Genetic Fuzzy Attitude State Trajectory Optimization for a 3U Cubesat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Astronomy News KW RASC FRIDAY JANUARY 8 2021
Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals. -
Some Basic Response Felations for Reaction
SOME BASIC RESPONSE FELATIONS FOR REACTION-WHEEL ATTITUDE CONTROL Robert H. Cannon, Jr. Stanford University SOME BASIC FESPONSE RELATIONS * FOR FEACTION-WHEEL ATTITUDE CONTROL ** Robert H. Cannon, Jr. In many space vehicles, attitude control is best accomplished with combination systems using reaction wheels for momentum exchange and storage, plus jets for periodic momentum expulsion. Design of the reaction-wheel control involves evaluating the time history of system response to disturbances, many of which are either sinusoidal or impul- sive As an aid to such evaluation, this paper developes basic response relations--vehicle attitude, control torque, wheel motion, mechanical power, and energy consumption--for a vehicle subjected to both types of disturbance. Limiting values are calculated, assuming no standby losses. (The possibility of exchanging momentum with minimum energy loss is dis- cussed. ) The resulting normalized numerical relations are intended to li serve as an order-of magnitude basis for preliminary design estimates (r ‘.* and comparisons. c The response relations are derived first for a single-axis model. 2. Then their applicability to three-axis design is discussed. A control system is postulated which decouples vehicle dynamics so that vehicle motions are exactly single axis. (Some advantages of such control are discussed in References (2) and (3).) T’le resulting control-wheel motions may be complicated by gyroscopic coupling due to the spinning wheels. In control to a rotating reference extra power is consumed also because the spin momentum of the roll and yaw wheels must be passed back and forth from one to the other., Control systems which merely damp the natural motions of stable, local-vertical satellites can be smaller and simpler and use less power but, of course, furnish less precise control. -
Managing Momentum on the Dawn Low Thrust Mission. Brett A
Managing Momentum on the Dawn Low Thrust Mission. Brett A. Smith, Charles A. Vanelli, and Edward R. Swenka Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 [email protected], [email protected], [email protected] Abstract—Dawn is low-thrust interplanetary spacecraft en- 1. INTRODUCTION route to the asteroids Vesta and Ceres in an effort to better un- Dawn is NASA’s ninth Discovery class mission on a journey derstand the early creation of the solar system. After launch to orbit two asteroids in the region between Mars and Jupiter. in September 2007, the spacecraft will flyby Mars in February Scientists believe the asteroid belt provides similar conditions 2009 before arriving at Vesta in summer of 2011 and Ceres in as those found during the formation of Earth. Dawn will in- early 2015. Three solar electric ion-propulsion engines are vestigate Vesta and Ceres, which are two of the larger objects used to provide the primary thrust for the Dawn spacecraft. in the region, and each provides a unique view into the forma- Ion engines produce a very small but very efficient force, and tion of planet like objects. The Dawn mission is also unique therefore must be thrusting almost continuously to realize the as it will be the first spacecraft to orbit two extraterrestrial necessary change in velocity to reach Vesta and Ceres. planetary bodies [1]. Momentum must be carefully managed to ensure the space- Launching on September 27, 2007, the Dawn spacecraft be- craft has enough control authority to perform necessary turns gan its 8-year journey. -
Extraformational Sediment Recycling on Mars Kenneth S
