Mouse Rhbdf2 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Rhbdf2 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Rhbdf2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Rhbdf2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Rhbdf2 gene (NCBI Reference Sequence: NM_172572 ; Ensembl: ENSMUSG00000020806 ) is located on Mouse chromosome 11. 19 exons are identified, with the ATG start codon in exon 3 and the TAA stop codon in exon 19 (Transcript: ENSMUST00000103028). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Rhbdf2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-245D9 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a null mutation display impaired TNF secretion and increased sensitivity to bacterial infection induced mortality. Exon 4 starts from about 5.93% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 995 bp, and the size of intron 4 for 3'-loxP site insertion: 669 bp. The size of effective cKO region: ~625 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 4 5 6 7 8 19 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Rhbdf2 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7125bp) | A(21.94% 1563) | C(28.35% 2020) | T(21.54% 1535) | G(28.17% 2007) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr11 - 116606483 116609482 3000 browser details YourSeq 145 74 369 3000 94.5% chr17 - 66491035 66491422 388 browser details YourSeq 143 33 213 3000 95.6% chr14 + 54445092 54445331 240 browser details YourSeq 140 56 217 3000 95.5% chr10 + 78418297 78418460 164 browser details YourSeq 136 74 385 3000 91.0% chr10 - 82852417 82852946 530 browser details YourSeq 135 74 227 3000 94.2% chr19 - 53728104 53728429 326 browser details YourSeq 134 74 217 3000 96.6% chr12 + 112582917 112583060 144 browser details YourSeq 133 74 216 3000 96.6% chr5 - 107215528 107215670 143 browser details YourSeq 133 62 217 3000 90.0% chr4 - 53798759 53798908 150 browser details YourSeq 132 74 217 3000 95.9% chr2 - 152168649 152168792 144 browser details YourSeq 131 74 217 3000 95.9% chr13 - 14044985 14045129 145 browser details YourSeq 131 75 217 3000 95.9% chr14 + 76480876 76481018 143 browser details YourSeq 130 74 217 3000 95.8% chr11 - 53356241 53356827 587 browser details YourSeq 130 74 217 3000 95.2% chr5 + 130125458 130125601 144 browser details YourSeq 130 61 217 3000 92.3% chr17 + 29424870 29425026 157 browser details YourSeq 130 73 217 3000 95.2% chr16 + 17421108 17421253 146 browser details YourSeq 130 72 211 3000 96.5% chr10 + 41228493 41228632 140 browser details YourSeq 129 74 216 3000 95.2% chr10 - 61573386 61573528 143 browser details YourSeq 129 74 217 3000 95.2% chr2 + 71230120 71646075 415956 browser details YourSeq 129 73 211 3000 96.5% chr17 + 27670761 27670899 139 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr11 - 116602858 116605857 3000 browser details YourSeq 73 2585 2796 3000 86.9% chr2 - 20567929 20568151 223 browser details YourSeq 48 2732 2804 3000 83.9% chr15 - 102428226 102428296 71 browser details YourSeq 32 2588 2632 3000 91.2% chr4 - 138577554 138577597 44 browser details YourSeq 31 2758 2800 3000 86.1% chr2 - 105085290 105085332 43 browser details YourSeq 31 2443 2473 3000 100.0% chr11 - 65775059 65775089 31 browser details YourSeq 31 2443 2473 3000 100.0% chr12 + 15587417 15587447 31 browser details YourSeq 28 2764 2804 3000 86.7% chr2 - 80695955 80695993 39 browser details YourSeq 28 2588 2644 3000 96.7% chrX + 102386371 102386428 58 browser details YourSeq 25 2614 2644 3000 85.2% chr14 - 121258568 121258596 29 browser details YourSeq 20 2454 2473 3000 100.0% chr1 + 118802126 118802145 20 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Rhbdf2 rhomboid 5 homolog 2 [ Mus musculus (house mouse) ] Gene ID: 217344, updated on 21-Sep-2019 Gene summary Official Symbol Rhbdf2 provided by MGI Official Full Name rhomboid 5 homolog 2 provided by MGI Primary source MGI:MGI:2442473 See related Ensembl:ENSMUSG00000020806 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as cub; Rhbdl6; 4732465I17Rik Expression Broad expression in ovary adult (RPKM 35.3), spleen adult (RPKM 33.7) and 21 other tissues See more Orthologs human all Genomic context Location: 11; 11 E2 See Rhbdf2 in Genome Data Viewer Exon count: 20 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 11 NC_000077.6 (116598148..116627019, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 11 NC_000077.5 (116459479..116488333, complement) Chromosome 11 - NC_000077.