The Production of an Esterase Inhibitor from Schradan in the Fat Body of the Desert Locust

Total Page:16

File Type:pdf, Size:1020Kb

The Production of an Esterase Inhibitor from Schradan in the Fat Body of the Desert Locust Vol. 70 FORMATION OF e-(AMINOSUCCINYL)-LYSINE 373 4. Oa-(O-L-Aspartyl)-L-lysine and M-( -L-a8partyl)- Cummins, C. S. & Harris, H. (1956). J. gen. Microbiol. 14, L-lysine cyclize to X-(L-aminosuccinyl)-L-lysine in 583. 11 N-hydrochloric acid at 80°, but this derivative of Cummins,C. s. & Harris, H. (1958). J.gen.Microbiol.18,173. aminosuccinimide is much less stable than that Hausmann, W., Weisiger, J. R. & Craig, L. C. (1955). J. Amer. chem. Soc. 77, 723. formed from the corresponding e-aspartyl-lysines. Hirs, C. H. W., Moore, S. & Stein, W. H. (1954). J. Amer. 5. e-(Aminosuccinyl)-lysine is formed when chem. Soc. 76, 6063. bacitracin A is treated with 11 N-hydrochloric acid John, W. D. & Young, G. T. (1954). J. chem. Soc. p. 2870. at 800. It is also formed during acid hydrolysis of Lockhart, I. M. & Abraham, E. P. (1954a). Biochem. J. the cell walls of certain strains of lactobacilli. The 58, 633. cell walls of other strains of lactobacilli do not Lockhart, I. M. & Abraham, E. P. (1954b). Biochem. J. 58, yield this compound, although they contain lysine xlvii. and aspartic acid residues. Lockhart, I. M. & Abraham, E. P. (1956). Biochem. J. 62, 645. One of us (D.L.S.) is indebted to the Medical Research Mechanic, G. L. & Levy, M. (1957). Fed. Proc. 16, 220. Council for a scholarship. Infrared spectra were deter- Meloche, I. & Laidler, K. J. (1951). J. Amer. chem. Soc. 73, mined by Dr F. B. Strauss. The analysis was by Weiler and 1712. Strauss. Moore, S. & Stein, W. H. (1948). J. biol. Chem. 176, 367. REFERENCES Moore, S.& Stein,W.H. (1954). J. biol. Chem. 211, 893, 907. Newton, G. G. F. & Abraham, E. P. (1953). Biochem. J. 53, Abraham, E. P. (1957). Biochemistry of 8ome Peptide and 604. Steroid Antibiotics, p. 19. New York: John Wiley and Partridge, S. M. & Davis, H. F. (1950). Nature, Lond.,165,62. Sons, Inc. Peart, W. S. (1956). Biochem. J. 62, 520. Battersby, A. R. & Robinson, J. C. (1955). J. chem. Soc. Powell, J. F. & Strange, R. E. (1957). Biochem. J. 65, 700. p. 259. Randall, H. M., Fowler, R. G., Fuson, N. & Dangl, J. R. Bender, M. L. & Ginger, R. D. (1955). J. Amer. chem. Soc. (1949). Infrared Determination of Organic Structures. 77, 348. New York: Van Nostrand Co. Inc. Blackburn, S. & Lowther, A. G. (1951). Biochem. J. 48, Sondheimer, E. & Holley, R. W. (1954a). Nature, Lond., 126. 173, 773. Callow, R. K. & Work, T. S. (1952). Biochem. J. 51, 558. Sondheimer, E. & Holley, R. W. (1954b). J. Amer. chem. Cherbuliez, E. & Chambers, I. F. (1924). C.R. Soc. Phys. Soc. 76, 2467. Hs8t. nat. Geneve, 41, 139. Swallow, D. L. & Abraham, E. P. (1957). Biochem. J. 65, Craig, L. C., Gregory, J. D. & Hausmann, W. (1950). 39P. Analyt. Chem. 22, 1462. Swallow, D. L., Lockhart, I. M. & Abraham, E. P. (1958). Craig, L. C., Hausmann, W. & Weisiger, J. R. (1954). 70, 359. J. Amer. chem. Soc. 76, 2839. Theodoropoulos, D. & Craig, L. C. (1956). J. org. Chem. 21, Cummins, C. S., Glendenning, 0. M. & Harris, H. (1957). 1376. Nature, Lond., 180, 337. Woiwod, A. J. (1949). J. gen. Microbiol. 3, 312. The Production of an Esterase Inhibitor from Schradan in the Fat Body of the Desert Locust BY M. L. FENWICK Department of Biochemi8try, Univer&ity of Leed8 (Received 28 March 1958) The oxidative conversion of the systemic insecti- pyridine nucleotide. O'Brien & Spencer (1953, cides schradan (bisdimethylaminophosphonous an- 1955) reported that many intact insect tissues hydride) and dimefox (bisdimethylaminofluoro- could produce the same schradan metabolite as did phosphine oxide) into powerful anticholinesterases liver, but all attempts to make an active tissue has been