Artemis, Venus: the Largest Tectonomagmatic Feature in the Solar System?

Total Page:16

File Type:pdf, Size:1020Kb

Artemis, Venus: the Largest Tectonomagmatic Feature in the Solar System? Downloaded from geology.gsapubs.org on April 25, 2014 Artemis, Venus: The largest tectonomagmatic feature in the solar system? Vicki L. Hansen1 and Anthony Olive2 1Department of Geological Sciences, University of Minnesota Duluth, Duluth, Minnesota 55812, USA 2Department of Geological and Environmental Sciences, Youngstown State University, Youngstown, Ohio 44555, USA ABSTRACT wrinkle ridges parallel the chasma, and fracture New geologic mapping reveals that Artemis, a unique 2400-km-diameter feature on Venus, suites include both concentric and radial orien- is much larger than previously recognized, including a wide outer trough (>5000 km diameter), tations relative to the chasma. a radial dike swarm (12,000 km diameter), and a concentric wrinkle ridge suite (13,000 km diameter). Artemis’s evolution included formation of its interior and chasma, accompanied NIOBE-APHRODITE MAPPING by lateral propagation of radial dikes. The escape of dike magma to the surface formed local We are constructing 1:10,000,000 scale geo- cover deposits that buried parts of the remaining radial fracture suite. Cover deposits are logic maps of the Niobe and Aphrodite regions cut, in turn, by wrinkle ridges that likely formed by coupling of convective mantle fl ow with (57°N–57°S; 60–180°E) that straddle Aphrodite the lithosphere. The outer trough formed late relative to radial fractures, cover deposits, and Terra as part of the National Aeronautics and wrinkle ridges. We suggest that Artemis represents the magmatic signature of a deep mantle Space Administration–U.S. Geological Survey plume acting on relatively thin lithosphere. As such, it appears to represent the largest tec- planetary mapping program. We mapped local tonomagmatic feature in the solar system. The newly recognized vast extent of Artemis holds fractures (defi ning radial or concentric patterns implications for the formation of giant radial dike swarms, wrinkle ridge formation, terres- associated with coronae, mons, or volcanoes), trial planet mantle-lithosphere coupling, and Venus’s surface and geodynamic evolution. regional fractures (elements not obviously part of a local suite, and that are outside of the frac- INTRODUCTION composite of several major features, formed ture zone), and wrinkle ridges (Figs. 1B, 1C). Artemis, a unique feature on Venus, is one of by different mechanisms at different times: (1) We refer here collectively to fractures, fi ssures, the largest circular structures on a rocky planet an extensive fracture zone, comprising a region and graben as “fractures.” These features form in our solar system. Artemis includes an inte- marked by extremely closely spaced fractures sharp lineaments in synthetic aperture radar rior topographic high surrounded by Artemis including the Diana-Dali chain (stippled in data; graben and fi ssures show resolvable Chasma (a 2100-km-diameter, 25–100-km- Fig. 1); (2) a series of highland features, includ- troughs, whereas fractures do not. Fractures wide, 1–2-km-deep circular trough) and an ing the Ovda and Thetis plateaus to the west and (including fi ssures and graben) represent sub- outer rise (2400 km diameter) that transitions Atla rise to the east, connected by the fracture surface dikes (Head et al., 1992; McKenzie et outward into the surrounding lowland. The zone; and (3) Artemis, south of Thetis. Crustal al., 1992b; Grosfi ls and Head, 1994a; Ernst et chasma describes a nearly complete circle, plateaus Ovda and Thetis, supported by thick al., 2001). Wrinkle ridges, marked by distinctive lacking defi nition to the north and northwest. crust or low-density upper mantle, represent sinuous ridges, represent modest (<2%–5%) The enigmatic nature of Artemis has perplexed ancient features formed on thin lithosphere; distributed surface-layer contraction (Watters, researchers