Pos(CORFU2018)100 -flux R -flux Back- R ∗ EMPG-19-10 [email protected] Speaker

Total Page:16

File Type:pdf, Size:1020Kb

Pos(CORFU2018)100 -flux R -flux Back- R ∗ EMPG-19-10 R.J.Szabo@Hw.Ac.Uk Speaker An Introduction to Nonassociative Physics PoS(CORFU2018)100 Richard J. Szabo∗ Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom. Maxwell Institute for Mathematical Sciences, Edinburgh, United Kingdom. The Higgs Centre for Theoretical Physics, Edinburgh, United Kingdom. E-mail: [email protected] We give a pedagogical introduction to the nonassociative structures arising from recent develop- ments in quantum mechanics with magnetic monopoles, in string theory and M-theory with non- geometric fluxes, and in M-theory with non-geometric Kaluza-Klein monopoles. After a brief overview of the main historical appearences of nonassociativity in quantum mechanics, string theory and M-theory, we provide a detailed account of the classical and quantum dynamics of electric charges in the backgrounds of various distributions of magnetic charge. We apply Born reciprocity to map this system to the phase space of closed strings propagating in R-flux back- grounds of string theory, and then describe the lift to the phase space of M2-branes in R-flux backgrounds of M-theory. Applying Born reciprocity maps this M-theory configuration to the phase space of M-waves probing a non-geometric Kaluza-Klein monopole background. These four perspective systems are unified by a covariant 3-algebra structure on the M-theory phase space. Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2018) 31 August–28 September 2018 Corfu, Greece Preprint: EMPG-19-10 ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ An Introduction to Nonassociative Physics Richard J. Szabo Contents 1. A brief history of nonassociativity in physics 2 1.1 Nonassociative algebra 2 1.2 The octonions 2 1.3 Jordanian quantum mechanics 4 1.4 Nambu mechanics 5 PoS(CORFU2018)100 1.5 Nonassociativity in string theory 6 1.6 Nonassociativity in M-theory 8 1.7 Outline 10 2. Electric charges in magnetic monopole backgrounds 11 2.1 Magnetic Poisson brackets 11 2.2 Magnetic monopoles 12 2.3 Classical motion in fields of magnetic charge 14 2.4 Quantization of magnetic Poisson brackets 16 2.5 Nonassociative quantum mechanics 20 3. Closed strings in locally non-geometric flux backgrounds 23 3.1 The R-flux model 23 3.2 How closed strings see nonassociativity 25 3.3 Nonassociative gravity 26 4. M2-branes in locally non-geometric flux backgrounds 27 4.1 M-theory lift of the R-flux model 27 4.2 Quantization of the M2-brane phase space 29 5. M-waves in non-geometric Kaluza-Klein monopole backgrounds 31 5.1 Magnetic monopoles in quantum gravity 31 5.2 The M-wave phase space 32 5.3 The covariant M-theory phase space 3-algebra 33 1 An Introduction to Nonassociative Physics Richard J. Szabo 1. A brief history of nonassociativity in physics 1.1 Nonassociative algebra Nonassociative algebras first appeared around the middle of the nineteenth century and have since formed an independent branch of mathematics. By far the simplest and best known example of a nonassociative algebra is a Lie algebra. A Lie bracket [·; ·] on a vector space is generally a noncommutative and nonassociative binary operation in the sense that [x;y] 6= [y;x] and [x;[y;z]] 6= [[x;y];z], but rather it is antisymmetric and satisfies the Jacobi identity. If we package the quantity which vanishes by the Jacobi identity into a ternary operation called the ‘Jacobiator’, PoS(CORFU2018)100 1 [x;y;z] := 3 [x;[y;z]] − [[x;y];z] + [[x;z];y] ; (1.1) then Lie algebras are characterized by the feature that this 3-bracket vanishes: [x;y;z] = 0. In our present context this will be considered to be a trivial example of a nonassociative algebra, as the binary operation on the Lie group which integrates the Lie algebra via the exponential map is associative. In fact, in this paper we will be looking at cases of algebras with a multiplication that has non-vanishing Jacobiators, just like the multiplication in a noncommutative algebra can be characterized by a non-vanishing commutator [x;y] := xy − yx 6= 0. A well-known example of a noncommutative and nonassociative algebra in this sense is the algebra of octonions, which con- stitutes an important example of an ‘alternative algebra’, where associativity of the multiplication (and hence the Jacobi identity) is generally violated, but it possesses the alternativity condition which generalizes the Jordan identity (x2 y)x = x2 (yx) of (commutative) Jordan algebras, which we review below. Algebras whose associativity is controlled by identities like the Jacobi or alternative identities were of central mathematical interest in the last century, as arbitrarily relaxing