studied in mammalian liver homogenates homogenate were unsuccessful. Cockroach-gut (Davison, 1954, 1955; O'Brien, 1956, 1957; homogenates fortified with nicotinamide, diphos- Fenwick, Barron & Watson, 1957), and shown to be phopyridine nucleotide and Mg2+ ions failed to dependent on the presence of Mg2+ or Ca2+ ions, convert schradan (O'Brien, 1957) and dimefox nicotinamide and diphosphopyridine nucleotide. (Fenwick et al. 1957) into such compounds, and it The microsome fraction of liver cells could effect was suggested that a different mechanism might be the conversion if fortified with reduced diphospho- involved. 374 M. L. FENWICK I958 An investigation of the conversion of schradan directly proportional to enzyme concentration up to an by the tissues of the desert locust was undertaken optical-density change of 0-33. in order to determine whether there is a funda- Schradan conversion by intact ti88ue. Batches of fat-body mental difference of mechanism between mammals tissue (30 mg. wet wt.) were incubated in air for 30 min. at and insects. The choice ofinsect was governed by its 370 in 2 ml. of 'insect Ringer' solution (Thomsen, 1952), buffered with 10% (v/v) of -Oim-phosphate buffer, pH 7-4, size, availability and economic importance. in the presence of schradan at concentrations of 25, 50, 100 and 500/uM. The tissue was then homogenized in the medium, water was added to give a total of 1 ml./3-6 mg. MATERIALS AND METHODS of tissue, and the suspension was centrifuged for 2 mm. at Schradan, diphosphopyridine nucleotide (DPN), triphos- 600g. A volume (1 ml.) of supernatant was taken for phopyridine nucleotide (TPN) and flavine mononucleotide esterase measurement after removal of the upper layer of (FMN) were obtained from L. Light and Co. Ltd.; dimefox fat. Converting power was expressed as the mean of the from Fisons Pest Control Ltd.; flavinadenine dinucleotide four values oflog (100/b)/mg. dry wt./concn. of schradan (M) (FAD) from Sigma Chemical Co.; DPNH (reduced DPN) which were so obtained, where b is the percentage of the was prepared by the reduction of DPN with dithionite initial esterase which remained. (Colowick & Kaplan, 1955), and TPNEI (reduced TPN) by Dry weight and fat content were obtained by homo- the enzymic method of Nason & Evans (1953). p-Nitro- genizing a weighed sample of tissue in a small volume of phenyl acetate was synthesized by the method ofKaufmann water and shaking with ether. After a brief centrifuging, a (1909). portion of the ether extract was dried at room temperature Fourth-instar nymphs of the desert locust (Schistocerca and weighed. The aqueous suspension, freed of the ether gregaria Forsk.) were provided at regular intervals by the layer, was dried at 1100 and weighed. Anti-Locust Research Centre, 1 Princes Gate, London, Schradan conversion by homogenate8. A fat-body homo- S.W. 7. The insect cage stood in a thermoregulated room, genate in water was incubated for 3 hr. at 370 to reduce its and was lit and heated internally by an electric-light bulb Schradan-converting power. Schradan concentrations up which was automatically switched on at 8 a.m. and off at to mm had no significant effect on its esterase activity. midnight. The mean day temperature inside the cage was mm-Schradan was therefore usually used in subsequent 350, falling to 250 at night. A tray of water stood beneath conversion experiments, and schradan was omitted from the wire-gauze floor of the cage, and the humidity was controls. The components were placed in 6 in. x 1 in. further influenced by a jar of fresh or cold-stored green boiling tubes shaken in a water bath at 370 and open to the grass and a dish of drinking water in the cage. The grass air. A typical reaction mixture consisted of 0-2 ml. of fat- diet was supplemented by a mixture of grass meal, bran, body