Dinosaur Atlas 1 Preview.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaur Atlas 1 Preview.Pdf HORNS, SPIKES, & ARMOR Beaks, frills, and crests Fierce dinosaurs Plant-eating dinosaurs were The fragile plates along the back may have Many plant-eating dinosaurs All those spikes and armored often slow-moving, trudging changed color to attract a mate or warn a rival. had beaks, rather like the beak TRICERATOPS plates gave protection against Or Stegosaurus might have used them to control Frenchman Formation 3 (try-SER-ah-tops) along on all fours. It would be its temperature, turning towards the wind to of a tortoise. They used their terrifying carnivorous dinosaurs. cool down or standing in the sun TRICERATOPS LIVED: Canada, US; hard for them to run away from to warm up. beaks for shearing through 68–66 mya ATE: Plants These predators came in all sizes, a fierce meat-eater, so some plant matter or for gripping Triceratops had three LENGTH: 26 ft. (8 m) but shared good eyesight, speed, horns and a distinctive neck WEIGHT: 24,200 lb. grew armor plates and sharp, and tugging at it. Beaked frill. Channels for blood vessels (11,000 kg) fearsome teeth, slashing claws – protective spikes. dinosaurs often had dramatic on the frill suggest it could be and often feathers! frills or crests on their heads. flooded with blood to change color, either to attract a mate STEGOSAURUS Morisson Formation 8 Albertosaurus’s 3.3 ft. Morrison Formation 7 (STEG-oh-SAW-rus) or scare a rival or predator. (1 m ) long skull was packed with sharp, 1 Horseshoe LIVED: US, Portugal; Lance Formation 10 ALLOSAURUS saw-edged teeth. STEGOSAURUS 156–144 mya Canyon Formation Allosaurus was one of the Stegosaurus had a fearsome ATE: Plants LENGTH: PACHYCEPHALOSAURUS 2 Dinosaur Provincial Park ALLOSAURUS weapon called a “thagomizer” at the end 21 ft. (6.5 m) WEIGHT: 9 Cedar Mountain first dinosaurs investigated ALBERTOSAURUS Pachycephalosaurus was a (AL-oh-SAW-rus) of its tail, with long, sharp spikes sticking 7,700 lb. (3,500 kg) Formation PARASAUROLOPHUS using computer modeling. Albertosaurus was smaller than bonehead – literally. Adult It made swift bites, slashing LIVED: US; 150 mya Tyrannosaurus but just as fast and out on each side. It could use this to swipe an The bony crest of Parasaurolophus hides a network ATE: Meat LENGTH: ALBERTOSAURUS GASTONIA skulls were topped with a PACHYCEPHALOSAURUS and tearing at its prey with deadly. Young Albertosaurus grew attacking dinosaur. One Allosaurus fossil shows of airways. It may have used its crest to make 28 ft. (8.5 m) WEIGHT: (al-BERT-oh-SAW-rus) Gastonia had spikes dome of bone up to 10 in. (pak-ee-SEF-ah-loh- sharp, backwards-curving quickly, and were the largest predators an injury to the tail probably caused by SAW-rus) sounds, passing air from its throat through 3,300 lb. (1,500 kg) LIVED: Canada; 76–74 mya and armored plates (25 cm) thick. The dinosaur teeth. It could easily kill small ATE: Meat LENGTH: in their area by the age of just two. a bashing from a Stegosaurus. LIVED: US; 70–66 mya Different species of the crest rather like a trumpet. to keep it super-safe. Any predator may have used its hard Parasaurolophus have animals, and might even have attacked heavier 29.5 ft. (9 m) WEIGHT: They might have hunted in packs – that ATE: Plants LENGTH: Scientists have used computer 4 Hell Creek Ankylosaurus was entirely covered in trying to get close ran the risk of head for butting the flanks different types of crests. They animals like Stegosaurus by relying on speed. 2,900–3,700 lb. (1,300–1,700 kg) would have been a fearsome sight! 4.8 ft. (4.5 m) WEIGHT: models of the crest to try to hard, bony plates called osteoderms. receiving a nasty injury from of rivals when fighting for would have looked different, ANKYLOSAURUS 90 lb. (450 kg) and probably made different re-create the sound of a Four spikes at the back of the Gastonia as it swiped its spiked tail. territory or a mate. sounds, helping potential Parasaurolophus call. Antlers Formation 11 head protected the neck, mates to find the right species. and even its eyelids were DEINONYCHUS armored. The large club of Deinonychus had giant, curved claws on its fused bone at the end of the feet to hold its prey still. The largest claw tail could deliver a could rotate, so Deinonychus could nasty thump. ANKYLOSAURUS GASTONIA The bone was hold it out of the way while walking. (an-KILE-oh-SAW-rus) (gas-TOE-nee-ah) not solid but filled Gastonia had short legs This bird-like dinosaur was found in 1964. with holes, like a sponge and couldn’t outrun its DEINONYCHUS