Multimodal Autoencoder: a Deep Learning Approach to Filling in Missing Sensor Data and Enabling Better Mood Prediction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Backpropagation and Deep Learning in the Brain
Backpropagation and Deep Learning in the Brain Simons Institute -- Computational Theories of the Brain 2018 Timothy Lillicrap DeepMind, UCL With: Sergey Bartunov, Adam Santoro, Jordan Guerguiev, Blake Richards, Luke Marris, Daniel Cownden, Colin Akerman, Douglas Tweed, Geoffrey Hinton The “credit assignment” problem The solution in artificial networks: backprop Credit assignment by backprop works well in practice and shows up in virtually all of the state-of-the-art supervised, unsupervised, and reinforcement learning algorithms. Why Isn’t Backprop “Biologically Plausible”? Why Isn’t Backprop “Biologically Plausible”? Neuroscience Evidence for Backprop in the Brain? A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: How to convince a neuroscientist that the cortex is learning via [something like] backprop - To convince a machine learning researcher, an appeal to variance in gradient estimates might be enough. - But this is rarely enough to convince a neuroscientist. - So what lines of argument help? How to convince a neuroscientist that the cortex is learning via [something like] backprop - What do I mean by “something like backprop”?: - That learning is achieved across multiple layers by sending information from neurons closer to the output back to “earlier” layers to help compute their synaptic updates. How to convince a neuroscientist that the cortex is learning via [something like] backprop 1. Feedback connections in cortex are ubiquitous and modify the -
Implementing Machine Learning & Neural Network Chip
Implementing Machine Learning & Neural Network Chip Architectures Using Network-on-Chip Interconnect IP Implementing Machine Learning & Neural Network Chip Architectures USING NETWORK-ON-CHIP INTERCONNECT IP TY GARIBAY Chief Technology Officer [email protected] Title: Implementing Machine Learning & Neural Network Chip Architectures Using Network-on-Chip Interconnect IP Primary author: Ty Garibay, Chief Technology Officer, ArterisIP, [email protected] Secondary author: Kurt Shuler, Vice President, Marketing, ArterisIP, [email protected] Abstract: A short tutorial and overview of machine learning and neural network chip architectures, with emphasis on how network-on-chip interconnect IP implements these architectures. Time to read: 10 minutes Time to present: 30 minutes Copyright © 2017 Arteris www.arteris.com 1 Implementing Machine Learning & Neural Network Chip Architectures Using Network-on-Chip Interconnect IP What is Machine Learning? “ Field of study that gives computers the ability to learn without being explicitly programmed.” Arthur Samuel, IBM, 1959 • Machine learning is a subset of Artificial Intelligence Copyright © 2017 Arteris 2 • Machine learning is a subset of artificial intelligence, and explicitly relies upon experiential learning rather than programming to make decisions. • The advantage to machine learning for tasks like automated driving or speech translation is that complex tasks like these are nearly impossible to explicitly program using rule-based if…then…else statements because of the large solution space. • However, the “answers” given by a machine learning algorithm have a probability associated with them and can be non-deterministic (meaning you can get different “answers” given the same inputs during different runs) • Neural networks have become the most common way to implement machine learning. -
Automatic Feature Learning Using Recurrent Neural Networks
Predicting purchasing intent: Automatic Feature Learning using Recurrent Neural Networks Humphrey Sheil Omer Rana Ronan Reilly Cardiff University Cardiff University Maynooth University Cardiff, Wales Cardiff, Wales Maynooth, Ireland [email protected] [email protected] [email protected] ABSTRACT influence three out of four major variables that affect profit. Inaddi- We present a neural network for predicting purchasing intent in an tion, merchants increasingly rely on (and pay advertising to) much Ecommerce setting. Our main contribution is to address the signifi- larger third-party portals (for example eBay, Google, Bing, Taobao, cant investment in feature engineering that is usually associated Amazon) to achieve their distribution, so any direct measures the with state-of-the-art methods such as Gradient Boosted Machines. merchant group can use to increase their profit is sorely needed. We use trainable vector spaces to model varied, semi-structured input data comprising categoricals, quantities and unique instances. McKinsey A.T. Kearney Affected by Multi-layer recurrent neural networks capture both session-local shopping intent and dataset-global event dependencies and relationships for user Price management 11.1% 8.2% Yes sessions of any length. An exploration of model design decisions Variable cost 7.8% 5.1% Yes including parameter sharing and skip connections further increase Sales volume 3.3% 3.0% Yes model accuracy. Results on benchmark datasets deliver classifica- Fixed cost 2.3% 2.0% No tion accuracy within 98% of state-of-the-art on one and exceed state-of-the-art on the second without the need for any domain / Table 1: Effect of improving different variables on operating dataset-specific feature engineering on both short and long event profit, from [22]. -
Training Autoencoders by Alternating Minimization
Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort. -
Predrnn: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal Lstms
PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs Yunbo Wang Mingsheng Long∗ School of Software School of Software Tsinghua University Tsinghua University [email protected] [email protected] Jianmin Wang Zhifeng Gao Philip S. Yu School of Software School of Software School of Software Tsinghua University Tsinghua University Tsinghua University [email protected] [email protected] [email protected] Abstract The predictive learning of spatiotemporal sequences aims to generate future images by learning from the historical frames, where spatial appearances and temporal vari- ations are two crucial structures. This paper models these structures by presenting a predictive recurrent neural network (PredRNN). This architecture is enlightened by the idea that spatiotemporal predictive learning should memorize both spatial ap- pearances and temporal variations in a unified memory pool. Concretely, memory states are no longer constrained inside each LSTM unit. Instead, they are allowed to zigzag in two directions: across stacked RNN layers vertically and through all RNN states horizontally. The core of this network is a new Spatiotemporal LSTM (ST-LSTM) unit that extracts and memorizes spatial and temporal representations simultaneously. PredRNN achieves the state-of-the-art prediction performance on three video prediction datasets and is a more general framework, that can be easily extended to other predictive learning tasks by integrating with other architectures. 1 Introduction -
Exploring the Potential of Sparse Coding for Machine Learning
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 10-19-2020 Exploring the Potential of Sparse Coding for Machine Learning Sheng Yang Lundquist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Applied Mathematics Commons, and the Computer Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Lundquist, Sheng Yang, "Exploring the Potential of Sparse Coding for Machine Learning" (2020). Dissertations and Theses. Paper 5612. https://doi.org/10.15760/etd.7484 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Exploring the Potential of Sparse Coding for Machine Learning by Sheng Y. Lundquist A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Melanie Mitchell, Chair Feng Liu Bart Massey Garrett Kenyon Bruno Jedynak Portland State University 2020 © 2020 Sheng Y. Lundquist Abstract While deep learning has proven to be successful for various tasks in the field of computer vision, there are several limitations of deep-learning models when com- pared to human performance. Specifically, human vision is largely robust to noise and distortions, whereas deep learning performance tends to be brittle to modifi- cations of test images, including being susceptible to adversarial examples. Addi- tionally, deep-learning methods typically require very large collections of training examples for good performance on a task, whereas humans can learn to perform the same task with a much smaller number of training examples. -
A Survey on Data Collection for Machine Learning a Big Data - AI Integration Perspective
1 A Survey on Data Collection for Machine Learning A Big Data - AI Integration Perspective Yuji Roh, Geon Heo, Steven Euijong Whang, Senior Member, IEEE Abstract—Data collection is a major bottleneck in machine learning and an active research topic in multiple communities. There are largely two reasons data collection has recently become a critical issue. First, as machine learning is becoming more widely-used, we are seeing new applications that do not necessarily have enough labeled data. Second, unlike traditional machine learning, deep learning techniques automatically generate features, which saves feature engineering costs, but in return may require larger amounts of labeled data. Interestingly, recent research in data collection comes not only from the machine learning, natural language, and computer vision communities, but also from the data management community due to the importance of handling large amounts of data. In this survey, we perform a comprehensive study of data collection from a data management point of view. Data collection largely consists of data acquisition, data labeling, and improvement of existing data or models. We provide a research landscape of these operations, provide guidelines on which technique to use when, and identify interesting research challenges. The integration of machine learning and data management for data collection is part of a larger trend of Big data and Artificial Intelligence (AI) integration and opens many opportunities for new research. Index Terms—data collection, data acquisition, data labeling, machine learning F 1 INTRODUCTION E are living in exciting times where machine learning expertise. This problem applies to any novel application that W is having a profound influence on a wide range of benefits from machine learning. -
Text-To-Speech Synthesis
Generative Model-Based Text-to-Speech Synthesis Heiga Zen (Google London) February rd, @MIT Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Text-to-speech as sequence-to-sequence mapping Automatic speech recognition (ASR) “Hello my name is Heiga Zen” ! Machine translation (MT) “Hello my name is Heiga Zen” “Ich heiße Heiga Zen” ! Text-to-speech synthesis (TTS) “Hello my name is Heiga Zen” ! Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Speech production process text (concept) fundamental freq voiced/unvoiced char freq transfer frequency speech transfer characteristics magnitude start--end Sound source fundamental voiced: pulse frequency unvoiced: noise modulation of carrier wave by speech information air flow Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Typical ow of TTS system TEXT Sentence segmentation Word segmentation Text normalization Text analysis Part-of-speech tagging Pronunciation Speech synthesis Prosody prediction discrete discrete Waveform generation ) NLP Frontend discrete continuous SYNTHESIZED ) SEECH Speech Backend Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Rule-based, formant synthesis [] -
Turbo Autoencoder: Deep Learning Based Channel Codes for Point-To-Point Communication Channels
Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels Hyeji Kim Himanshu Asnani Yihan Jiang Samsung AI Center School of Technology ECE Department Cambridge and Computer Science University of Washington Cambridge, United Tata Institute of Seattle, United States Kingdom Fundamental Research [email protected] [email protected] Mumbai, India [email protected] Sewoong Oh Pramod Viswanath Sreeram Kannan Allen School of ECE Department ECE Department Computer Science & University of Illinois at University of Washington Engineering Urbana Champaign Seattle, United States University of Washington Illinois, United States [email protected] Seattle, United States [email protected] [email protected] Abstract Designing codes that combat the noise in a communication medium has remained a significant area of research in information theory as well as wireless communica- tions. Asymptotically optimal channel codes have been developed by mathemati- cians for communicating under canonical models after over 60 years of research. On the other hand, in many non-canonical channel settings, optimal codes do not exist and the codes designed for canonical models are adapted via heuristics to these channels and are thus not guaranteed to be optimal. In this work, we make significant progress on this problem by designing a fully end-to-end jointly trained neural encoder and decoder, namely, Turbo Autoencoder (TurboAE), with the following contributions: (a) under moderate block lengths, TurboAE approaches state-of-the-art performance under canonical channels; (b) moreover, TurboAE outperforms the state-of-the-art codes under non-canonical settings in terms of reliability. TurboAE shows that the development of channel coding design can be automated via deep learning, with near-optimal performance. -
Double Backpropagation for Training Autoencoders Against Adversarial Attack
1 Double Backpropagation for Training Autoencoders against Adversarial Attack Chengjin Sun, Sizhe Chen, and Xiaolin Huang, Senior Member, IEEE Abstract—Deep learning, as widely known, is vulnerable to adversarial samples. This paper focuses on the adversarial attack on autoencoders. Safety of the autoencoders (AEs) is important because they are widely used as a compression scheme for data storage and transmission, however, the current autoencoders are easily attacked, i.e., one can slightly modify an input but has totally different codes. The vulnerability is rooted the sensitivity of the autoencoders and to enhance the robustness, we propose to adopt double backpropagation (DBP) to secure autoencoder such as VAE and DRAW. We restrict the gradient from the reconstruction image to the original one so that the autoencoder is not sensitive to trivial perturbation produced by the adversarial attack. After smoothing the gradient by DBP, we further smooth the label by Gaussian Mixture Model (GMM), aiming for accurate and robust classification. We demonstrate in MNIST, CelebA, SVHN that our method leads to a robust autoencoder resistant to attack and a robust classifier able for image transition and immune to adversarial attack if combined with GMM. Index Terms—double backpropagation, autoencoder, network robustness, GMM. F 1 INTRODUCTION N the past few years, deep neural networks have been feature [9], [10], [11], [12], [13], or network structure [3], [14], I greatly developed and successfully used in a vast of fields, [15]. such as pattern recognition, intelligent robots, automatic Adversarial attack and its defense are revolving around a control, medicine [1]. Despite the great success, researchers small ∆x and a big resulting difference between f(x + ∆x) have found the vulnerability of deep neural networks to and f(x). -
Introduction to Machine Learning
Introduction to Machine Learning Perceptron Barnabás Póczos Contents History of Artificial Neural Networks Definitions: Perceptron, Multi-Layer Perceptron Perceptron algorithm 2 Short History of Artificial Neural Networks 3 Short History Progression (1943-1960) • First mathematical model of neurons ▪ Pitts & McCulloch (1943) • Beginning of artificial neural networks • Perceptron, Rosenblatt (1958) ▪ A single neuron for classification ▪ Perceptron learning rule ▪ Perceptron convergence theorem Degression (1960-1980) • Perceptron can’t even learn the XOR function • We don’t know how to train MLP • 1963 Backpropagation… but not much attention… Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550 4 Short History Progression (1980-) • 1986 Backpropagation reinvented: ▪ Rumelhart, Hinton, Williams: Learning representations by back-propagating errors. Nature, 323, 533—536, 1986 • Successful applications: ▪ Character recognition, autonomous cars,… • Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training? • Hopfield nets (1982), Boltzmann machines,… 5 Short History Degression (1993-) • SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. • SVM and Graphical models almost kill the ANN research. • Training deeper networks consistently yields poor results. • Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model) 6 Short History Progression (2006-) Deep Belief Networks (DBN) • Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554. • Generative graphical model • Based on restrictive Boltzmann machines • Can be trained efficiently Deep Autoencoder based networks Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. -
Artificial Intelligence Applied to Electromechanical Monitoring, A
ARTIFICIAL INTELLIGENCE APPLIED TO ELECTROMECHANICAL MONITORING, A PERFORMANCE ANALYSIS Erasmus project Authors: Staš Osterc Mentor: Dr. Miguel Delgado Prieto, Dr. Francisco Arellano Espitia 1/5/2020 P a g e II ANNEX VI – DECLARACIÓ D’HONOR P a g e II I declare that, the work in this Master Thesis / Degree Thesis (choose one) is completely my own work, no part of this Master Thesis / Degree Thesis (choose one) is taken from other people’s work without giving them credit, all references have been clearly cited, I’m authorised to make use of the company’s / research group (choose one) related information I’m providing in this document (select when it applies). I understand that an infringement of this declaration leaves me subject to the foreseen disciplinary actions by The Universitat Politècnica de Catalunya - BarcelonaTECH. ___________________ __________________ ___________ Student Name Signature Date Title of the Thesis : _________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ P a g e II Contents Introduction........................................................................................................................................5 Abstract ..........................................................................................................................................5 Aim .................................................................................................................................................6