suspension, 0-2 ml. of inhibitor or activator dissolved dried whole milk and dried autolysed yeast (The Distillers in 0-25 m-sucrose and 0-1 ml. of 5 mM-schradan in 0-lm- Co. Ltd.) in the proportions 2: 2: 2: 1 (by vol.). phosphate buffer, pH 7-4. At the end of the incubation The tissues were removed from the decapitated insects period (usually 30 min.) water was added to stop the and placed in an ice-cooled dry beaker. Air sacs and reaction by dilution and cooling, and to give a convenient tracheae were generally not separated from the fat body concentration of esterase, which was then estimated. after it was found that their presence did not affect Centrifugal fractionation. A homogenate of 150-200 mg. schradan conversion. Testes were removed before the fat wet wt. of fat body/ml. of 0-25M-sucrose solution was body, as otherwise they tended to become incorporated in centrifuged for 2 min. in a bench centrifuge (about 600g), it. The unwashed tissue was homogenized with a glass and the supernatant was decanted after removal of the Potter-Elvehjem tube and pestle. Fat-body tissue is very upper layer of fat by suction. This did not reduce the soft, and five or six up-and-down movements of the pestle schradan-converting activity of the suspension. The super- were sufficient to release the fat from the cells. natant was then centrifuged at 00 for a further 30 min. at Estera8e determination. The principle of the method of 18000g. The resulting clear supernatant was carefully Huggins & Lapides (1947) was used, the rate of liberation pipetted off and replaced by an equal volume of sucrose ofp-nitrophenolfromp-nitrophenyl acetate being measured. solution in which the sedimented particles were resus- The substrate could be kept for up to a month at - 150 as pended. a 50 mM-solution in dry methanol. For each series of RESULTS estimations it was diluted (1/25) with water, and used within 1 hr. Esterase preparation (1 ml.) was added to Intact ti88U6 3 ml.
Recommended publications
  • Adverse Effects of Organophosphorus Pesticides on the Liver: a Brief Summary of Four Decades of Research
    Karami-Mohajeri S, et al. Adverse effects of OPs on the liver: a brief research summary Arh Hig Rada Toksikol 2017;68:261-275 261 Review DOI: 10.1515/aiht-2017-68-2989 Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research Somayyeh Karami-Mohajeri1,2, Ahmad Ahmadipour2, Hamid-Reza Rahimi1,2, and Mohammad Abdollahi3,4 Pharmaceutics Research Center, Institute of Neuropharmacology1, Department of Toxicology and Pharmacology, Faculty of Pharmacy2, Kerman University of Medical Sciences, Kerman, Pharmaceutical Sciences Research Center3, Department of Toxicology and Pharmacology4, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran [Received in May 2017; Similarity Check in May 2017; Accepted in December 2017] Organophosphorus pesticides (OPs) are widely used volatile pesticides that have harmful effects on the liver in acute and chronic exposures. This review article summarises and discusses a wide collection of studies published over the last 40 years reporting on the effects of OPs on the liver, in an attempt to propose general mechanisms of OP hepatotoxicity and possible treatment. Several key biological processes have been reported as involved in OP-induced hepatotoxicity such as disturbances in the antioxidant defence system, oxidative stress, apoptosis, and mitochondrial and microsomal metabolism. Most studies show that antioxidants can attenuate oxidative stress and the consequent changes in liver function. However, few studies have examined the relationship between OP structures and the severity and mechanism of their action. We hope that future in vitro, in vivo, and clinical trials will answer the remaining questions about the mechanisms of OP hepatotoxicity and its management.