LIVED: Canada, US; 74–67 mya LIVED: US; 142–126 mya – solid bone would have Work on it by the American paleontologist attackers. It relied on its (die-NON-ee-kus) ATE: Low-growing plants ATE: Plants been very heavy. Babies John Ostrum sparked a revival of interest in LENGTH: 23 ft. (7 m) thick armor for defense. LENGTH: 16 ft. (5 m) PARASAUROLOPHUS LIVED: US; 120–110 mya may have had a flat head, LENGTH: 24.5 ft. This computer model of an Allosaurus skull was used to the study of dinosaurs in the 1970s, which WEIGHT: 13, 200 lb. (6,000 kg) WEIGHT: 4,200 lb. (1,900 kg) growing bony domes as (PAR-ah-SAW-oh-LOH-fus) ATE: Meat (7.5 m) WEIGHT: study how the dinosaur used its teeth to tackle its prey. became known as the “Dinosaur Renaissance.” Ankylosaurus’s skull was protected by bony scales. they matured. LIVED: Canada, US; 76–74 mya LENGTH: 10.8 ft. (3.3 m) ATE: Plants 5,700 lb. (2,600 kg) WEIGHT: 130 lb. (60 kg) NORTH AMERICA Tyrannosaurus rex is the The enormous head FOSSILIZED FIGHT had a narrow snout, dinosaur everyone has heard of making the eyes close DINOSAUR HUNT The fossil on the right was found in 2006 together. This meant FOSSIL- Once they’ve found some suitable rocks, paleontologists look – it’s the most famous dinosaur Tyrannosaurus had good Hell Creek and shows two dinosaurs tangled up binocular vision, just for clues that might reveal dinosaur remains. They may find 4 of all, and one of the largest together. The one on the left is like we do. HUNTING fragments of bone in riverbeds, fossilized footprints, or bits meat-eaters that has ever lived. probably a young Tyrannosaurus of bone sticking out of the rock. Desert areas are often T-REX and the other a large ceratopsian. Dinosaurs lived 242–66 million the best places to look, as fossils are exposed by Some paleontologists think they may years ago, so to find their fossils scouring winds but not washed away. TYRANNOSAURUS REX have battled to the death. So did the (tie-RAN-oh-SAW ACTUAL SIZE TOOTH! paleontologists need to look ceratopsian fall victim to the 1 -rus REX) Tyrannosaurus? There is a tooth in rocks of that age. In North LIVED: US; 68–66 mya The dinosaur wedged in its neck. America, rocks the right age ATE: Meat LENGTH: needed a heavy 39 ft. (12 m) WEIGHT: tail to balance are near the surface in a band 13,200 lb. (6,000 kg) its enormous head so that it running through the middle of didn’t tip over. It’s odd to think of the continent. In the northeast something so fierce The largest T-rex tooth ever covered in feathers – but and midwest, the rocks are too Tyrannosaurus probably old for dinosaur fossils, while in had at least some the root that held it in the jaw. feathers. The babies may found was 12 in. (30.5 cm) long, including the southeast, they are too new. have been covered in down, like bird chicks! Sweet, but savage… 2 BARNUM BROWN Tyrannosaurus would have The first Tyrannosaurus fossil was held its tail out horizontally DIGGING AWAY The powerful jaw and behind it as it walked. found in 1902 in Hell Creek by the Fossilized Tyrannosaurus teeth of T-rex could rip When they find a large skeleton, fossil-hunters American fossil-hunter Barnum The teeny, poop contains bits of large chunks out of other first remove large chunks of surrounding Brown (1873–1963). tiny arms were bone and muscle from dinosaurs. The front teeth rock, called overburden. Then they carefully too short to its meals. Tyrannosaurus curved backwards, so probably hunted other scrape and brush away the remaining rock Brown uncovers dinosaur bones in Wyoming reach the mouth. they wouldn’t be pulled dinosaurs and ate any during a dig in the 1930s. No one knows how out when Tyrannosaurus and soil to reveal the bones. It can take weeks. Tyrannosaurus used dead animals it found tore at flesh. They photograph the positions of all the bones lying around. Tyrannosaurus had them – perhaps to hold FIRST AMERICAN before moving them. the longest legs for its smaller animals while size of any dinosaur. biting them. BATTLING TEENS They were powerful DINOSAURS enough to let it run at Bite marks on the skull of a young around 19 mph (30 kph). Tyrannosaurus found in 2001 are from When the first dinosaur footprints were found This American Hadrosaurus was the first dinosaur NORTH AMERICA NORTH the teeth of another young – probably in North America in 1802, people thought they skeleton to be reassembled and mounted for teenage – Tyrannosaurus. The bite healed, were the footprints of giant birds. Only after display anywhere in the world. The paleontologist so perhaps it wasn’t a very serious fight.
