Dinosaur Body Temperatures: the Occurrence of Endothermy and Ectothermy

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaur Body Temperatures: the Occurrence of Endothermy and Ectothermy Paleobiology, 29(1), 2003, pp. 105±122 Dinosaur body temperatures: the occurrence of endothermy and ectothermy Frank Seebacher Abstract.ÐDespite numerous studies, the thermal physiology of dinosaurs remains unresolved. Thus, perhaps the commonly asked question whether dinosaurs were ectotherms or endotherms is inappropriate, and it is more constructive to ask which dinosaurs were likely to have been en- dothermic and which ones ectothermic. Field data from crocodiles over a large size range show that body temperature ¯uctuations decrease with increasing body mass, and that average daily body temperatures increase with increasing mass. A biophysical model, the biological relevance of which was tested against ®eld data, was used to predict body temperatures of dinosaurs. However, rather than predicting thermal relations of a hypothetical dinosaur, the model considered correct paleogeographical distribution and climate to predict the thermal relations of a large number of dinosaurs known from the fossil record (.700). Many dinosaurs could have had ``high'' ($308C) and stable (daily amplitude #28C) body temperatures without metabolic heat production even in winter, so it is unlikely that selection pressure would have favored the evolution of elevated resting metabolic rates in those species. Recent evidence of ontogenetic growth rates indicates that even the juveniles of large species (3000±4000 kg) could have had biologically functional body temper- ature ranges during early development. Smaller dinosaurs (,100 kg) at mid to high latitudes (.458) could not have had high and stable body temperatures without metabolic heat production. How- ever, elevated metabolic rates were unlikely to have provided selective advantage in the absence of some form of insulation, so probably insulation was present before endothermy evolved, or else it coevolved with elevated metabolic rates. Superimposing these ®ndings onto a phylogeny of the Dinosauria suggests that endothermy most likely evolved among the Coelurosauria and, to a lesser extent, among the Hypsilophodontidae, but not among the Stegosauridae, Nodosauridae, Anky- losauridae, Hadrosauridae, Ceratopsidae, Prosauropoda, and Sauropoda. Frank Seebacher. School of Biological Sciences, A08, The University of Sydney, New South Wales 2006, Australia. E-mail: [email protected] Accepted: 20 June 2002 Introduction species (Paladino et al. 1990, 1997) to learn about dinosaur body temperatures (T ). Heat The thermal physiology of dinosaurs has b transfer relations between animals and their been the subject of much discussion for de- environment are extremely complex, and the cades (Colbert et al. 1946; Bakker 1972; Farlow exact value of some parameters, such as con- 1990; Seebacher et al. 1999; O'Connor and Dod- son 1999). Much of the debate has focused on vection coef®cients, can only be determined the question of whether dinosaurs were endo- empirically, as their complexity precludes the- therms or ectotherms. This, however, is not the oretical derivation (Mitchell 1976; Incropera appropriate question to ask. Given the enor- and DeWitt 1996). Hence, biophysical model- mous diversity of the Dinosauria, both in space ing of Tb in relation to environmental condi- and time, all dinosaurs are unlikely to have tions requires a number of simplifying as- possessed the same physiological make-up. sumptions and approximations (O'Connor Hence, it is more constructive to ask which di- and Spotila 1992). Predictions from theoretical nosaurs would have gained a selective advan- models, therefore, are informative only if their tage from elevated metabolic rate and its atten- underlying assumptions are valid in the bio- dant heat production, and which dinosaurs logical context under consideration, and the would have bene®ted more from ectothermy? only way to test the validity of theoretical Past research on dinosaur thermal physiol- models is to compare their predictions against ogy has used biophysical modeling (Spotila et empirical data. A major limitation of most bio- al. 1973; Dunham et al. 1989; O'Connor and physical studies of dinosaur Tb is that the rel- Dodson 1999) and comparisons with extant evance of their predictions has not been tested, q 2003 The Paleontological Society. All rights reserved. 0094-8373/03/2901-0016/$1.00 106 FRANK SEEBACHER so that the results must be treated as specu- edge gained from other animals, such as tur- lative. tles and elephants, will be the best approach Comparisons with extant species are poten- to advance knowledge in this ®eld. tially useful, but the value of such compari- It was the aim of this study to explore body sons depends to a large extent on the choice of temperatures (Tb) of a large sample of dino- the model species, because no modern ani- saurs represented in the fossil record under the mals are quite like dinosaurs. Elephants, conditions prevalent at the time and place which have been considered an endothermic where they lived, in order to identify those model for dinosaurs (Paladino et al. 1997), can groups in which selection pressures favoring reach body mass comparable to medium- endothermy