    [Show full text]
  • Effect of Chlorpyrifos Oxon on M2 Muscarinic Acetylcholine Receptor Trafficking”
    EFFECT OF CHLORPYRIFOS OXON ON M2 MUSCARINIC ACETYLCHOLINE RECEPTOR REGULATION BY ELMAR MABUNGA UDARBE Doctor of Veterinary Medicine University of the Philippines Los Baños College, Laguna, Philippines 1999 Submitted to the Faculty of the Graduate College of Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2004 EFFECT OF CHLORPYRIFOS OXON ON M2 MUSCARINIC ACETYLCHOLINE RECEPTOR REGULATION Thesis Approved: DR. CAREY N. POPE Thesis Advisor DR. CYRIL C. CLARKE DR. CHARLOTTE C. OWNBY DR. DORIS K. PATNEAU DR. AL CARLOZI Dean of Graduate College ii ACKNOWLEDGMENTS My sincerest gratitude goes to my major advisor, Dr. Carey N. Pope for the intelligent supervision, for providing inspiration to do this work. I am also thankful to my committee members, Dr. Cyril Clarke, Dr. Charlotte Ownby and Dr. Doris Patneau for helpful comments on the content and form of this manuscript. I am indebted to the Fulbright-Philippine Agriculture Scholarship Program (FPASP) and the Philippine American Education Foundation (PAEF) whose exchange program deepened my understanding of the U.S. culture and its people and allowed me to promote mutual understanding between the U.S. and the Philippines. I am grateful to the University of the Philippines in Mindanao (UPMINDANAO) for supporting my pursuit for graduate studies, the National Institute of Environmental Health Sciences (NIEHS), Oklahoma State University Board of Regents and Dr. Sidney Ewing, Wendell H. and Nellie G. Krull Endowed professor for the financial assistance. I am also thankful to the following: Ms. Sharon Baker for doing the preliminary work on the project; Dr.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • The List of Extremely Hazardous Substances)
    APPENDIX A (THE LIST OF EXTREMELY HAZARDOUS SUBSTANCES) THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 75-86-5 ACETONE CYANOHYDRIN 500 10 1752-30-3 ACETONE THIOSEMICARBAZIDE 500/500 1,000 107-02-8 ACROLEIN 500 1 79-06-1 ACRYLAMIDE 500/500 5,000 107-13-1 ACRYLONITRILE 500 100 814-68-6 ACRYLYL CHLORIDE 100 100 111-69-3 ADIPONITRILE 500 1,000 116-06-3 ALDICARB 100/500 1 309-00-2 ALDRIN 500/500 1 107-18-6 ALLYL ALCOHOL 500 100 107-11-9 ALLYLAMINE 500 500 20859-73-8 ALUMINUM PHOSPHIDE 500 100 54-62-6 AMINOPTERIN 500/500 500 78-53-5 AMITON 500 500 3734-97-2 AMITON OXALATE 100/500 100 7664-41-7 AMMONIA 500 100 300-62-9 AMPHETAMINE 500 1,000 62-53-3 ANILINE 500 5,000 88-05-1 ANILINE,2,4,6-TRIMETHYL- 500 500 7783-70-2 ANTIMONY PENTAFLUORIDE 500 500 1397-94-0 ANTIMYCIN A 500/500 1,000 86-88-4 ANTU 500/500 100 1303-28-2 ARSENIC PENTOXIDE 100/500 1 THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 1327-53-3 ARSENOUS OXIDE 100/500 1 7784-34-1 ARSENOUS TRICHLORIDE 500 1 7784-42-1 ARSINE 100 100 2642-71-9 AZINPHOS-ETHYL 100/500 100 86-50-0 AZINPHOS-METHYL 10/500 1 98-87-3 BENZAL CHLORIDE 500 5,000 98-16-8 BENZENAMINE, 3-(TRIFLUOROMETHYL)- 500 500 100-14-1 BENZENE, 1-(CHLOROMETHYL)-4-NITRO- 500/500 500 98-05-5 BENZENEARSONIC ACID 10/500 10 3615-21-2 BENZIMIDAZOLE, 4,5-DICHLORO-2-(TRI- 500/500 500 FLUOROMETHYL)- 98-07-7 BENZOTRICHLORIDE 100 10 100-44-7 BENZYL CHLORIDE 500 100 140-29-4 BENZYL CYANIDE 500 500 15271-41-7 BICYCLO[2.2.1]HEPTANE-2-CARBONITRILE,5-
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Bioactivation of N-Alkyl Substituted Phosphor- Amidothioate Insecticides