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Rhbdf2 ENSMUSG00000020806 Description rhomboid 5 homolog 2 [Source:MGI Symbol;Acc:MGI:2442473] Gene Synonyms 4732465I17Rik, Rhbdl6, cub, iRhom2 Location Chromosome 11: 116,598,165-116,627,019 reverse strand. GRCm38:CM001004.2 About this gene This gene has 4 transcripts (splice variants), 194 orthologues, 5 paralogues, is a member of 1 Ensembl protein family and is associated with 29 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Rhbdf2-201 ENSMUST00000103028.7 3855 827aa ENSMUSP00000099317.1 Protein coding CCDS25672 Q80WQ6 TSL:1 GENCODE basic APPRIS P1 Rhbdf2-202 ENSMUST00000103029.9 3593 827aa ENSMUSP00000099318.3 Protein coding CCDS25672 Q80WQ6 TSL:1 GENCODE basic APPRIS P1 Rhbdf2-203 ENSMUST00000126819.1 2489 No protein - Retained intron - - TSL:2 Rhbdf2-204 ENSMUST00000138125.1 815 No protein - lncRNA - - TSL:5 Page 6 of 8 https://www.alphaknockout.com 48.85 kb Forward strand 116.59Mb 116.60Mb 116.61Mb 116.62Mb 116.63Mb Genes Aanat-204 >lncRNA (Comprehensive set... Aanat-205 >protein coding Aanat-201 >nonsense mediated decay Aanat-202 >nonsense mediated decay Aanat-203 >lncRNA Contigs AL607039.25 > Genes (Comprehensive set... < Rhbdf2-202protein coding < Rhbdf2-201protein coding < Rhbdf2-204lncRNA < Rhbdf2-203retained intron Regulatory Build 116.59Mb 116.60Mb 116.61Mb 116.62Mb 116.63Mb Reverse strand 48.85 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000103028 < Rhbdf2-201protein coding Reverse strand 28.85 kb ENSMUSP00000099... Transmembrane heli... MobiDB lite Low complexity (Seg) Superfamily SSF144091 Pfam Rhomboid serine protease Peptidase S54, rhomboid domain PANTHER PTHR45965:SF2 PTHR45965 Gene3D Rhomboid-like superfamily CDD cd06173 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 80 160 240 320 400 480 560 640 720 827 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • A Gene-Level Methylome-Wide Association Analysis Identifies Novel
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.201376; this version posted July 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A gene-level methylome-wide association analysis identifies novel 2 Alzheimer’s disease genes 1 1 2 3 4 3 Chong Wu , Jonathan Bradley , Yanming Li , Lang Wu , and Hong-Wen Deng 1 4 Department of Statistics, Florida State University; 2 5 Department of Biostatistics & Data Science, University of Kansas Medical Center; 3 6 Population Sciences in the Pacific Program, University of Hawaii Cancer center; 4 7 Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, 8 Tulane University School of Medicine 9 Corresponding to: Chong Wu, Assistant Professor, Department of Statistics, Florida State 10 University, email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.201376; this version posted July 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 11 Abstract 12 Motivation: Transcriptome-wide association studies (TWAS) have successfully facilitated the dis- 13 covery of novel genetic risk loci for many complex traits, including late-onset Alzheimer’s disease 14 (AD). However, most existing TWAS methods rely only on gene expression and ignore epige- 15 netic modification (i.e., DNA methylation) and functional regulatory information (i.e., enhancer- 16 promoter interactions), both of which contribute significantly to the genetic basis ofAD.