would have been greatest or least. sized dinosaurs, so studying elephants can re- The study uses crocodiles as a ``null-model,'' veal some of the challenges that large terres- and crocodiles are assumed to represent the trial animals must have faced. However, ele- simplest physiological and behavioral con®g- phants do not represent ``typical'' endo- uration possible for dinosaurs. The hypothesis therms. Their great mass places elephants at tested here is that as crocodile-like ectotherms one extreme of endothermic radiation, and that thermoregulated behaviorally by moving their morphological and behavioral features between heating and cooling environments that have evolved in order to dissipate heat (Seebacher and Grigg 1997; Grigg et al. 1998; (Wright 1984; Williams 1990) bear testimony Seebacher 1999) dinosaurs could have had high that endothermy in large terrestrial animals is and stable Tb (see below for de®nitions). Test- the exception rather than the rule. Because ing this hypothesis will reveal which dino- they reveal that it was of selective advantage saurs, living at a particular place and time, may for large endotherms to evolve heat-dissipat- have had high and stable Tb with an ectother- ing mechanisms, elephants are interesting, mic physiological make-up, so that selection but it would be illogical to use an endothermic pressures favoring endothermy would have exception to establish a rule for dinosaurs. been comparatively weak in those species, and, Similarly, marine turtles (Paladino et al. vice versa, which dinosaurs were unlikely to 1990) are atypical reptiles because they are have been simple ectotherms. wholly aquatic and the selection pressures Endothermy may not have evolved as a re- that acted to produce modern turtle species sult of selection pressures acting directly on must have been quite different from those that thermoregulatory ability. Rather, it has been acted on terrestrial species. Nonetheless, the suggested that selection pressures favored fact that leatherback turtles are able to main- high levels of activity (Bennett and Ruben tain Tb elevated above water temperatures (Pa- 1979; Hayes and Garland 1995) or increased ladino et al. 1990) is of interest and bears tes- capability for parental care (Farmer 2000; Ko- timony to the diversity of thermal relations teja 2000). In either scenario, high maximal among reptiles. aerobic metabolic rates would have been se- Several authors have used crocodilians as lected for and the increase in resting metabolic models to learn about dinosaur thermal rela- rate, which characterizes endothermy, would tions (Colbert et al. 1946; Spotila et al. 1973; have been a correlated response. However, Seebacher et al. 1999). Crocodiles are probably aerobic metabolic rates are dependent on the the most appropriate models for dinosaurs be- thermal sensitivity of underlying biochemical cause they are the last living non-avian archo- processes (Crawford et al. 1999; St. Pierre et al. saurs and are likely to be similar to the type 1998), so thermoregulation and high aerobic of basal archosaur from which dinosaurs metabolic rates cannot be viewed in isolation. evolved (Parrish 1997). In addition, crocodil- Moreover, animals that are ``warm'' without ians are the largest extant reptiles with an possessing metabolic rates typical of modern enormous ontogenetic size range. However, endotherms could also maximize aerobic met- this is not to say that crocodilians are the only abolic rates, because their Tb ranges would be useful model. Crocodilians may be the single optimal for related biochemical processes. most useful model, but a synthesis of knowl- Hence, it would be wrong to view endothermy DINOSAUR BODY TEMPERATURES 107 as ``superior'' to ectothermy, because both Materials and Methods have their advantages and disadvantages Crocodile Field Data. Field data and sam- (Pough 1980); in addition, selection pressures pling methods were reported previously (See- favoring endothermy would be relatively bacher and Grigg 1997; Grigg et al. 1998). Brief- weak in animals that could be ``warm'' with- ly, 11 free-ranging crocodiles (Crocodylus po- out incurring the high energetic cost of ele- rosus; 32±1010 kg) were studied in both winter vated, endothermic metabolic rates. and summer under seminatural conditions at In many respects endothermy and ectother- Edward River Crocodile Farm on Cape York my differ in degree
Recommended publications
  • 1. Adaptation and the Evolution of Physiological Characters
    Bennett, A. F. 1997. Adaptation and the evolution of physiological characters, pp. 3-16. In: Handbook of Physiology, Sect. 13: Comparative Physiology. W. H. Dantzler, ed. Oxford Univ. Press, New York. 1. Adaptation and the evolution of physiological characters Department of Ecology and Evolutionary Biology, University of California, ALBERT F. BENNETT 1 Irvine, California among the biological sciences (for example, behavioral CHAPTER CONTENTS science [I241). The Many meanings of "Adaptationn In general, comparative physiologists have been Criticisms of Adaptive Interpretations much more successful in, and have devoted much more Alternatives to Adaptive Explanations energy to, pursuing the former rather than the latter Historical inheritance goal (37). Most of this Handbook is devoted to an Developmentai