    J. Pesticide Sci. 9, 675-680 (1984) Original Article Bioactivation of N-Alkyl Substituted Phosphor- amidothioate Insecticides Masako UEJI and Chojiro ToMIzAWA National Institute of Agro-Environmental Sciences, Yatabe, Tsukuba-gun, Ibaraki 305, Japan (Received May 15, 1984) The insecticidal activity of O-ethyl O-2-isopropoxycarbonylphenyl N-alkylphoshor- amidothioates was examined with reference to their activation in biologicalsystems. Toxicity to the adzuki bean weevil varied with different N-alkyl groups. N-isopropylphosphoramido- thioate was the most toxic of the compounds tested, and N-unsubstituted, N-methyl- and N-ethylphosphoramidothioates were more toxic than fenitrothion. However, N-propyl and N-butyl homologs were less active than fenitrothion with the exception of the N-isopropyl homolog. LD50 values of the phosphoramidothioates for the insect were not correlated with in vitro anti-AChE activity of the phosphoramidates. 150 of N-isopropylphosphoramidate for acetylcholinesterases from adzuki bean weevil and bovine serum was higher than 10-3 M. When the phosphoramidothioates and phosphoramidate were incubated with rat liver micro- somal system, AChE activity of bovine serum was strongly inhibited in the presence of NADPH. Inhibition of AChE activity was reduced by addition of SKF 525-A to the micro- somal system. The compounds became also potent inhibitors for AChE by treatment with m-chloroperbenzoic acid. From these results, it was concluded that phosphoramidothioates and their oxons were activated oxidatively to inhibit AChE by the microsomal system as well as chemical treatment with peracid. of amide groups of phosphoramidothioate or INTRODUCTION phosphoramidate insecticides except schradan Bioactivity of phosphoramidothioates is vari- (octamethylpyrophosphoramidate). Moreover, able with structural changes.
    [Show full text]
  • Environmental Health Criteria 63 ORGANOPHOSPHORUS
    Environmental Health Criteria 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION Please note that the layout and pagination of this web version are not identical with the printed version. Organophophorus insecticides: a general introduction (EHC 63, 1986) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1986 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination
    [Show full text]
  • List of Extremely Hazardous Substances
    Emergency Planning and Community Right-to-Know Facility Reporting Compliance Manual List of Extremely Hazardous Substances Threshold Threshold Quantity (TQ) Reportable Planning (pounds) Quantity Quantity (Industry Use (pounds) (pounds) CAS # Chemical Name Only) (Spill/Release) (LEPC Use Only) 75-86-5 Acetone Cyanohydrin 500 10 1,000 1752-30-3 Acetone Thiosemicarbazide 500/500 1,000 1,000/10,000 107-02-8 Acrolein 500 1 500 79-06-1 Acrylamide 500/500 5,000 1,000/10,000 107-13-1 Acrylonitrile 500 100 10,000 814-68-6 Acrylyl Chloride 100 100 100 111-69-3 Adiponitrile 500 1,000 1,000 116-06-3 Aldicarb 100/500 1 100/10,000 309-00-2 Aldrin 500/500 1 500/10,000 107-18-6 Allyl Alcohol 500 100 1,000 107-11-9 Allylamine 500 500 500 20859-73-8 Aluminum Phosphide 500 100 500 54-62-6 Aminopterin 500/500 500 500/10,000 78-53-5 Amiton 500 500 500 3734-97-2 Amiton Oxalate 100/500 100 100/10,000 7664-41-7 Ammonia 500 100 500 300-62-9 Amphetamine 500 1,000 1,000 62-53-3 Aniline 500 5,000 1,000 88-05-1 Aniline, 2,4,6-trimethyl- 