    [Show full text]
  • Genome-Wide Association Study in Collaborative Cross Mice Revealed a Skeletal
    bioRxiv preprint doi: https://doi.org/10.1101/094698; this version posted December 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Title Genome-wide association study in Collaborative Cross mice revealed a skeletal role for Rhbdf2 Authors Roei Levy1,2, Clemence Levet3, Keren Cohen1, Matthew Freeman3, Richard Mott4, Fuad Iraqi5, Yankel Gabet1 Affiliations 1 Department of Anatomy and Anthropology, 2 Department of Human Molecular Genetics and Biochemistry, and 5 Department of Clinical Microbiology and Immunology, Sackler Medical School, Tel Aviv University. 3 Dunn School of Pathology, South Parks Road, Oxford OX1 3RE. 4 UCL Genetics Institute, University College London, Gower St., London, WC1E 6BT, UK. Abstract A growing concern that overshadows the increased life expectancy developed countries have been witnessing during the last decades is an accompanying bone loss, which often manifests as osteoporosis. Despite ongoing efforts in utilizing genomic data to fully map the genes responsible for bone remodeling, a detailed picture remains to be desired. Here we took advantage of the phenotypic and genetic diversity innate in Collaborative Cross (CC) mice to identify genetic variants associated with microstructural bone characteristics. 1 bioRxiv preprint doi: https://doi.org/10.1101/094698; this version posted December 16, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Genetic Deletion of Amphiregulin Restores the Normal Skin Phenotype in a Mouse Model of the Human Skin Disease Tylosis Vishnu Hosur*, Benjamin E
    © 2017. Published by The Company of Biologists Ltd | Biology Open (2017) 6, 1174-1179 doi:10.1242/bio.026260 RESEARCH ARTICLE Genetic deletion of amphiregulin restores the normal skin phenotype in a mouse model of the human skin disease tylosis Vishnu Hosur*, Benjamin E. Low, Leonard D. Shultz and Michael V. Wiles ABSTRACT mutations in human RHBDF2 lead to enhanced AREG secretion In humans, gain-of-function (GOF) mutations in RHBDF2 cause the and tylosis. We provide evidence that Rhbdf2 GOF mutations skin disease tylosis. We generated a mouse model of human tylosis enhance AREG secretion to cause hyperplasia and hyperkeratosis. and show that GOF mutations in RHBDF2 cause tylosis by enhancing In addition, we show that genetic ablation of AREG attenuates skin P159L/P159L the amount of amphiregulin (AREG) secretion. Furthermore, we show disease in the Rhbdf2 mouse model of human tylosis. that genetic disruption of AREG ameliorates skin pathology in mice Together, our data strongly suggest that inhibition of AREG could carrying the human tylosis disease mutation. Collectively, our data have potential therapeutic value in the treatment of tylosis. suggest that RHBDF2 plays a critical role in regulating EGFR signaling and its downstream events, including development of RESULTS AND DISCUSSION tylosis, by facilitating enhanced secretion of AREG. Thus, targeting The human tylosis disease mutation enhances AREG AREG could have therapeutic benefit in the treatment of tylosis. secretion Autosomal dominant mutations in the human RHBDF2 gene cause KEY WORDS: CRISPR/Cas9, EGFR, RHBDF2, Amphiregulin, Tylosis tylosis (Blaydon et al., 2012; Saarinen et al., 2012). Substantial evidence implicates the involvement of AREG-induced constitutive INTRODUCTION activation of the EGFR pathway (Blaydon et al., 2012; Brooke et al., The role of RHBDF2 in enhancing amphiregulin (AREG) secretion, 2014; Hosur et al., 2014) in human tylosis.
    [Show full text]
  • Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse
    Original Article Biomol Ther 26(3), 298-305 (2018) Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse Min­Young Lee1,2, Ju­Seong Kang1, Ryeo­Eun Go2, Yong­Sub Byun1, Young Jin Wi3, Kyung­A Hwang2, Jae­Hoon Choi3, Hyoung­Chin Kim1, Kyung­Chul Choi2,* and Ki­Hoan Nam1,* 1Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 28116, 2Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, 3Department of Life Science, College of Natureal Sciences, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea Abstract Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramem- brane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha (TNF-α) converting enzyme, which is the molecule responsible for the release of TNF-α. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of TNF-α release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the rep- resentative TNF-α related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes.