since acquisition of Pioneer Venus volcanic rise Atla, thermally supported in the 1992; Mége and Reidel, 2001). data in the late 1970s. Hypotheses for Artemis’s mantle, represents a modern feature on a thick Here we discuss patterns defi ned by wrinkle formation include the following. (1) Artemis lithosphere (Simons et al., 1997; Phillips and ridge trajectories and a specifi c regional frac- Chasma records convergence and subduction Hansen, 1998). The thermally supported frac- ture suite that have particular implications for (McKenzie et al., 1992a; Brown and Grimm, ture zone system includes splays that crosscut Artemis. Wrinkle ridge trajectories, consistent 1995, 1996; Schubert and Sandwell, 1995). (2) earlier formed Ovda and Thetis (Head et al., with global-scale map efforts, reveal a uniform Artemis’s interior is analogous to a terrestrial 1992; Bleamaster and Hansen, 2005); fractures concentric pattern south of Aphrodite, and metamorphic core complex (Spencer, 2001). (3) both predate and postdate Artemis formation more complex patterns to the north (Fig. 1A; a Artemis formed due to a huge bolide impact on (Bannister and Hansen, 2010). A portion of the detailed lineament map is available in the GSA cold strong lithosphere before 3.5 Ga (Hamilton, fracture zone is associated with Atla’s evolution, Data Repository1). Wrinkle ridges also deform 2005). (4) Artemis represents the surface expres- as shown by Atla’s triple junction (Smrekar et fi ll of local basins located at high elevations sion of a mantle plume (Griffi ths and Campbell, al., 1997). Collectively these fi rst-order rela- within Ovda and Thetis. Wrinkle ridge trajecto- 1991; Smrekar and Stofan, 1997; Hansen, 2002; tions suggest that Artemis formed after Ovda ries reveal regional-scale patterns, the largest of Bannister and Hansen, 2010). We present evi- and Thetis, but before Atla. which is concentric to Artemis. Regional frac- dence here that Artemis also includes a long- As historically defi ned, Artemis includes an ture suites occur across the map area; of particu- wavelength outer trough (>5000 km diameter), interior region, Artemis Chasma, and an outer lar interest are fractures that trend at high angles a radial dike swarm (12,000 km diameter), and high. Previous mapping defi ned Artemis’s to the concentric wrinkle ridges, referred to here a suite of concentric wrinkle ridges (13,000 km major characteristics, including the interior, as radial fractures. diameter). The vast scale of these newly recog- circular chasma, and outer high, that evolved Concentric wrinkle ridges and radial fractures nized features leads us to reevaluate the origin coevally (Brown and Grimm, 1995, 1996; Spen- together defi ne a coherent pattern centered on of Artemis. cer, 2001; Hansen 2002; Bannister and Hansen, Artemis Chasma (Figs. 1A, 1D, 1E; note that 2010). The interior hosts magmatic centers, a BACKGROUND northeast-trending fracture zone, and a penetra- 1GSA Data Repository item 2010126, a detailed lineament geologic map, is available online at www Aphrodite Terra, Venus’s largest highland, tively developed tectonic fabric. The chasma .geosociety.org/pubs/ft2010.htm, or on request from extends along an equatorial band between displays normal faults along the inner wall and [email protected] or Documents Secretary, ~50°E and ~210°E (Fig. 1). Aphrodite is a fold hinges in the center and outer wall. External GSA, P.O. Box 9140, Boulder, CO 80301, USA. © 2010 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, May May 2010; 2010 v. 38; no. 5; p. 467–470; doi: 10.1130/G30643.1; 1 fi gure; Data Repository item 2010126. 