pattern and constraint Physical and biomechanical correlation examination of mechanism-how various physiologi- Phenotypic size correlation cal systems function in various animals. Such compara- Genetic correlations tive studies are usually interpreted within a specific Chance fixation evolutionary context, that of adaptation. That is, or- Studying the Evolution of Physiological Characters ganisms are asserted to be designed in the ways they Macroevolutionary studies Microevolutionary studies are and to function in the ways they do because of Incorporating an Evolutionary Perspective into Physiological Studies natural selection which results in evolutionary change. The principal textbooks in the field (for example, refs. 33, 52, 102, 115) make explicit reference in their titles to the importance of adaptation to comparative COMPARATIVE PHYSIOLOGISTS HAVE TWO GOALS. The physiology, as did the last comparative section of this first is to explain mechanism, the study of how organ- Handbook (32). Adaptive evolutionary explanations isms are built functionally, "how animals work" (113).
    [Show full text]
  • Grand Challenges in Comparative Physiology
    GrandChallengesinComparative Physiology: Integration Across Disciplines and Across Levels of Biological Organization Donald L. Mykles,1,* Cameron K. Ghalambor,* Jonathon H. Stillman†,‡ and Lars Tomanekx *Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; †Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA; ‡Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94703, USA; xCenter for Coastal Marine Sciences and Environmental Proteomics Laboratory, Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA Introduction the sixth paper in the ‘‘Grand understanding of the molecular mech- Challenges’’ series, which offers the anisms of cellular processes. The induc- Schwenk et al. (2009) provided an over­ view from comparative physiology. tive approach depends on observation view of five major challenges in organ- In this article, we expand upon three to develop universal principles. Charles ismal biology: (1) understanding the major challenges facing comparative Darwin, after all, used this approach to organism’s role in organism–environ­ physiology in the 21st century: vertical develop the theory of natural selection. ment linkages; (2) utilizing the func­ integration of physiological processes All too often these approaches are tional diversity of organisms; (3) across organizational levels within or- integrating living and physical systems viewed as mutually exclusive, when, in ganisms, horizontal integration of analysis; (4) understanding how fact, they are complementary and are genomes produce organisms; and (5) physiological processes across organ- used, to varying extents, by most biol­ understanding how organisms walk isms within ecosystems, and temporal ogists working today. Yet, we have the tightrope between stability and integration of physiological pro- fallen short of full integration across change.
    [Show full text]
  • Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6 1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America, 2 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, Mu¨nchen, Germany, 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China, 4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 5 Paleontological Institute, Shenyang Normal University, Shenyang, China, 6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America Abstract Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel- fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow.
    [Show full text]
  • Study Guide for Human Anatomy & Physiology 10Th
    STUDY GUIDE FOR HUMAN ANATOMY & PHYSIOLOGY 10TH EDITION PDF, EPUB, EBOOK Elaine N Marieb | 9780133999310 | | | | | Study Guide for Human Anatomy & Physiology 10th edition PDF Book An Illustrated Guide. This area of the backbone curves slightly inward and connects to the lower part of the rib cage. The vertebrae of the spinal column are held together by a series of ligaments and muscles. Anatomy is the study of the structure of living organisms. Helmenstine holds a Ph. Studying anatomy involves lots of memorization. Physiology may be either comparative physiology or human physiology. Explore resources and articles related to the human body's shape and form, including organs, skeleton, muscles, blood vessels, and more. This is a flexible part of the spine that is more mobile than the rest of the backbone. ThoughtCo uses cookies to provide you with a great user experience. Anatomy Epithelial Tissue: Beyond Skin. Anatomy Male and Female Reproductive Systems. To really make sure you comprehend the material, you must constantly review what you have learned. Anatomy 3 Types of Respiration. Blame Your Amygdala in Your Brain. Anatomy Heart Valves and Heart Sounds. Organ systems are formed from groups of organs and tissues working in conjunction to perform necessary functions for the survival of the organism. The lower part of the back is known as the lumbar section. Anatomy Osteology: Definition and Applications. What you'll learn Skip What you'll learn. This anatomy portion of the course is typically comparative, where students examine homologous and analogous structures in a variety of organisms e. Anatomy Explore the Anatomy of the Stomach.