    [Show full text]
  • Science Advances | Research Article
    SCIENCE ADVANCES | RESEARCH ARTICLE NEUROSCIENCE Copyright © 2019 The Authors, some rights reserved; Sleep fragmentation, microglial aging, and exclusive licensee American Association cognitive impairment in adults with and without for the Advancement of Science. No claim to Alzheimer’s dementia original U.S. Government Kirusanthy Kaneshwaran1, Marta Olah2, Shinya Tasaki3,4, Lei Yu3,4, Works. Distributed 2 3,4 3,4 under a Creative Elizabeth M. Bradshaw , Julie A. Schneider , Aron S. Buchman , Commons Attribution 3,4 2 1 David A. Bennett , Philip L. De Jager , Andrew S. P. Lim * NonCommercial License 4.0 (CC BY-NC). Sleep disruption is associated with cognitive decline and dementia in older adults; however, the underlying mechanisms are unclear. In rodents, sleep disruption causes microglial activation, inhibition of which improves cognition. However, data from humans are lacking. We studied participants in two cohort studies of older persons—the Rush Memory and Aging Project and the Religious Orders Study. We assessed sleep fragmentation by actigraphy and related this to cognitive function, to neocortical microglial marker gene expression measured by RNA sequencing, and to the neocortical density of microglia assessed by immunohistochemistry. Greater Downloaded from sleep fragmentation was associated with higher neocortical expression of genes characteristic of aged microglia, and a higher proportion of morphologically activated microglia, independent of chronological age- and dementia-related neuropathologies. Furthermore, these were, in turn, associated with worse cognition. This suggests that sleep fragmentation is accompanied by accelerated microglial aging and activation, which may partially underlie its association with cognitive impairment. http://advances.sciencemag.org/ INTRODUCTION development of therapies to mitigate the deleterious impact of sleep Cognitive impairment and dementia constitute a growing public disruption on cognition and dementia.
    [Show full text]
  • Biological Pathways, Candidate Genes, and Molecular Markers Associated with Quality-Of-Life Domains: an Update
    Qual Life Res (2014) 23:1997–2013 DOI 10.1007/s11136-014-0656-1 REVIEW Biological pathways, candidate genes, and molecular markers associated with quality-of-life domains: an update Mirjam A. G. Sprangers • Melissa S. Y. Thong • Meike Bartels • Andrea Barsevick • Juan Ordon˜ana • Qiuling Shi • Xin Shelley Wang • Pa˚l Klepstad • Eddy A. Wierenga • Jasvinder A. Singh • Jeff A. Sloan Accepted: 19 February 2014 / Published online: 7 March 2014 Ó Springer International Publishing Switzerland 2014 Abstract (depressed mood) and positive (well-being/happiness) Background There is compelling evidence of a genetic emotional functioning, social functioning, and overall foundation of patient-reported quality of life (QOL). Given QOL. the rapid development of substantial scientific advances in Methods We followed a purposeful search algorithm of this area of research, the current paper updates and extends existing literature to capture empirical papers investigating reviews published in 2010. the relationship between biological pathways and molecu- Objectives The objective was to provide an updated lar markers and the identified QOL domains. overview of the biological pathways, candidate genes, and Results Multiple major pathways are involved in each molecular markers involved in fatigue, pain, negative QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes On behalf of the GeneQol Consortium. involved in pain perception, and the catechol-O-methyl- transferase (COMT) gene is associated with multiple sorts Electronic supplementary material The online version of this article (doi:10.1007/s11136-014-0656-1) contains supplementary of pain. The neurotransmitter and neuroplasticity theories material, which is available to authorized users.