Recommended publications
  • MEET the DINOSAURS! WHAT’S in a NAME? a LOT If You Are a Dinosaur!
    MEET THE DINOSAURS! WHAT’S IN A NAME? A LOT if you are a dinosaur! I will call you Dyoplosaurus! Most dinosaurs get their names from the ancient Greek and Latin languages. And I will call you Mojoceratops! And sometimes they are named after a defining feature on their body. Their names are made up of word parts that describe the dinosaur. The name must be sent to a special group of people called the International Commission on Zoological Nomenclature to be approved! Did You The word DINOSAUR comes from the Greek word meaning terrible lizard and was first said by Know? Sir Richard Owen in 1841. © 2013 Omaha’s Henry Doorly Zoo & Aquarium® | 3 SEE IF YOU CAN FIND OUT THE MEANING OF SOME OF OUR DINOSAUR’S NAMES. Dinosaur names are not just tough to pronounce, they often have meaning. Dinosaur Name MEANING of Dinosaur Name Carnotaurus (KAR-no-TORE-us) Means “flesh-eating bull” Spinosaurus (SPY-nuh-SORE-us) Dyoplosaurus (die-o-pluh-SOR-us) Amargasaurus (ah-MAR-guh-SORE-us) Omeisaurus (Oh-MY-ee-SORE-us) Pachycephalosaurus (pak-ee-SEF-uh-low-SORE-us) Tuojiangosaurus (toh-HWANG-uh-SORE-us) Yangchuanosaurus (Yang-chew-ON-uh-SORE-us) Quetzalcoatlus (KWET-zal-coe-AT-lus) Ouranosaurus (ooh-RAN-uh-SORE-us) Parasaurolophus (PAIR-uh-so-ROL-uh-PHUS) Kosmoceratops (KOZ-mo-SARA-tops) Mojoceratops (moe-joe-SEH-rah-tops) Triceratops (try-SER-uh-TOPS) Tyrannosaurus rex (tuh-RAN-uh-SORE-us) Find the answers by visiting the Resource Library at Carnotaurus A: www.OmahaZoo.com/Education. Search word: Dinosaurs 4 | © 2013 Omaha’s Henry Doorly Zoo & Aquarium® DINO DEFENSE All animals in the wild have to protect themselves.
    [Show full text]
  • Two New Stegosaur Specimens from the Upper Jurassic Morrison Formation of Montana, USA
    Editors' choice Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA D. CARY WOODRUFF, DAVID TREXLER, and SUSANNAH C.R. MAIDMENT Woodruff, D.C., Trexler, D., and Maidment, S.C.R. 2019. Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA. Acta Palaeontologica Polonica 64 (3): 461–480. Two partial skeletons from Montana represent the northernmost occurrences of Stegosauria within North America. One of these specimens represents the northernmost dinosaur fossil ever recovered from the Morrison Formation. Consisting of fragmentary cranial and postcranial remains, these specimens are contributing to our knowledge of the record and distribution of dinosaurs within the Morrison Formation from Montana. While the stegosaurs of the Morrison Formation consist of Alcovasaurus, Hesperosaurus, and Stegosaurus, the only positively identified stegosaur from Montana thus far is Hesperosaurus. Unfortunately, neither of these new specimens exhibit diagnostic autapomorphies. Nonetheless, these specimens are important data points due to their geographic significance, and some aspects of their morphologies are striking. In one specimen, the teeth express a high degree of wear usually unobserved within this clade—potentially illuminating the progression of the chewing motion in derived stegosaurs. Other morphologies, though not histologically examined in this analysis, have the potential to be important indicators for maturational inferences. In suite with other specimens from the northern extent of the formation, these specimens contribute to the ongoing discussion that body size may be latitudinally significant for stegosaurs—an intriguing geographical hypothesis which further emphasizes that size is not an undeviating proxy for maturity in dinosaurs. Key words: Dinosauria, Thyreophora, Stegosauria, Jurassic, Morrison Formation, USA, Montana.