Research Paper GEOSPHERE Extraformational sediment recycling on Mars Kenneth S. Edgett1, Steven G. Banham2, Kristen A. Bennett3, Lauren A. Edgar3, Christopher S. Edwards4, Alberto G. Fairén5,6, Christopher M. Fedo7, Deirdra M. Fey1, James B. Garvin8, John P. Grotzinger9, Sanjeev Gupta2, Marie J. Henderson10, Christopher H. House11, Nicolas Mangold12, GEOSPHERE, v. 16, no. 6 Scott M. McLennan13, Horton E. Newsom14, Scott K. Rowland15, Kirsten L. Siebach16, Lucy Thompson17, Scott J. VanBommel18, Roger C. Wiens19, 20 20 https://doi.org/10.1130/GES02244.1 Rebecca M.E. Williams , and R. Aileen Yingst 1Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA 2Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK 19 figures; 1 set of supplemental files 3U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA 4Department of Astronomy and Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, Arizona 86011, USA CORRESPONDENCE: [email protected] 5Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), M-108, km 4, 28850 Madrid, Spain 6Department of Astronomy, Cornell University, Ithaca, New York 14853, USA 7 CITATION: Edgett, K.S., Banham, S.G., Bennett, K.A., Department of Earth and Planetary Sciences, The University of Tennessee, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville, Tennessee 37996-1410, USA 8 Edgar, L.A., Edwards, C.S., Fairén, A.G., Fedo, C.M., National Aeronautics -
Characterization of Cubesat Reaction Wheel
Shields, J. et al. (2017): JoSS, Vol. 6, No. 1, pp. 565–580 (Peer-reviewed article available at www.jossonline.com) www.DeepakPublishing.com www. JoSSonline.com Characterization of CubeSat Reaction Wheel Assemblies Joel Shields, Christopher Pong, Kevin Lo, Laura Jones, Swati Mohan, Chava Marom, Ian McKinley, William Wilson and Luis Andrade Jet Propulsion Laboratory, California Institute of Technology Pasadena, California Abstract This paper characterizes three different CubeSat reaction wheel assemblies, using measurements from a six- axis Kistler dynamometer. Two reaction wheels from Blue Canyon Technologies (BCT) with momentum capac- ities of 15 and 100 milli-N-m-s, and one wheel from Sinclair Interplanetary with 30 milli-N-m-s were tested. Each wheel was tested throughout its specified wheel speed range, in 50 RPM increments. Amplitude spectrums out to 500 Hz were obtained for each wheel speed. From this data, the static and dynamic imbalances were calculated, as well as the harmonic coefficients and harmonic amplitudes. This data also revealed the various structural cage modes of each wheel and the interaction of the harmonics with these modes, which is important for disturbance modeling. Empirical time domain models of the exported force and torque for each wheel were constructed from water- fall plots. These models can be used as part of pointing simulations to predict CubeSat pointing jitter, which is currently of keen interest to the small satellite community. Analysis of the ASTERIA mission shows that the reaction wheels produce a jitter of approximately 0.1 arcsec RMS about the payload tip/tilt axes. Under the worst- case conditions of three wheels hitting a lightly damped structural resonance, the jitter can be as large as 8 arcsec RMS about the payload roll axis, which is of less importance than the other two axes. -
Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models by Rebecca A
Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models by Rebecca A. Masterson S.B. Mechanical Engineering (1997) Massachusetts Institute of Technology Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1999 @ Massachusetts Institute of Technology 1999. All rights reserved. A uthor .. .. .............................. A r Department of Mechanical Engineering May 24, 1999 C ertified by ......... ................................... David W. Miller Associate Professor Thesis Supervisor C ertified by ................................ Warren P. Seering Professor/Director Departmental Reader A ccepted by .............. .. .................. Am A. Sonin Chairman, Department Committee on Graduate Students pg 999 ENG LIBRARIES 2 Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models by Rebecca A. Masterson Submitted to the Department of Mechanical Engineering on May 24, 1999, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract Accurate disturbance models are necessary to predict the effects of vibrations on the perfor- mance of precision space-based telescopes, such as the Space Interferometry Mission (SIM) and the Next-Generation Space Telescope (NGST). There are many possible disturbance sources on such a spacecraft, but the reaction wheel assembly (RWA) is anticipated to be the largest. This thesis presents three types of reaction wheel disturbance models. The first is a steady-state empirical model that was originally created based on RWA vibration data from the Hubble Space Telescope (HST) wheels. The model assumes that the disturbances consist of discrete harmonics of the wheel speed with amplitudes proportional to the wheel speed squared. -