    [Show full text]
  • New Insights Into the Biology of Theropod Dinosaurs
    AN ABSTRACT OF THE DISSERTATION OF Devon E. Quick for the degree of Doctor of Philosophy in Zoology presented on December 1, 2008. Title: New Insights into the Biology of Theropod Dinosaurs. Abstract approved: __________________________________________________________ John A. Ruben There is little, if any, direct fossil evidence of the cardiovascular, respiratory, reproductive or digestive biology of dinosaurs. However, a variety of data can be used to draw reasonable inferences about the physiology of the carnivorous theropod dinosaurs (Archosauria: Theropoda). Extant archosaurs, birds and crocodilians, possess regionally differentiated, vascularized and avascular lungs, although the crocodilian lung is less specialized than the avian lung air-sac system. Essential components of avian lungs include the voluminous, thin-walled abdominal air-sacs which are ventilated by an expansive sternum and specialized ribs. Inhalatory, paradoxical collapse of these air-sacs in birds is prevented by the synsacrum, pubes and femoral-thigh complex. The present work examines the theropod abdomen and reveals that it lacked sufficient space to have housed similarly enlarged abdominal air-sacs as well as the skeleto-muscular modifications requisite to have ventilated them. There is little evidence to indicate that theropod dinosaurs possessed a specialized bird-like, air-sac lung and, by extension, that theropod cardiovascular function was any more sophisticated than that of crocodilians. Conventional wisdom holds that theropod visceral anatomy was similar to that in birds. However, exceptional soft tissue preservation in Scipionyx samnitcus (Theropoda) offers rare evidence of in situ theropod visceral anatomy. Using computed tomography, close comparison of Scipionyx with gastrointestinal morphology in crocodilians, birds and lizards indicates that theropod visceral structure and “geography” was strikingly similar only to that in Alligator.
    [Show full text]
  • Redalyc.How General Are Current Comparative Physiology Studies? A
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile NESPOLO, ROBERTO F.; ARTACHO, PAULINA How general are current comparative physiology studies? A quantitative review Revista Chilena de Historia Natural, vol. 78, núm. 2, 2005, pp. 313-321 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944274015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative QUANTITATIVE REVIEW OF COMPARATIVE PHYSIOLOGYRevista Chilena de Historia Natural313 78: 313-321, 2005 How general are current comparative physiology studies? A quantitative review ¿Cuán general son los estudios en fisiología comparada actualmente? Una revisión cuantitativa ROBERTO F. NESPOLO* & PAULINA ARTACHO Instituto de Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile * Corresponding author: e-mail: [email protected] ABSTRACT Comparative animal physiology and related fields (named here “ecological physiology”) are entering a time of synthesis in the form of a quest for large scales patterns. However, these new approaches need to be supplied by great amounts of data, representative of existing animal forms. We tested whether this is the case by performing a quantitative survey in the most important media for ecological physiologists. We found that ecological physiologists have clear biases toward some taxonomic classes, which represent one third of existing animal phyla. Non–taxonomic characterization of animals (endothermy/ectothermy, aquatic/ terrestrial), however, produced a more balanced picture.
    [Show full text]
  • Phylogenetic Approaches in Comparative Physiology Theodore Garland, Jr1, Albert F
    The Journal of Experimental Biology 208, 3015-3035 3015 Published by The Company of Biologists 2005 doi:10.1242/jeb.01745 Commentary Phylogenetic approaches in comparative physiology Theodore Garland, Jr1, Albert F. Bennett2,* and Enrico L. Rezende1 1Department of Biology, University of California, Riverside, CA 92521, USA and 2Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA *Author for correspondence (e-mail: [email protected]) Accepted 13 June 2005 Summary Over the past two decades, comparative biological and Monte Carlo computer simulations). We discuss when analyses have undergone profound changes with the and how to use phylogenetic information in comparative incorporation of rigorous evolutionary perspectives and studies and provide several examples in which it has been phylogenetic information. This change followed in large helpful, or even crucial, to a comparative analysis. We also part from the realization that traditional methods of consider some difficulties with phylogenetically based statistical analysis tacitly assumed independence of all statistical methods, and of comparative approaches in observations, when in fact biological groups such as general, both practical and theoretical. It is our personal species are differentially related to each other according to opinion that the incorporation of phylogeny information their evolutionary history. New phylogenetically based into comparative studies has been highly beneficial, not analytical methods were then rapidly developed, only because it can improve the reliability of statistical incorporated into ‘the comparative method’, and applied inferences, but also because it continually emphasizes the to many physiological, biochemical, morphological and potential importance of past evolutionary history in behavioral investigations. We now review the rationale for determining current form and function.