500 500 500 7783-70-2 Antimony pentafluoride 500 500 500 1397-94-0 Antimycin A 500/500 1,000 1,000/10,000 86-88-4 ANTU 500/500 100 500/10,000 1303-28-2 Arsenic pentoxide 100/500 1 100/10,000 1327-53-3 Arsenous oxide 100/500 1 100/10,000 7784-34-1 Arsenous trichloride 500 1 500 7784-42-1 Arsine 100 100 100 2642-71-9 Azinphos-Ethyl 100/500 100 100/10,000 86-50-0 Azinphos-Methyl 10/500 1 10/10,000 98-87-3 Benzal Chloride 500 5,000 500 98-16-8 Benzenamine, 3-(trifluoromethyl)- 500 500 500 100-14-1 Benzene, 1-(chloromethyl)-4-nitro- 500/500
    [Show full text]
  • PESTICIDES Criteria for a Recommended Standard
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES criteria for a recommended standard... OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES * U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health July 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-174 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) has implemented a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the effects of exposure on health. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in developing regulatory standards. Successive reports will be presented as research and epideiriologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of workers. The contributions to this document on pesticide manufacturing and formulating industries by NIOSH staff members, the review consultants, the reviewer selected by the American Conference of Governmental Industrial Hygienists (ACGIH), other Federal agencies, and by Robert B.
    [Show full text]
  • Pesticide Residues : Maximum Residue Limits
    THAI AGRICULTURAL STANDARD TAS 9002-2013 PESTICIDE RESIDUES : MAXIMUM RESIDUE LIMITS National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives ICS 67.040 ISBN UNOFFICAL TRANSLATION THAI AGRICULTURAL STANDARD TAS 9002-2013 PESTICIDE RESIDUES : MAXIMUM RESIDUE LIMITS National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives 50 Phaholyothin Road, Ladyao, Chatuchak, Bangkok 10900 Telephone (662) 561 2277 Fascimile: (662) 561 3357 www.acfs.go.th Published in the Royal Gazette, Announcement and General Publication Volume 131, Special Section 32ง (Ngo), Dated 13 February B.E. 2557 (2014) (2) Technical Committee on the Elaboration of the Thai Agricultural Standard on Maximum Residue Limits for Pesticide 1. Mrs. Manthana Milne Chairperson Department of Agriculture 2. Mrs. Thanida Harintharanon Member Department of Livestock Development 3. Mrs. Kanokporn Atisook Member Department of Medical Sciences, Ministry of Public Health 4. Mrs. Chuensuke Methakulawat Member Office of the Consumer Protection Board, The Prime Minister’s Office 5. Ms. Warunee Sensupa Member Food and Drug Administration, Ministry of Public Health 6. Mr. Thammanoon Kaewkhongkha Member Office of Agricultural Regulation, Department of Agriculture 7. Mr. Pisan Pongsapitch Member National Bureau of Agricultural Commodity and Food Standards 8. Ms. Wipa Thangnipon Member Office of Agricultural Production Science Research and Development, Department of Agriculture 9. Ms. Pojjanee Paniangvait Member Board of Trade of Thailand 10. Mr. Charoen Kaowsuksai Member Food Processing Industry Club, Federation of Thai Industries 11. Ms. Natchaya Chumsawat Member Thai Agro Business Association 12. Mr. Sinchai Swasdichai Member Thai Crop Protection Association 13. Mrs. Nuansri Tayaputch Member Expert on Method of Analysis 14.