associativity in an algebra does not lead to a good mathematical theory unless some other structures are present, see e.g. [1]. They have recently made their way into the forefront of some recent developments in quantum mechanics, string theory and M-theory. The main aim of these lectures is to survey some of these recent insights and to highlight some of the interesting physical consequences of the theory, together with the many important open avenues awaiting further investigation. Nonassociative algebras actually have a long and diverse history of appearences in physics, which is perhaps not so widely appreciated. The purpose of this opening section is to briefly review some of their occurences with a personally biased point of view: We only discuss develop- ments in physics with an eye to the main topics that we will pursue later on, and to overview the developments that we shall treat in more detail in subsequent sections. 1.2 The octonions For later use, let us begin by recalling the standard mathematical example of the octonions, as it will play an important role in some of the discussions throughout this paper (see e.g. [2] for a nice introduction). A well-known theorem in algebra states that there are only four normed division algebras over the field R of real numbers: The real numbers R themselves, the complex numbers C, the quaternions H, and the octonions O. Both R and C are commutative and associative algebras, H is noncommutative but associative, while O is both noncommutative and nonassociative. The 2 An Introduction to Nonassociative Physics Richard J. Szabo algebra is generated over itself by a central identity element 1, is generated over by 1 and an R p C R imaginary complex unit i = −1, while H is generated by 1 and three imaginary quaternion units i, j and k, familar from quantum mechanics in their representation in terms of Pauli spin matrices p 2 ei = −1si, i = 1;2;3, which obey ei = −1 and ei e j = −di j + ei jk ek ; (1.2) where ei jk is the Levi-Civita symbol in three dimensions. Analogously, the algebra O is generated by 1 and seven imaginary octonion units eA, A = PoS(CORFU2018)100 2 1;:::;7, satisfying eA = −1, so that a generic element O of O is of the form O = a0 + a1 e1 + a2 e2 + ··· + a7 e7 ; (1.3) with a0;a1;:::;a7 2 R. The multiplication in the algebra O can be written in the form eA eB = −dAB + hABC eC ; (1.4) where the structure constants hABC form a completely antisymmetric tensor with only seven non- vanishing components, generalizing the structure constants ei jk (with only one non-zero compo- nent) of the algebra of quaternions H. To specify hABC explicitly, it is convenient to rewrite e4;e5;e6 = f1; f2; f3 and represent the algebra of octonions in terms of the commutators [ei;e j] = 2ei jk ek and [e7;ei] = 2 fi ; [ fi; f j] = −2ei jk ek and [e7; fi] = −2ei ; (1.5) [ei; f j] = 2(di j e7 − ei jk fk) : The first set of commutation relations describes a quaternion subalgebra H ⊂ O (the Lie algebra of SU(2) ' SO(3)), analogous to the hierarchy of embeddings R ⊂ C ⊂ H generated by the inclusions of 1 and i; this follows from the Cayley-Dickson construction of the real normed division algebras. This demonstrates the important feature that, unlike H whose structure constants are invariant under the full three-dimensional rotation group SO(3), the symmetry group of the tensor hABC is only the 14-dimensional simple exceptional Lie subgroup G2 ⊂ SO(7) of the rotation group in seven dimensions. Using these commutators one can derive the non-vanishing Jacobiators [eA;eB;eC] = −4hABCD eD ; (1.6) with antisymmetric structure constants hABCD also having only seven non-vanishing components. The alternative property of the algebra O is then equivalent to the statement that its Jacobiators are proportional to its ‘associators’: [eA;eB;eC] = 2 (eA eB)eC − eA (eB eC) : (1.7) 3 An Introduction to Nonassociative Physics Richard J. Szabo 1.3 Jordanian quantum mechanics The algebra of octonions O is an example of what may be called a noncommutative Jordan algebra, which we now proceed to define. Jordan algebras were the first appearence of nonasso- ciativity in physics, in the early days of quantum theory [3]. Jordan’s motivation for introducing them was to define an algebraic structure on the set of observables in quantum mechanics, and hence an overall new algebraic setting for the foundations of quantum theory. The observables of any quantum system are given by Hermitian elements in a C∗-algebra, which can be represented by operators on a finite- or infinite-dimensional separable Hilbert space. If A and B are Hermi- tian operators, then their operator product is not a Hermitian operator (unless they commute), and PoS(CORFU2018)100 neither is their commutator.