    [Show full text]
  • A Concise Review of Human Brain Methylome During Aging and Neurodegenerative Diseases
    BMB Rep. 2019; 52(10): 577-588 BMB www.bmbreports.org Reports Invited Mini Review A concise review of human brain methylome during aging and neurodegenerative diseases Renuka Prasad G & Eek-hoon Jho* Department of Life Science, University of Seoul, Seoul 02504, Korea DNA methylation at CpG sites is an essential epigenetic mark position of carbon in the cytosine within CG dinucleotides that regulates gene expression during mammalian development with resultant formation of 5mC. The symmetrical CG and diseases. Methylome refers to the entire set of methylation dinucleotides are also called as CpG, due to the presence of modifications present in the whole genome. Over the last phosphodiester bond between cytosine and guanine. The several years, an increasing number of reports on brain DNA human genome contains short lengths of DNA (∼1,000 bp) in methylome reported the association between aberrant which CpG is commonly located (∼1 per 10 bp) in methylation and the abnormalities in the expression of critical unmethylated form and referred as CpG islands; they genes known to have critical roles during aging and neuro- commonly overlap with the transcription start sites (TSSs) of degenerative diseases. Consequently, the role of methylation genes. In human DNA, 5mC is present in approximately 1.5% in understanding neurodegenerative diseases has been under of the whole genome and CpG base pairs are 5-fold enriched focus. This review outlines the current knowledge of the human in CpG islands than other regions of the genome (3, 4). CpG brain DNA methylomes during aging and neurodegenerative islands have the following salient features. In the human diseases.
    [Show full text]
  • Chromosome 17Q25 Genes, RHBDF2 and CYGB, in Ovarian Cancer
    INTERNATIONAL JOURNAL OF ONCOLOGY 40: 1865-1880, 2012 Chromosome 17q25 genes, RHBDF2 and CYGB, in ovarian cancer PAULINA M. WOJNAROWICZ1, DIANE M. PROVENCHER2-4, ANNE-MARIE MES-MASSON2,5 and PATRICIA N. TONIN1,6,7 1Department of Human Genetics, McGill University; 2Research Centre of the University of Montreal Hospital Centre (CRCHUM)/Montreal Cancer Institute; 3Division of Gynecologic Oncology, University of Montreal; 4Department of Obstetrics and Gynecology, University of Montreal; 5Department of Medicine, University of Montreal; 6The Research Institute of the McGill University Health Centre; 7Department of Medicine, McGill University, Montreal, Quebec, Canada Received November 15, 2011; Accepted December 29, 2011 DOI: 10.3892/ijo.2012.1371 Abstract. It has been proposed that the frequent loss of Introduction heterozygosity (LOH) of an entire chromosome 17 contig in epithelial ovarian cancers (EOC) is the consequence of It is well established that loss of chromosome 17 is a common the inactivation of multiple tumour suppressor genes on this occurrence in epithelial ovarian cancers (EOCs), as suggested chromosome. We report the characterization of a 453 Kb 17q25 by karyotype and loss of heterozygosity (LOH) studies (1,2). locus shown previously to exhibit a high frequency of LOH This observation, together with complementation studies in EOC samples. LOH analysis further defined the minimal involving the transfer of chromosome 17 which resulted in region of deletion to a 65 Kb interval flanked by D17S2239 reduced tumourigenicity of an EOC cell line (3), suggest that and D17S2244, which contains RHBDF2, CYGB and PRCD as this chromosome harbours tumour suppressor genes (TSGs). tumour suppressor gene candidates. Tissue specific expression Chromosome 17 contains a number of very well characterized excluded PRCD as a candidate.