    [Show full text]
  • Stegosaurus Scelidosaurus Huayangosaurus Cheeks: No
    Huayangosaurus Scelidosaurus Stegosaurus Cheeks: No reptile has ever had a ‘buccinator’ muscle Answer: highly flexible tongue Brains 0.001% of stegosaur body weight Compared to 1.8% in humans (1000x larger per unit body weight!) Brains Brains Locomotion Graviportal Locomotion Elephantine hind feet (weight-bearing) Shin bones fused with astragalus/ calcaneum Femur: Long compared to humerus Columnar Facultative Tripodality? Stocky forelimbs- could be used for turning/posturing (Bakker) Dermal Armour? Pattern of plates and spines is species-specific Plates paired or staggered (Stegosaurus) Plates were probably not for defense... not tough enough Rotation? Surface markings => symmetrical. Rotation unlikely Potential uses: Thermoregulation? Warm up (ectotherms), Cool down (endotherms) Signaling? positioned for maximal lateral visibility Sexual Selection Mate Recognition Grooves for blood vessels Sexual dimorphism Differences between males and females of the same species **New finding** published in 2015 Stegosaurus Morrison formation, Colorado Dinosaur Sex Figuring out how Stegosaurus even could have mated is a prickly subject. Females were just as well-armored as males, and it is unlikely that males mounted the females from the back. A different technique was necessary. Perhaps they angled so that they faced belly to belly, some have guessed, or maybe, as suggested by Timothy Isles in a recent paper, males faced away from standing females and backed up (a rather tricky maneuver!). The simplest technique yet proposed is that the female lay down on her side and the male approached standing up, thereby avoiding all those plates and spikes. However the Stegosaurus pair accomplished the feat, though, it was most likely brief—only as long as was needed for the exchange of genetic material.
    [Show full text]
  • By Howard Zimmerman
    by Howard Zimmerman DINO_COVERS.indd 4 4/24/08 11:58:35 AM [Intentionally Left Blank] by Howard Zimmerman Consultant: Luis M. Chiappe, Ph.D. Director of the Dinosaur Institute Natural History Museum of Los Angeles County 1629_ArmoredandDangerous_FNL.ind1 1 4/11/08 11:11:17 AM Credits Title Page, © Luis Rey; TOC, © De Agostini Picture Library/Getty Images; 4-5, © John Bindon; 6, © De Agostini Picture Library/The Natural History Museum, London; 7, © Luis Rey; 8, © Luis Rey; 9, © Adam Stuart Smith; 10T, © Luis Rey; 10B, © Colin Keates/Dorling Kindersly; 11, © Phil Wilson; 12L, Courtesy of the Royal Tyrrell Museum, Drumheller, Alberta; 12R, © De Agostini Picture Library/Getty Images; 13, © Phil Wilson; 14-15, © Phil Wilson; 16-17, © De Agostini Picture Library/The Natural History Museum, London; 18T, © 2007 by Karen Carr and Karen Carr Studio; 18B, © photomandan/istockphoto; 19, © Luis Rey; 20, © De Agostini Picture Library/The Natural History Museum, London; 21, © John Bindon; 23TL, © Phil Wilson; 23TR, © Luis Rey; 23BL, © Vladimir Sazonov/Shutterstock; 23BR, © Luis Rey. Publisher: Kenn Goin Editorial Director: Adam Siegel Creative Director: Spencer Brinker Design: Dawn Beard Creative Cover Illustration: Luis Rey Photo Researcher: Omni-Photo Communications, Inc. Library of Congress Cataloging-in-Publication Data Zimmerman, Howard. Armored and dangerous / by Howard Zimmerman. p. cm. — (Dino times trivia) Includes bibliographical references and index. ISBN-13: 978-1-59716-712-3 (library binding) ISBN-10: 1-59716-712-6 (library binding) 1. Ornithischia—Juvenile literature. 2. Dinosaurs—Juvenile literature. I. Title. QE862.O65Z56 2009 567.915—dc22 2008006171 Copyright © 2009 Bearport Publishing Company, Inc. All rights reserved.