    [Show full text]
  • Florida Pesticide Reporting Guidelines
    Florida Pesticide Reporting guidelines This list is compiled from the Environmental Protection Agency List of Lists (2015) and updated with common Pesticide Trade Names. This is meant as a supplement to the EPA list of lists to clarify and assist handlers and responders in the field to Florida reporting requirements and the more common chemical nomenclature. Threshold Planning Quantity (TPQ) – The presence of Extremely Hazardous Substances (EHSs) in quantities at or above the Threshold Planning Quantity (TPQ) requires certain emergency planning activities to be conducted. The consolidated list presents the TPQ (in pounds) for section 302 chemicals in the column following the CAS number. For chemicals that are solids, there are two TPQs given (e.g., 500/10,000). In these cases, the lower quantity applies for solids in powder form with particle size less than 100 microns, or if the substance is in solution or in molten form. Otherwise, the 10,000 pound TPQ applies. Section 304 RQ‐ Facilities must immediately report accidental releases of EHS chemicals and "hazardous substances" in quantities greater than corresponding Reportable Quantities (RQs) defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to state and local officials. Information about accidental chemical releases must be available to the public, Florida Reporting requirements below. CERCLA RQ‐ Releases of CERCLA hazardous substances, in quantities equal to or greater than their reportable quantity (RQ) in pounds, are subject to reporting to the Florida Reporting requirements below. Florida Reporting requirements: National Response Center Florida State Watch Office (800) 424-8802 (800) 320-0519 or (850) 815-4001 Florida Department of Environmental Protection Spill reporting requirements https://floridadep.gov/pollutionnotice Florida Division of Emergency Management 2555 Shumard Oak blvd.
    [Show full text]
  • Appendix Common, Trade, and Chemical Names of Pesticides Mentioned in the Present Volume
    Appendix Common, trade, and chemical names of pesticides mentioned in the present volume Commonname Tradename Chemical name aldrin Octalene 1,2,3,4,10,1 O-hexachloro-1 ,4,4a,S,8,8a­ hexahydro-1,4-endo-exo-S,8-dimethano­ naphthalene amidithion Thiocron O,O-dimethyl S-(2-methoxyethyl­ carbamoylmethyl) phosphorodithioate azinphos methyl Guthion, Gusathion O,O-dimcthyl S-( 4-oxo-l ,2,3-benzotri­ azin-3-( 4H)-ylmethyl) phosphorodithioate captan Orthocid N -(trichloromethylthio) cyclohex-4-ene- 1,2-dicarboximide carbaryl Sevin 1-naphthyl-mcthylcarbamate carbophenothion Trithion O,O-diethyl S-[(p-chlorophenylthio)­ methyl] phosphorodithioate chlorfenvinphos Birlane (Shell), 2-chloro-1-(2,4-dichlorophenyl) vinyl Sapecron (e/BA) diethyl phosphate chlorphenamidine Galecron N'-( 4-chloro-o-tolyl)-N,N-dimethyl­ formamidine chlorthion Chlorthion O,O-dimethyIO-(3-chloro-4-nitro­ phenyl)-phosphorothioate coumaphos Asuntol, Co-Ral O,O-diethyl O-(3-chloro-4-methyl- 2-oxo-2H-1-benzopyran-7-yl) phosphorothioate DDT Gesarol 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane demeton Systox O,O-diethyl O-(and S)-2-(ethylthio)ethyl phosphorothioates DEF S,S,S-tributyltrithiophosphate demeton methyl Metasystox O,O-dimethyl O-(and S)-2-(ethylthio)­ ethyl phosphorothioates diazinon Diazinon, Basudin O,O-diethyIO-(2-isopropyl-4-methyl- 6-pyrimidyl) phosphorothioate dichlorvos Vapona (Shell), O,O-dimethyl-2,2-dichlorovinyl Nuvan (e/BA) phosphate dicrotophos Bidrin (Shell), O,O-dimethyl O-(2-dimethyl-carbamyl-1- Carbicron (e/BA) methyl) vinyl phosphate dieldrin Octalox
    [Show full text]