    [Show full text]
  • A Chromosome-Centric Human Proteome Project (C-HPP) To
    computational proteomics Laboratory for Computational Proteomics www.FenyoLab.org E-mail: [email protected] Facebook: NYUMC Computational Proteomics Laboratory Twitter: @CompProteomics Perspective pubs.acs.org/jpr A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 † ‡ § ∥ ‡ ⊥ Suli Liu, Hogune Im, Amos Bairoch, Massimo Cristofanilli, Rui Chen, Eric W. Deutsch, # ¶ △ ● § † Stephen Dalton, David Fenyo, Susan Fanayan,$ Chris Gates, , Pascale Gaudet, Marina Hincapie, ○ ■ △ ⬡ ‡ ⊥ ⬢ Samir Hanash, Hoguen Kim, Seul-Ki Jeong, Emma Lundberg, George Mias, Rajasree Menon, , ∥ □ △ # ⬡ ▲ † Zhaomei Mu, Edouard Nice, Young-Ki Paik, , Mathias Uhlen, Lance Wells, Shiaw-Lin Wu, † † † ‡ ⊥ ⬢ ⬡ Fangfei Yan, Fan Zhang, Yue Zhang, Michael Snyder, Gilbert S. Omenn, , Ronald C. Beavis, † # and William S. Hancock*, ,$, † Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States ‡ Stanford University, Palo Alto, California, United States § Swiss Institute of Bioinformatics (SIB) and University of Geneva, Geneva, Switzerland ∥ Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States ⊥ Institute for System Biology, Seattle, Washington, United States ¶ School of Medicine, New York University, New York, United States $Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia ○ MD Anderson Cancer Center, Houston, Texas, United States ■ Yonsei University College of Medicine, Yonsei University,
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • A Concise Review of Human Brain Methylome During Aging and Neurodegenerative Diseases
    BMB Rep. 2019; 52(10): 577-588 BMB www.bmbreports.org Reports Invited Mini Review A concise review of human brain methylome during aging and neurodegenerative diseases Renuka Prasad G & Eek-hoon Jho* Department of Life Science, University of Seoul, Seoul 02504, Korea DNA methylation at CpG sites is an essential epigenetic mark position of carbon in the cytosine within CG dinucleotides that regulates gene expression during mammalian development with resultant formation of 5mC. The symmetrical CG and diseases. Methylome refers to the entire set of methylation dinucleotides are also called as CpG, due to the presence of modifications present in the whole genome. Over the last phosphodiester bond between cytosine and guanine. The several years, an increasing number of reports on brain DNA human genome contains short lengths of DNA (∼1,000 bp) in methylome reported the association between aberrant which CpG is commonly located (∼1 per 10 bp) in methylation and the abnormalities in the expression of critical unmethylated form and referred as CpG islands; they genes known to have critical roles during aging and neuro- commonly overlap with the transcription start sites (TSSs) of degenerative diseases. Consequently, the role of methylation genes. In human DNA, 5mC is present in approximately 1.5% in understanding neurodegenerative diseases has been under of the whole genome and CpG base pairs are 5-fold enriched focus. This review outlines the current knowledge of the human in CpG islands than other regions of the genome (3, 4). CpG brain DNA methylomes during aging and neurodegenerative islands have the following salient features. In the human diseases.
    [Show full text]
  • Rhbdf2 Mutations Increase Its Protein Stability and Drive EGFR
    Rhbdf2 mutations increase its protein stability and PNAS PLUS drive EGFR hyperactivation through enhanced secretion of amphiregulin Vishnu Hosur, Kenneth R. Johnson, Lisa M. Burzenski, Timothy M. Stearns, Richard S. Maser, and Leonard D. Shultz1 The Jackson Laboratory, Bar Harbor, ME 04609 Edited by Dennis A. Carson, University of California at San Diego, La Jolla, CA, and approved April 17, 2014 (received for review December 23, 2013) The rhomboid 5 homolog 2 (Rhbdf2) gene encodes an inactive mutations in RHBDF2 (p.I186T, p.P189L, and p.D188N), the rhomboid (iRhom) protease, iRhom2, one of a family of enzymes gene encoding iRhom2, cause tylosis with human esophageal containing a long cytosolic N terminus and a dormant peptidase cancer, which is characterized by palmoplantar and oral hy- domain of unknown function. iRhom2 has been implicated in ep- perkeratosis (10). Other studies have revealed that iRhom1 ithelial regeneration and cancer growth through constitutive acti- promotes the survival of epithelial tumors through EGFR trans- vation of epidermal growth factor receptor (EGFR) signaling. activation (5), whereas somatic mutations in iRhom2 are strongly However, little is known about the physiological substrates for linked to gain of EGFR signaling (11). Although the mechanisms iRhom2 or the molecular mechanisms underlying these functions. underlying the pathogenesis of cancer are evolving, these studies We show that iRhom2 is a short-lived protein whose stability can further strengthen the link between iRhoms and EGFR signaling. be increased by select mutations in the N-terminal domain. In turn, Rhomboids have been extensively characterized in Drosophila, these stable variants function to augment the secretion of EGF in which changes in EGFR signaling can be detected by studying family ligands, including amphiregulin, independent of metallo- the wing phenotype (12, 13), whereas in mice, such alterations protease a disintegrin and metalloproteinase 17 (ADAM17) activity.
    [Show full text]