    [Show full text]
  • Late Jurassic Theropod Dinosaur Bones from the Langenberg Quarry
    Late Jurassic theropod dinosaur bones from the Langenberg Quarry (Lower Saxony, Germany) provide evidence for several theropod lineages in the central European archipelago Serjoscha W. Evers1 and Oliver Wings2 1 Department of Geosciences, University of Fribourg, Fribourg, Switzerland 2 Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany ABSTRACT Marine limestones and marls in the Langenberg Quarry provide unique insights into a Late Jurassic island ecosystem in central Europe. The beds yield a varied assemblage of terrestrial vertebrates including extremely rare bones of theropod from theropod dinosaurs, which we describe here for the first time. All of the theropod bones belong to relatively small individuals but represent a wide taxonomic range. The material comprises an allosauroid small pedal ungual and pedal phalanx, a ceratosaurian anterior chevron, a left fibula of a megalosauroid, and a distal caudal vertebra of a tetanuran. Additionally, a small pedal phalanx III-1 and the proximal part of a small right fibula can be assigned to indeterminate theropods. The ontogenetic stages of the material are currently unknown, although the assignment of some of the bones to juvenile individuals is plausible. The finds confirm the presence of several taxa of theropod dinosaurs in the archipelago and add to our growing understanding of theropod diversity and evolution during the Late Jurassic of Europe. Submitted 13 November 2019 Accepted 19 December 2019 Subjects Paleontology,
    [Show full text]
  • A King-Size Theropod Coprolite
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232796267 A king-size theropod coprolite Article in Nature · June 1998 DOI: 10.1038/31461 CITATIONS READS 154 2,385 4 authors, including: Karen Chin Tim Tokaryk University of Colorado Boulder Royal Saskatchewan Museum 32 PUBLICATIONS 1,143 CITATIONS 39 PUBLICATIONS 488 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The Dinosaur Park Formation of Saskatchewan View project Paleobiodiverity and the K-Pg Boundary View project All content following this page was uploaded by Tim Tokaryk on 10 June 2015. The user has requested enhancement of the downloaded file. letters to nature compositions, though the ground mass contains more silicon and aluminium (Table 2). X-ray powder-diffraction analyses indicate A king-sized theropod that carbonate fluorapatite is the predominant phosphate mineral in both the bone and the ground mass. coprolite Several factors confirm that this specimen is a coprolite. The most diagnostic feature is a phosphatic composition, which is character- Karen Chin, Timothy T. Tokaryk*, Gregory M. Erickson†‡ istic of carnivore coprolites9. As phosphorus normally constitutes & Lewis C. Calk 10 only about 0.1% of the Earth’s crustal rocks , concentrated phos- United States Geological Survey, 345 Middlefield Road, MS 975, Menlo Park, phate deposits usually indicate biotic accumulations, and the overall 8 California 94025, USA configuration of the mass is consistent with the irregular faecal * Eastend Fossil Research Station, Royal Saskatchewan Museum, Box 460, deposits produced by very large animals. The matrix-supported Eastend, Saskatchewan S0N 0T0, Canada distribution of bone fragments argues against the possibility that the † Department of Integrative Biology & Museums of Vertebrate Zoology and mass represents regurgitated material or fluvially aggregated bone Paleontology, University of California, Berkeley, California 94720, USA debris.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • The Fauna from the Tyrannosaurus Rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan
    The Fauna from the Tyrannosaurus rex Excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan Tim T. Tokaryk 1 and Harold N. Bryant 2 Tokaryk, T.T. and Bryant, H.N. (2004): The fauna from the Tyrannosaurus rex excavation, Frenchman Formation (Late Maastrichtian), Saskatchewan; in Summary of Investigations 2004, Volume 1, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004-4.1, CD-ROM, Paper A-18, 12p. Abstract The quarry that contained the partial skeleton of the Tyrannosaurus rex, familiarly known as “Scotty,” has yielded a diverse faunal and floral assemblage. The site is located in the Frenchman River valley in southwestern Saskatchewan and dates from approximately 65 million years, at the end of the Cretaceous Period. The faunal assemblage from the quarry is reviewed and the floral assemblage is summarized. Together, these assemblages provide some insight into the biological community that lived in southwestern Saskatchewan during the latest Cretaceous. Keywords: Frenchman Formation, Maastrichtian, Late Cretaceous, southwestern Saskatchewan, Tyrannosaurus rex. 1. Introduction a) Geological Setting The Frenchman Formation, of latest Maastrichtian age, is extensively exposed in southwestern Saskatchewan (Figure 1; Fraser et al., 1935; Furnival, 1950). The lithostratigraphic units in the formation consist largely of fluvial sandstones and greenish grey to green claystones. Outcrops of the Frenchman Formation are widely distributed in the Frenchman River valley, southeast of Eastend. Chambery Coulee, on the north side of the valley, includes Royal Saskatchewan Museum (RSM) locality 72F07-0022 (precise locality data on file with the RSM), the site that contained the disarticulated skeleton of a Tyrannosaurus rex. McIver (2002) subdivided the stratigraphic sequence at this locality into “lower” and “upper” beds.
