z } | {z } Julien Mairal Sparse Estimation and Dictionary Learning Methods 4/69 Sparse Linear Models: Machine Learning Point of View A few examples: n 1 1 i ⊤ i 2 2 Ridge regression: min (y w x ) + λ w 2. w∈Rp n 2 − k k Xi=1 n 1 i ⊤ i 2 Linear SVM: min max(0, 1 y w x ) + λ w 2. w∈Rp n − k k Xi=1 n 1 i i −y w⊤x 2 Logistic regression: min log 1+ e + λ w 2. w∈Rp n k k Xi=1 Julien Mairal Sparse Estimation and Dictionary Learning Methods 5/69 Sparse Linear Models: Machine Learning Point of View A few examples: n 1 1 i ⊤ i 2 2 Ridge regression: min (y w x ) + λ w 2.
    [Show full text]