467 Downloaded from geology.gsapubs.org on April 25, 2014 0°E 90°E 180°E Wrinkle ridge trajectories m (± Mean planetary radius) A Radial fracture trends Ishtar Terra LP Wrinkle ridges* -2930 11620 pF 0 m geoid 50°N >0 m solid <0 m dashed pTe rB rBl Niobe Planitia 25°N rEw rEe rEc eastern Aphrodite Terra RP Ovda Atla Regio Regio 0°N western Aphrodite Terra Thetis Ph Regio pA 25°S rD rT Artemis rI 50°S D 150°E E rL 0°N 0°N rA pO pTh 75°S pTh 60E60°E 163°E 164°E wr B 50 km C 50 km fr Wrinkle A A 8°S ridges 8°S Fractures Figure 1. A: Mollweide projection of Venus showing Magellan altimetry, fracture zones (from Price and Suppe, 1995) (stipple), wrinkle ridge trajectories (red, and white*; from Price and Suppe, 1995), and radial fracture trends (black). Major geomorphic features: crustal plateaus (pA—Alpha Regio; pF—Fortuna Tessera; pO—Ovda Regio [in D]; pTe—Tellus Regio; pTh—Thetis Regio [in D, E]), volcanic rises (Atla Regio; rB—Beta Regio; rBl—Bell Regio; rD—Dione; rEc—central Eistla Regio; rEe—eastern Eistla Regio; rEw—western Eistla Regio; rL—Lada Terra; rI—Imdr Regio; rT—Themis Regio), Phoebe Regio (Ph), Lakshmi Planum (LP), Rusalka Planitia (RP), Niobe Planitia, Ishtar Terra, west- ern and eastern Aphrodite Terra, and Artemis trough in dark blue. Wrinkle ridge trends in intratessera basins in western Aphrodite are exag- gerated for illustration. Thin black polygon marks map area. Surface strain model features include (Sandwell et al., 1997) 0 m geoid shown between 65°N and 65°S, and predicted surface contraction (blue); according to the global surface strain model, wrinkle ridges should parallel blues lines and not form with geoid >0 m. Thick white line demarks newly defi ned Artemis. B: Example synthetic aperture radar image of fractures (fr) and wrinkle ridges (wr). C: Map of fractures and wrinkle ridges. D: Orthographic view of a virtual globe to the west of Artemis (A) with Magellan gravity (low—black; high—light), wrinkle ridge (red) and radial fracture (yellow) trends, fracture zones (from Price and Suppe, 1995) (green), and Artemis chasma (pink); symbols as in A. E: View of virtual globe to the east of Artemis. rA—Atla Regio. the chasma is not defi ned between the northwest clockwise to the west, wrinkle ridges trend east ture-parallel wrinkle ridges) indicating broadly and north). Directly outside of the chasma from and northeast in Niobe Planitia; there fractures coeval evolution of fractures, cover deposits, the north-northeast clockwise to the west, both defi ne a fan pattern.
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • GEOLOGY of OVDA REGIO, APHRODITE TERRA, VENUS: Prelih4inar-Y RESULTS from MAGELLAN DATA, RS
    LPSC SSII 1169 GEOLOGY OF OVDA REGIO, APHRODITE TERRA, VENUS: PRELIh4INAR-Y RESULTS FROM MAGELLAN DATA, RS. Saundersl, J.W. Head m2,RJ. Phillips3, S.C. Solomon4, R. Herricl?, R. Grimm3, and E.R. Stofan1 Jet Propulsion Laboratory, Calif. Institute of Technology, Pasadena, CA 91109;%epartment of Geological Sciences, Brown University, Providence, RI 02912; 3Southern Methodist University, Dallas, TX 75275;'Massachusetts Institute of Technology, Cambridge, MA, 02139 Ovda Regio is located in Aphrodite Terra, a major highland region on Venus which straddles the equator between 75 and 100 degrees east longitude. Ovda is located in western Aphrodite Terra, and has now been mapped by the Magellan spacecraft. The morphology of highland regions on Venus varies from a high plateau surrounded by mountain belts in Ishtar Terra [1,2], highly deformed tessera terrain in Tellus and Alpha Regiones [3, 41 to volcanism and rifting in Beta Regio [S-71. Aphrodite Terra, previously imaged only by low resolution Pioneer Venus radar, has been the subject of much speculation, and is expected to reveal important information on the formation and evolution of highland terrains on Venus. Pioneer Venus topography indicates that Ovda is a 2000 x 3500 km highland region rising over 4 km above the surroundink plains. Its interior is relatively plateau-like, with steep outer margins. Pioneer Venus roughness and reflectivity data indicated that the surface may be composed of tessera-like terrain [8], while PVO gravity data gave a relatively shallow depth of compensation at Ovda [9]. Several theories have been proposed for Ovda Regio based on Pioneer Venus data.
    [Show full text]
  • Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude.