    [Show full text]
  • The Systematic Position of the Enigmatic Thyreophoran Dinosaur Paranthodon Africanus, and the Use of Basal Exemplifiers in Phyl
    1 The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, 2 and the use of basal exemplifiers in phylogenetic analysis 3 4 Thomas J. Raven1,2 ,3 and Susannah C. R. Maidment2 ,3 5 61Department of Earth Science & Engineering, Imperial College London, UK 72School of Environment & Technology, University of Brighton, UK 8 3Department of Earth Sciences, Natural History Museum, London, UK 9 10Corresponding author: Thomas J. Raven 11 12Email address: [email protected] 13 14 15 16 17 18 19 20 21ABSTRACT 22 23The first African dinosaur to be discovered, Paranthodon africanus was found in 1845 in the 24Lower Cretaceous of South Africa. Taxonomically assigned to numerous groups since discovery, 25in 1981 it was described as a stegosaur, a group of armoured ornithischian dinosaurs 26characterised by bizarre plates and spines extending from the neck to the tail. This assignment 27that has been subsequently accepted. The type material consists of a premaxilla, maxilla, a nasal, 28and a vertebra, and contains no synapomorphies of Stegosauria. Several features of the maxilla 29and dentition are reminiscent of Ankylosauria, the sister-taxon to Stegosauria, and the premaxilla 30appears superficially similar to that of some ornithopods. The vertebral material has never been 31described, and since the last description of the specimen, there have been numerous discoveries 32of thyreophoran material potentially pertinent to establishing the taxonomic assignment of the 33specimen. An investigation of the taxonomic and systematic position of Paranthodon is therefore 34warranted. This study provides a detailed re-description, including the first description of the 35vertebra. Numerous phylogenetic analyses demonstrate that the systematic position of 36Paranthodon is highly labile and subject to change depending on which exemplifier for the clade 37Stegosauria is used.
    [Show full text]
  • The Rock Record – March 2005
    The Rock Record – March 2005 2004 Executive President Mike Gunning 787-2618 In This Issue Vice-President ¾ Speaker Program Announcements & Abstracts p. 1-3 Andre Costa 787-9104 ¾ Upcoming Events p. 4 ¾ AGM Recap & Honour Roll Citation p. 5,6 Secretary ¾ Curling Summary p. 7 Vacant Treasurer Bob Troyer 787-2562 Business Manager Wednesday, March 2nd, 2005 Jeff Coolican 787-0651 Program Chair Steve Whittaker 787-2577 Verdant, Volcanic Vistas on the Assistant Program Chair Island of St. Lucia, West Indies Kate MacLachlan 787-9059 Past President Erik Nickel 787-0169 Charlie Harper Northern Geological Survey School Liaison Committee Saskatchewan Industry and Resources Melinda Yurkowski 787-0650 Field Trip Committee Lancaster Room, Royal Canadian Legion John Lake 787-2621 Cash Bar: 11:30; Lunch: 11:50 Meeting: 12:15 – 13:00 Golf Tournament Committee Bob Troyer 787-2562 Members $7.00, Non-members $11.00 Contact: Andre Costa 787-9104 By NOON, Wednesday, January 26, 2005 Please contribute to the SGS Newsletter The SGS Newsletter is produced by the SGS executive. Wednesday, March 23, 2005 Letters, announcements, notices, comments, photos, news and information about SGS members, etc. are always T-Rex Excavation, Frenchman welcome. Call an executive member or write to us at: Formation, Southwest Saskatchewan Saskatchewan Geological Society Tim Tokaryk P.O. Box 234 Royal Saskatchewan Museum Fossil Research Station Regina, SK S4P 2Z6 Eastend, Saskatchewan SGS e-mail address: Lancaster Room, Royal Canadian Legion [email protected] Cash Bar: 11:30; Lunch: 11:50 Meeting: 12:15 – 13:00 SGS Website: Members $7.00, Non-members $11.00 www.sgshome.ca Contact: Andre Costa 787-9104 By NOON, Wednesday, January 26, 2005 All advertising inquiries should be directed to Andre Costa 1 Speakers Program; Mar.