FY 2021 Mission Fact Sheets
FY 2021 Budget Request Deep Space Exploration Systems ($ Millions) FY 2019 FY 2020 FY 2021 FY 2022 FY 2023 FY 2024 FY 2025 Deep Space Exploration Systems 5,044.8 6,017.6 8,761.7 10,299.7 11,605.1 10,887.7 8,962.2 Exploration Systems Development 4,086.8 3,713.9 4,042.3 4,011.2 4,071.7 3,767.7 3,634.8 Orion Program 1,350.0 981.0 1,400.5 1,322.3 1,391.0 1,239.9 1,084.7 Space Launch System 2,144.0 2,203.3 2,257.1 2,238.3 2,249.2 2,091.8 2,087.1 Exploration Ground Systems 592.8 529.6 384.7 450.6 431.6 436.0 463.0 Exploration Research & Development 958.0 2,303.7 4,719.4 6,288.5 7,533.4 7,120.0 5,327.4 Advanced Exploration Systems 348.9 255.6 258.2 226.9 146.7 130.1 130.1 Adv Cislunar and Surface Capabilities 132.1 1,294.2 212.1 821.4 1,664.5 1,502.1 1,152.6 Gateway 332.0 613.9 739.3 712.1 481.8 376.5 476.4 Human Research Program 145.0 140.0 140.0 140.0 140.0 140.0 140.0 Human Landing System 0.0 0.0 3,369.8 4,388.1 5,100.4 4,971.3 3,428.3 Grand Total 5,044.8 6,017.6 8,761.7 10,299.7 11,605.1 10,887.7 8,962.2 The FY 2021 Budget for the Deep Space Exploration Systems account consists of two areas, Exploration Systems Development (ESD) and Exploration Research and Development (ERD), which provide for the development of systems and capabilities needed for human exploration of the Moon and Mars. -
SMSC March 2021 Newsletter
SMSC March 2021 Newsletter News This Month OSIRIS-REx seeks answers to the questions that are central to the human experience: Where did we come from? What is our destiny? Asteroids, the leftover debris from the solar system formation process, can answer these questions and teach us about the history of the sun and planets. OSIRIS-REx is scheduled to depart Bennu on May 10 and begin its two-year journey back to Earth. The spacecraft will deliver the samples of Bennu to the Utah Test and Training Range on Sep. 24, 2023. Credit: NASA/Goddard/University of Arizona March skies feature many dazzling stars and constellations but two of the brightest stars are the focus of our attention this month: Sirius and Procyon, the dog stars! Discover more about these two nearby star systems in this month's edition of Night Sky Notes! We have a slack channel - if you would like to be added to the channel to discuss ways to use NASA resources locally, or if you have questions about how we can help you meet your goals, please send an email to [email protected] or you can follow us on Facebook or Twitter. NASA NEWS Lucy Mission in Space Contest - deadline March 16, 2021 ● Middle school students will design a “mission patch” showing how the process of evolution on Earth may parallel the evolution of the solar system and explain the patch design with a poem or short essay. ● High school students will create a message to any future finders of the Lucy spacecraft, which will likely orbit the sun for more than one million years and could be recovered by our descendants in the distant future. -
FROM WET PLANET to RED PLANET Current and Future Exploration Is Shaping Our Understanding of How the Climate of Mars Changed
FROM WET PLANET TO RED PLANET Current and future exploration is shaping our understanding of how the climate of Mars changed. Joel Davis deciphers the planet’s ancient, drying climate 14 DECEMBER 2020 | WWW.GEOLSOC.ORG.UK/GEOSCIENTIST WWW.GEOLSOC.ORG.UK/GEOSCIENTIST | DECEMBER 2020 | 15 FEATURE GEOSCIENTIST t has been an exciting year for Mars exploration. 