Recommended publications
  • 1 the Basic Set-Up 2 Poisson Brackets
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2016–2017, TERM 2 HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS These notes are intended to be read as a supplement to the handout from Gregory, Classical Mechanics, Chapter 14. 1 The basic set-up I assume that you have already studied Gregory, Sections 14.1–14.4. The following is intended only as a succinct summary. We are considering a system whose equations of motion are written in Hamiltonian form. This means that: 1. The phase space of the system is parametrized by canonical coordinates q =(q1,...,qn) and p =(p1,...,pn). 2. We are given a Hamiltonian function H(q, p, t). 3. The dynamics of the system is given by Hamilton’s equations of motion ∂H q˙i = (1a) ∂pi ∂H p˙i = − (1b) ∂qi for i =1,...,n. In these notes we will consider some deeper aspects of Hamiltonian dynamics. 2 Poisson brackets Let us start by considering an arbitrary function f(q, p, t). Then its time evolution is given by n df ∂f ∂f ∂f = q˙ + p˙ + (2a) dt ∂q i ∂p i ∂t i=1 i i X n ∂f ∂H ∂f ∂H ∂f = − + (2b) ∂q ∂p ∂p ∂q ∂t i=1 i i i i X 1 where the first equality used the definition of total time derivative together with the chain rule, and the second equality used Hamilton’s equations of motion. The formula (2b) suggests that we make a more general definition. Let f(q, p, t) and g(q, p, t) be any two functions; we then define their Poisson bracket {f,g} to be n def ∂f ∂g ∂f ∂g {f,g} = − .
    [Show full text]
  • Poisson Structures and Integrability
    Poisson Structures and Integrability Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver ∼ Hamiltonian Systems M — phase space; dim M = 2n Local coordinates: z = (p, q) = (p1, . , pn, q1, . , qn) Canonical Hamiltonian system: dz O I = J H J = − dt ∇ ! I O " Equivalently: dpi ∂H dqi ∂H = = dt − ∂qi dt ∂pi Lagrange Bracket (1808): n ∂pi ∂qi ∂qi ∂pi [ u , v ] = ∂u ∂v − ∂u ∂v i#= 1 (Canonical) Poisson Bracket (1809): n ∂u ∂v ∂u ∂v u , v = { } ∂pi ∂qi − ∂qi ∂pi i#= 1 Given functions u , . , u , the (2n) (2n) matrices with 1 2n × respective entries [ u , u ] u , u i, j = 1, . , 2n i j { i j } are mutually inverse. Canonical Poisson Bracket n ∂F ∂H ∂F ∂H F, H = F T J H = { } ∇ ∇ ∂pi ∂qi − ∂qi ∂pi i#= 1 = Poisson (1809) ⇒ Hamiltonian flow: dz = z, H = J H dt { } ∇ = Hamilton (1834) ⇒ First integral: dF F, H = 0 = 0 F (z(t)) = const. { } ⇐⇒ dt ⇐⇒ Poisson Brackets , : C∞(M, R) C∞(M, R) C∞(M, R) { · · } × −→ Bilinear: a F + b G, H = a F, H + b G, H { } { } { } F, a G + b H = a F, G + b F, H { } { } { } Skew Symmetric: F, H = H, F { } − { } Jacobi Identity: F, G, H + H, F, G + G, H, F = 0 { { } } { { } } { { } } Derivation: F, G H = F, G H + G F, H { } { } { } F, G, H C∞(M, R), a, b R. ∈ ∈ In coordinates z = (z1, . , zm), F, H = F T J(z) H { } ∇ ∇ where J(z)T = J(z) is a skew symmetric matrix. − The Jacobi identity imposes a system of quadratically nonlinear partial differential equations on its entries: ∂J jk ∂J ki ∂J ij J il + J jl + J kl = 0 ! ∂zl ∂zl ∂zl " #l Given a Poisson structure, the Hamiltonian flow corresponding to H C∞(M, R) is the system of ordinary differential equati∈ons dz = z, H = J(z) H dt { } ∇ Lie’s Theory of Function Groups Used for integration of partial differential equations: F , F = G (F , .