    [Show full text]
  • Geologic Investigations Series I-2808
    Prepared for the National Aeronautics and Space Administration Geologic Map of the Ovda Regio Quadrangle (V–35), Venus By Leslie F. Bleamaster, III, and Vicki L. Hansen Pamphlet to accompany Geologic Investigations Series I–2808 75° 75° V–1 V–2 V–4 50° 50° V–3 V–8 V–13 V–9 V–12 V–10 V–11 25° 25° V–20 V–25 V–21 V–24 V–22 V–23 0° 30° 60° 90° 120° 150° 180° 0° 0° V–34 V–35 V–33 V–36 V–32 V–37 –25° –25° V–46 V–47 V–45 V–48 V–44 V–49 V–57 –50° V–56 V–58 –50° V–62 2005 –75° –75° U.S. Department of the Interior U.S. Geological Survey 0 THE MAGELLAN MISSION comparable to the radar wavelength are responsible for variations in the SAR return. In either case, the echo The Magellan spacecraft orbited Venus from August strength is also modulated by the reflectivity of the sur- 10, 1990, until it plunged into the Venusian atmosphere face material. The density of the upper few wavelengths on October 12, 1994. Magellan had the objectives of (1) of the surface can have a significant effect. Low-density improving knowledge of the geologic processes, surface layers, such as crater ejecta or volcanic ash, can absorb properties, and geologic history of Venus by analysis of the incident energy and produce a lower observed echo. surface radar characteristics, topography, and morphol- On Venus, a rapid increase in reflectivity exists at a cer- ogy and (2) improving knowledge of the geophysics of tain critical elevation, above which high-dielectric miner- Venus by analysis of Venusian gravity.
    [Show full text]
  • An Explanation for Crustal Plateaus and Tessera Terrains
    Pulsating continents on Venus: An explanation for crustal plateaus and tessera terrains I. Ramea *, D.1.. Turcatte Department of Geology, University of California Davis, One Shields Avenue, Davis, 01. 95616-8605, US4 ABSTRACT We propose that tessera terrains on Venus represent continental crust that does not participate in the periodic recycling of the lithosphere through global subduction events. We have studied the force balance on the boundary of a continental area that survives a global subduction event using an analytical model. In the proposed model, the ratio between the crus tal and litho spheric mantle thicknesses controls the force balance. If the crust thickness is less than � 2/5 of the lithospheric mantle thickness, the continental area will be compressed, but if the crus tal thickness is higher than � 2/5 of the lithospheric mantle thickness, the continental area will spread out and collapse. Consequently, if the lithospheric mantle beneath a continental Keywords: region is delaminated during a giobal subduction event, the continent will collapse generating tessera inliers crustal plateau dominated by extensional tectonics. But if a significant portion of lithospheric mantle remains, then the continental crust continental area will be compressed generating a plateau by crustal shortening. The observed plateau heights global subduction event can be explained by this model, a "'2 km height plateau can be generated by a lithospheric mantle thickness tessera terrain of 40 km while a "'4 km height plateau can be generated by a 90 km thick lithospheric mantle. We have Venus modelled this crustal thickening of a continental area by tectonic contraction using a thin viscous sheet approach with a Newtonian viscosity for the crust.
    [Show full text]
  • The Earth-Based Radar Search for Volcanic Activity on Venus
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2339.pdf THE EARTH-BASED RADAR SEARCH FOR VOLCANIC ACTIVITY ON VENUS. B. A. Campbell1 and D. B. Campbell2, 1Smithsonian Institution Center for Earth and Planetary Studies, MRC 315, PO Box 37012, Washington, DC 20013-7012, [email protected]; 2Cornell University, Ithaca, NY 14853. Introduction: Venus is widely expected to have geometry comes from shifts in the latitude of the sub- ongoing volcanic activity based on its similar size to radar point, which spans the range from about 8o S Earth and likely heat budget. How lithospheric (2017) to 8o N (2015). Observations in 1988, 2012, and thickness and volcanic activity have varied over the 2020 share a similar sub-radar point latitude of ~3o S. history of the planet remains uncertain. While tessera Coverage of higher northern and southern latitudes may highlands locally represent a period of thinner be obtained during favorable conjunctions (Fig. 1), but lithosphere and strong deformation, there is no current the shift in incidence angle must be recognized in means to determine whether they formed synchronously analysis of surface features over time. The 2012 data on hemispheric scales. Understanding the degree to were collected in an Arecibo-GBT bistatic geometry which mantle plumes currently thin and uplift the crust that led to poorer isolation between the hemispheres. to create deformation and effusive eruptions will better inform our understanding of the “global” versus Searching for Change. Ideally, surface change “localized” timing of heat transport. Ground-based detection could be achieved by co-registering and radar mapping of one hemisphere of Venus over the past differencing any pair of radar maps.