    [Show full text]
  • Biology 4120 – Comparative Physiology, Spring/Summer 2019
    Biology 4120 – Comparative Physiology, Spring/Summer 2019 The objectives of the course are to expand your knowledge of the principles of physiology to describe the unity and diversity of life. To meet this objective you will read the textbook, study articles from the primary literature and discuss them in class, design experiments, work through problem sets and other activities, discuss physiology, perform labs and write an independent literature research project. Your success at meeting the objectives will be evaluated by exams, homework, in-class activities, assignments, discussions and lab work. The three topics of the semester will be neurophysiology, exercise physiology and reproductive physiology. Content Learning Objectives Students will be able to: 1. describe how an organism’s physiology contributes to its fitness in its environment and relates to its place on the evolutionary tree of life. 2. describe how biological structures affect function, from the molecular to the organ-system level. 3. describe how physiological control systems sense and process information to regulate physiology. 4. describe how physiological solutions optimize energy use, or not. 5. describe how complex systems are essential for physiology. Skill Learning Objectives Students will be able to: 1. clearly describe principles of physiology with examples from many types of organisms. 2. interpret data from the primary physiology literature, including describing the hypothesis, approach, results and conclusions of a set of experiments. 3. evaluate physiology experiments from the primary literature, including identifying control experiments, and whether the results support the authors’ conclusions. 4. design a physiological experiment, and describe the hypothesis, approach to test the hypothesis and the results that would support or refute the hypothesis 5.
    [Show full text]
  • Models and Instruments in the Development of Electrophysiology, 1845-1912
    TIMOTHY LENOIR Models and instruments in the development of electrophysiology, 1845-1912 1. INTRODUCTION THE NINETEENTH CENTURY witnessed the transformation of physiology from a discipline characterized by theories based on qualitative, descriptive accounts derived mainly from indirect sources, such as comparative anatomy, into a discipline characterized by theories based on controlled experimental investigations of processes transpiring directly within the organism. Two lines of inquiry helped to bring about this transformation of the field. Some physiologists, particularly the French school of Magendie and Claude Bernard, sought to obtain operative control over the functioning of the organ through vivisection and the application of chemical or physical means. Others, particularly German physiologists, attempted to follow the course of physical and chemical changes during the functioning of isolated organs by means of measurements by appropriate instruments. The expressed objective of this second approach to physiology was the development of quantitative theories of the chemical and physical processes underlying specific organ function. Work in electrophysiology, particularly the research efforts spanning the period between 1845 and 1912, was the most successful example of this approach. Work in electrophysiology dates from the publication of Galvani’s researches on decapitated frogs in 1791 and the ensuing debate with Volta over the nature of "animal electricity." Their investigations were deepened and extended by Humboldt, Ritter, Nobili, Matteucci, and others. The results were qualitative and phenomenological. Not until the work of Emil DuBois-Reymond and Hermann Helmholtz *University of Pennsylvania, Department of History and Sociology of Science, 215 South 34th Street, Philadelphia, PA 19104-6310. The research upon which this paper has been based has been supported by a grant from the National Science Foundation (SES-8204962).
    [Show full text]
  • Fish Physiology and Ecology: the Contribution of the Leigh Laboratory to the Collision of Paradigms
    Fish physiology and ecology: the contribution of the Leigh Laboratory to the collision of paradigms Author Pankhurst, NW, Herbert, NA Published 2013 Journal Title New Zealand Journal of Marine and Freshwater Research DOI https://doi.org/10.1080/00288330.2013.808236 Copyright Statement © 2013 Taylor & Francis. This is an electronic version of an article published in New Zealand Journal of Marine and Freshwater Research, Volume 47, Issue 3, 2013, Pages 392-408. New Zealand Journal of Marine and Freshwater Research is available online at: http:// www.tandfonline.com with the open URL of your article. Downloaded from http://hdl.handle.net/10072/56178 Griffith Research Online https://research-repository.griffith.edu.au Fish physiology and ecology: the contribution of the Leigh Laboratory to the collision of paradigms. N W Pankhursta and N A Herbertb aAustralian Rivers Institute, Griffith University, Gold Coast, Qld 4222 Australia; bLeigh Marine Laboratory, Institute of Marine Science, The University of Auckland, Warkworth 0941, New Zealand The often pragmatic division of studies of function (physiology), and the regulation of distribution and abundance of organisms (ecology), as laboratory and field studies respectively, can create an unhelpful intellectual division that runs the risk of ignoring the interaction of physiology, behaviour and environment that regulates the lives of animals in the wild. This review examines the historical and current contribution of ecophysiological research conducted from the University of Auckland’s Leigh Laboratory in bridging these paradigms, and generating new insights into animal function and community organisation. The assessment focusses on endocrine control processes, and metabolic and behavioural responses of fish to artificial and natural stressors, and examines tracks of future research needed to underpin understanding of likely effects of predicted environmental change on individuals and populations.