2020 saw three spacecraft launches to the Red Planet, each by diff erent space agencies—NASA, the Chinese INational Space Administration, and the United Arab Emirates (UAE) Space Agency. NASA’s latest rover, Perseverance, is the fi rst step in a decade-long campaign for the eventual return of samples from Mars, which has the potential to truly transform our understanding of the still scientifi cally elusive Red Planet. On this side of the Atlantic, UK, European and Russian scientists are also getting ready for the launch of the European Space Agency (ESA) and Roscosmos Rosalind Franklin rover mission in 2022. The last 20 years have been a golden era for Mars exploration, with ever increasing amounts of data being returned from a variety of landed and orbital spacecraft. Such data help planetary geologists like me to unravel the complicated yet fascinating history of our celestial neighbour. As planetary geologists, we can apply our understanding of Earth to decipher the geological history of Mars, which is key to guiding future exploration. But why is planetary exploration so focused on Mars in particular? Until recently, the mantra of Mars exploration has been to follow the water, which has played an important role in shaping the surface of Mars. -
Planets Days Mini-Conference (Friday August 24)
Planets Days Mini-Conference (Friday August 24) Session I : 10:30 – 12:00 10:30 The Dawn Mission: Latest Results (Christopher Russell) 10:45 Revisiting the Oort Cloud in the Age of Large Sky Surveys (Julio Fernandez) 11:00 25 years of Adaptive Optics in Planetary Astronomy, from the Direct Imaging of Asteroids to Earth-Like Exoplanets (Franck Marchis) 11:15 Exploration of the Jupiter Trojans with the Lucy Mission (Keith Noll) 11:30 The New and Unexpected Venus from Akatsuki (Javier Peralta) 11:45 Exploration of Icy Moons as Habitats (Athena Coustenis) Session II: 13:30 – 15:00 13:30 Characterizing ExOPlanet Satellite (CHEOPS): ESA's first s-class science mission (Kate Isaak) 13:45 The Habitability of Exomoons (Christopher Taylor) 14:00 Modelling the Rotation of Icy Satellites with Application to Exoplanets (Gwenael Boue) 14:15 Novel Approaches to Exoplanet Life Detection: Disequilibrium Biosignatures and Their Detectability with the James Webb Space Telescope (Joshua Krissansen-Totton) 14:30 Getting to Know Sub-Saturns and Super-Earths: High-Resolution Spectroscopy of Transiting Exoplanets (Ray Jayawardhana) 14:45 How do External Giant Planets Influence the Evolution of Compact Multi-Planet Systems? (Dong Lai) Session III: 15:30 – 18:30 15:30 Titan’s Global Geology from Cassini (Rosaly Lopes) 15:45 The Origins Space Telescope and Solar System Science (James Bauer) 16:00 Relationship Between Stellar and Solar System Organics (Sun Kwok) 16:15 Mixing of Condensible Constituents with H/He During Formation of Giant Planets (Jack Lissauer) -
NASA Sets Sights on Asteroid Exploration : Nature News & Comment
NASA sets sights on asteroid exploration Agency plans to launch a mission to visit the Trojan asteroids in 2021, and one to the metallic asteroid Psyche in 2023. Alexandra Witze 04 January 2017 NASA/JPL-Caltech An artist’s conception of the Psyche spacecraft, which will explore a metallic asteroid. NASA will send two spacecraft to explore asteroids in the hopes of revealing new information about the Solar System’s origins. Psyche will journey to what could be the metallic heart of a failed planet and Lucy will investigate the Trojan asteroids near Jupiter. The missions, announced on 4 January, are part of NASA’s Discovery Program for planetary exploration. They were shortlisted by NASA in September 2015 and have survived a final cut that eliminated two proposed missions to Venus — which has not seen a US planetary mission since Magellan launched in 1989. “What can I say? It’s deeply disappointing,” says Robert Grimm, a planetary scientist at the Southwest Research Institute in Boulder, Colorado, and chairman of a group that analyses Venus issues for NASA. “We want to make sure NASA continues to support high-level Venus activities.” Scheduled to launch in October 2021 and arrive at its first major target in 2027, Lucy will explore six of Jupiter’s Trojan asteroids, which are trapped in orbits ahead of and behind the giant planet. Named after the famous hominid fossil, the spacecraft will investigate the origins of the giant planets by looking at the fragments left over from their formation. “These small bodies really are the fossils of planet formation,” said Lucy principal investigator Hal Levison of the Southwest Research Institute, at a media teleconference.