    [Show full text]
  • Testing Evolutionary Models for Venus with the DAVINCI+ Mission
    EPSC Abstracts Vol. 14, EPSC2020-534, 2020 https://doi.org/10.5194/epsc2020-534 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Venus, Earth's divergent twin?: Testing evolutionary models for Venus with the DAVINCI+ mission Walter S. Kiefer1, James Garvin2, Giada Arney2, Sushil Atreya3, Bruce Campbell4, Valeria Cottini2, Justin Filiberto1, Stephanie Getty2, Martha Gilmore5, David Grinspoon6, Noam Izenberg7, Natasha Johnson2, Ralph Lorenz7, Charles Malespin2, Michael Ravine8, Christopher Webster9, and Kevin Zahnle10 1Lunar and Planetary Institute/USRA, Houston, Texas, United States of America ([email protected]) 2NASA Goddard Space Flight Center, Greenbelt MD USA 3Planetary Science Laboratory, University of Michigan, Ann Arbor MI USA 4Center for Earth and Planetary Studies, Smithsonian Institution, Washington DC USA 5Dept. of Earth and Environmental Science, Wesleyan University, Middletown CT USA 6Planetary Science Institute, Tucson AZ USA 7Applied Physics Lab, Johns Hopkins University, Laurel MD USA 8Malin Space Science Systems, San Diego CA USA 9Jet Propulsion Laboratory, California Insitute of Technology, Pasadena CA USA 10NASA Ames Research Center, Moffet Field CA USA Understanding the divergent evolution of Venus and Earth is a fundamental problem in planetary science. Although Venus today has a hot, dry atmosphere, recent modeling suggests that Venus may have had a clement surface with liquid water until less than 1 billion years ago [1]. Venus today has a nearly stagnant lithosphere. However, Ishtar Terra’s folded mountain belts, 8-11 km high, morphologically resemble Tibet and the Himalaya mountains on Earth and apparently require several thousand kilometers of surface motion at some time in Venus’s past.
    [Show full text]
  • 18Th Meeting of the Venus Exploration Analysis Group (Vexag)
    18TH MEETING OF THE VENUS EXPLORATION ANALYSIS GROUP (VEXAG) Program and Abstracts LPI Contribution No. 2356 18th Meeting of the Venus Exploration Analysis Group November 16–17, 2020 Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Noam Izenberg Johns Hopkins Applied Physics Laboratory Darby Dyar Mount Holyoke College Science Organizing Committee Darby Dyar Planetary Science Institute, Mount Holyoke College Noam Izenberg JHU Applied Physics Laboratory Megan Andsell NASA Headquarters Natasha Johnson NASA Goddard Jennifer Jackson California Institute of Technology Jim Cutts Jet Propulsion Laboratory Tommy Thompson Jet Propulsion Laboratory Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Compiled in 2020 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 This material is based upon work supported by NASA under Award No. 80NSSC20M0173. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. ISSN No. 0161-5297 Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/vexag2020/ Abstracts can be cited as Author A.
    [Show full text]
  • New Arecibo High-Resolution Radar Images of Venus: Preliminary Interpretation D
    142 LPSC XX New Arecibo High-Resolution Radar Images of Venus: Preliminary Interpretation D. B. carnpbelll, A. A. I4ine2, J. K. IXarmon2, D. A. senske3, R. W. Vorder ~rue~~e~,P. C. ish her^, S. rank^, and J. W. ~ead~1) National Astronomy and Ionosphere Center, Cornell University, Ithaca NY 14853. 2) National Astronomy and Ionosphere Center, Arecibo Observatory, Arecibo, Puerto Rico 00612. 3) Department of Geological Sciences, Brown University, Providence, RI 02912. btroduction: New observations of Venus with the Arecibo radar (wavelength 12.6 cm) in the summer of 1988 will provide images at 1.5-2.5 km resolution over the longitude range 260' to 20" in the latitude bands 12' N to 70' N and 12' S to 70' sl. In this paper we report on a preliminary analysis of images of low northern and southern latitudes including Alpha Regio, eastern Beta Regio, and dark-halo features in the lowland plains of Guinevere Planitia. Crater distributions and the locations of the Venera 9 and 10 landing sites are also examined. Al~haReeio; (So, 25" S) is a 1000 x 1600 km upland region located south of Pioneer-Venus and Venera 15-16 radar image coverage. It was the first area of anomalously high radar return discovered in the early 1960's by Earth- based radars (hence the name). Recent comparisons of Pioneer-Venus altirnetry, reflectivity and r.m.s. slope data with different terrain types apparent in the Venera 15/16 images indicate that Alpha Regio has many similarities with te~sera~-~.The new high resolution images (Fig.