    [Show full text]
  • Phylogenetic Analyses: Comparing Species to Infer Adaptations and Physiological Mechanisms Enrico L
    P1: OTA/XYZ P2: ABC JWBT335-c100079 JWBT335/Comprehensive Physiology November 1, 2011 18:56 Printer Name: Yet to Come Phylogenetic Analyses: Comparing Species to Infer Adaptations and Physiological Mechanisms Enrico L. Rezende*1 and Jose´ Alexandre F. Diniz-Filho2 ABSTRACT Comparisons among species have been a standard tool in animal physiology to understand how organisms function and adapt to their surrounding environment. During the last two decades, conceptual and methodological advances from different fields, including evolutionary biology and systematics, have revolutionized the way comparative analyses are performed, resulting in the advent of modern phylogenetic statistical methods. This development stems from the realiza- tion that conventional analytical methods assume that observations are statistically independent, which is not the case for comparative data because species often resemble each other due to shared ancestry. By taking evolutionary history explicitly into consideration, phylogenetic statistical methods can account for the confounding effects of shared ancestry in interspecific comparisons, improving the reliability of standard approaches such as regressions or correlations in compara- tive analyses. Importantly, these methods have also enabled researchers to address entirely new evolutionary questions, such as the historical sequence of events that resulted in current patterns of form and function, which can only be studied with a phylogenetic perspective. Here, we pro- vide an overview of phylogenetic approaches and their importance for studying the evolution of physiological processes and mechanisms. We discuss the conceptual framework underlying these methods, and explain when and how phylogenetic information should be employed. We then outline the difficulties and limitations inherent to comparative approaches and discuss po- tential problems researchers may encounter when designing a comparative study.
    [Show full text]
  • Thermal Environments of Dinosaur Nestlings: Irnplications for Endothermy and Insulation
    18 Thermal environments of dinosaur nestlings: Irnplications for endothermy and insulation GREGORY S. PAUL Abstract ronrnent in hadrosaur, hypsilophodont and small thero- Very small, altricial hadrosaur nestlings probably lived pod nests (Horner & Makela, 1979; Homer, 1982, 1984, in open nests exposed to the weather. To survive and grow 1987, 1988; Homer & Gorman, 1988; Homer & Weis- rapidly.theyneeded to be insulated endothermichomeotherms. hampel, 1988; Coombs, 1989; Kurzanov & Mikhailov, Altricial young of small ornithopods and small. theropods 1989; Russell, 1989; Winkler & Murry, 1989; Currie, neededsimilar adaptations unless they were brooded by their 1990; Lambert, 1991; Homer & Currie, Chapter 21). parents.If the parents did brood the hatchlings, they probably neededan elevated metabolism and soft insulation to insulate Conditions within the open nests of these dinosaurs and warm their young. were probably often harsh. If this is correct, then the hatchlings that inhabited these nests may have needed "sophisticated" nonreptilian physiologies in order to Introduction thrive. Alternately, if small ornithopod and theropod The dominant and most abundant dinosaurs in adults were endothermic, then they could have used many Upper Cretaceous faunas are the large bodied their warm bodies to brood their young. duckbilled hadrosaurs. They grew from diminutive hatchlings with a body mass 5,000 to 10,000 times less than the adults (Fig . .18.1). These little creatures needed Thermal strategies of modern juvenile to thermoregulate, and how they managed this may have vertebrates as much to tell us about dinosaur physiology as do ·stud- Reptiles ies of the adults. Until recently a lack of juvenile spec- Reptilian hatchlings are precocial ectothermic imens, and the preferential interest shown for the adults heterotherms.
    [Show full text]