    [Show full text]
  • Ankylosaurid Dinosaur Tail Clubs Evolved Through Stepwise Acquisition of Key Features
    1 Title: Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features. 2 3 Victoria M. Arbour1,2,3 and Philip J. Currie3 4 1Paleontology and Geology Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, 5 North Carolina 27601, USA; 2Department of Biological Sciences, North Carolina State University, Raleigh, 6 North Carolina, 27607, USA; 3Department of Biological Sciences, University of Alberta, Edmonton, 7 Alberta, T6G 2E9, Canada; [email protected] 8 Corresponding author: V. Arbour 9 10 Running title: ANKYLOSAURID TAIL CLUB STEPWISE EVOLUTION 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 25 ABSTRACT 26 Ankylosaurid ankylosaurs were quadrupedal, herbivorous dinosaurs with abundant dermal 27 ossifications. They are best known for their distinctive tail club composed of stiff, interlocking vertebrae 28 (the handle) and large, bulbous osteoderms (the knob), which may have been used as a weapon. 29 However, tail clubs appear relatively late in the evolution of ankylosaurids, and seemed to have been 30 present only in a derived clade of ankylosaurids during the last 20 million years of the Mesozoic Era. 31 New evidence from mid Cretaceous fossils from China suggests that the evolution of the tail club 32 occurred at least 40 million years earlier, and in a stepwise manner, with early ankylosaurids evolving 33 handle-like vertebrae before the distal osteoderms enlarged and coossified to form a knob. 34 35 Keywords: Dinosauria, Ankylosauria, Ankylosauridae, Cretaceous 36 37 38 39 40 41 42 43 44 45 46 47 48 2 49 INTRODUCTION 50 Tail weaponry, in the form of spikes or clubs, is an uncommon adaptation among tetrapods.
    [Show full text]
  • Ankylosaurus Magniventris
    FOR OUR ENGLISH-SPEAKING GUESTS: “Dinosauria” is the scientific name for dinosaurs, and derives from Ancient Greek: “Deinos”, meaning “terrible, potent or fearfully great”, and “sauros”, meaning “lizard or reptile”. Dinosaurs are among the most successful animals in the history of life on Earth. They dominated the planet for nearly 160 million years during the entire Mesozoic era, from the Triassic period 225 million years ago. It was followed by the Jurassic period and then the Cretaceous period, which ended 65 million years ago with the extinction of dinosaurs. Here follows a detailed overview of the dinosaur exhibition that is on display at Dinosauria, which is produced by Dinosauriosmexico. Please have a look at the name printed on top of the Norwegian sign right by each model to identify the correct dinosaur. (Note that the shorter Norwegian text is similar, but not identical to the English text, which is more in-depth) If you have any questions, please ask our staff wearing colorful shirts with flower decorations. We hope you enjoy your visit at INSPIRIA science center! Ankylosaurus magniventris Period: Late Cretaceous (65 million years ago) Known locations: United States and Canada Diet: Herbivore Size: 9 m long Its name means "fused lizard". This dinosaur lived in North America 65 million years ago during the Late Cretaceous. This is the most widely known armoured dinosaur, with a club on its tail. The final vertebrae of the tail were immobilized by overlapping the connections, turning it into a solid handle. The tail club (or tail knob) is composed of several osteoderms fused into one unit, with two larger plates on the sides.
    [Show full text]