    [Show full text]
  • Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images ⇑ Bruce A
    Icarus 250 (2015) 123–130 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images ⇑ Bruce A. Campbell a, , Donald B. Campbell b, Gareth A. Morgan a, Lynn M. Carter c, Michael C. Nolan d, John F. Chandler e a Smithsonian Institution, MRC 315, PO Box 37012, Washington, DC 20013-7012, United States b Cornell University, Department of Astronomy, Ithaca, NY 14853-6801, United States c NASA Goddard Space Flight Center, Mail Code 698, Greenbelt, MD 20771, United States d Arecibo Observatory, HC3 Box 53995, Arecibo 00612, Puerto Rico e Smithsonian Astrophysical Observatory, MS-63, 60 Garden St., Cambridge, MA 02138, United States article info abstract Article history: We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had Received 12 June 2014 similar viewing geometries. Processing of both datasets with better image focusing and co-registration Revised 14 November 2014 techniques, and summing over multiple looks, yields maps with 1–2 km spatial resolution and improved Accepted 24 November 2014 signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are Available online 5 December 2014 unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain Keywords: a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest Venus, surface for future spacecraft landings.
    [Show full text]
  • Planetary & Solar System Sciences
    EGU General Assembly 2012 EGU General Assembly 2012 Programme Group Programme PS – Planetary & Solar System Sciences Monday, 23 April ........................................................................................................................................................................ 2 PS1.1 ........................................................................................................................................................................................ 2 PS2.2 ........................................................................................................................................................................................ 2 GD1.1/PS2.7 .............................................................................................................................................................................. 3 PS3.3 ........................................................................................................................................................................................ 4 PS5.3/ST6.4 ............................................................................................................................................................................... 4 ST2.4/PS5.4 ............................................................................................................................................................................... 6 Tuesday, 24 April ......................................................................................................................................................................
    [Show full text]
  • Topographic Comparisons of Uplift Features on Venus and Earth: Implications for Venus Tectonics ⇑ Paul R
    Icarus 217 (2012) 524–533 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Topographic comparisons of uplift features on Venus and Earth: Implications for Venus tectonics ⇑ Paul R. Stoddard a, , Donna M. Jurdy b a Dept. of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115-2854, United States b Dept. of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208-2150, United States article info abstract Article history: Venus and Earth display different hypsography. We use topographic profiles to search for well-under- Available online 12 September 2011 stood terrestrial analogs to venusian features. Specifically, by using cross-correlation, we correlate aver- age profiles for terrestrial rifts (slow and fast, ‘‘ultra-slow,’’ incipient and inactive) and also hotspots Keywords: (oceanic and continental) with those for venusian chasmata and regiones, to draw inferences as to the Venus, Surface processes responsible for shaping Venus’ surface. Correlations tend to improve with faster spreading Earth rates; Venus’ correlations rank considerably lower than terrestrial ones, suggesting that if chasmata Tectonics are analogous to terrestrial spreading centers, then spreading on Venus barely attains ultra-slow rates. Individual features’ normalized average profiles are correlated with profiles of other such features to establish the degree of similarity, which in turn allows for the construction of a covariance matrix. Prin- cipal component analysis of this covariance matrix shows that Yellowstone more strongly resembles Atla, Beta and W. Eistla regiones than it does the terrestrial oceanic hotspots, and that venusian chasmata, especially Ganis, most closely resemble the ultra-slow spreading Arctic ridge.
    [Show full text]