Mars Reconnaissance Orbiter's High Resolution Imaging Science
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E05S02, doi:10.1029/2005JE002605, 2007 Click Here for Full Article Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) Alfred S. McEwen,1 Eric M. Eliason,1 James W. Bergstrom,2 Nathan T. Bridges,3 Candice J. Hansen,3 W. Alan Delamere,4 John A. Grant,5 Virginia C. Gulick,6 Kenneth E. Herkenhoff,7 Laszlo Keszthelyi,7 Randolph L. Kirk,7 Michael T. Mellon,8 Steven W. Squyres,9 Nicolas Thomas,10 and Catherine M. Weitz,11 Received 9 October 2005; revised 22 May 2006; accepted 5 June 2006; published 17 May 2007. [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering 1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire 1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines.
[Show full text]