    [Show full text]
  • Split Octonions
    Split Octonions Benjamin Prather Florida State University Department of Mathematics November 15, 2017 Group Algebras Split Octonions Let R be a ring (with unity). Prather Let G be a group. Loop Algebras Octonions Denition Moufang Loops An element of group algebra R[G] is the formal sum: Split-Octonions Analysis X Malcev Algebras rngn Summary gn2G Addition is component wise (as a free module). Multiplication follows from the products in R and G, distributivity and commutativity between R and G. Note: If G is innite only nitely many ri are non-zero. Group Algebras Split Octonions Prather Loop Algebras A group algebra is itself a ring. Octonions In particular, a group under multiplication. Moufang Loops Split-Octonions Analysis A set M with a binary operation is called a magma. Malcev Algebras Summary This process can be generalized to magmas. The resulting algebra often inherit the properties of M. Divisibility is a notable exception. Magmas Split Octonions Prather Loop Algebras Octonions Moufang Loops Split-Octonions Analysis Malcev Algebras Summary Loops Split Octonions Prather Loop Algebras In particular, loops are not associative. Octonions It is useful to dene some weaker properties. Moufang Loops power associative: the sub-algebra generated by Split-Octonions Analysis any one element is associative. Malcev Algebras diassociative: the sub-algebra generated by any Summary two elements is associative. associative: the sub-algebra generated by any three elements is associative. Loops Split Octonions Prather Loop Algebras Octonions Power associativity gives us (xx)x = x(xx). Moufang Loops This allows x n to be well dened. Split-Octonions Analysis −1 Malcev Algebras Diassociative loops have two sided inverses, x .
    [Show full text]
  • Lecture 3 1.1. a Lie Algebra Is a Vector Space Along with a Map [.,.] : 多 多 多 Such That, [Αa+Βb,C] = Α[A,C]+Β[B,C] B
    Lecture 3 1. LIE ALGEBRAS 1.1. A Lie algebra is a vector space along with a map [:;:] : L ×L ! L such that, [aa + bb;c] = a[a;c] + b[b;c] bi − linear [a;b] = −[b;a] Anti − symmetry [[a;b];c] + [[b;c];a][[c;a];b] = 0; Jacobi identity We will only think of real vector spaces. Even when we talk of matrices with complex numbers as entries, we will assume that only linear combina- tions with real combinations are taken. 1.1.1. A homomorphism is a linear map among Lie algebras that preserves the commutation relations. 1.1.2. An isomorphism is a homomorphism that is invertible; that is, there is a one-one correspondence of basis vectors that preserves the commuta- tion relations. 1.1.3. An homomorphism to a Lie algebra of matrices is called a represe- tation. A representation is faithful if it is an isomorphism. 1.2. Examples. (1) The basic example is the cross-product in three dimensional Eu- clidean space. Recall that i j k a × b = a1 a2 a3 b1 b2 b3 The bilinearity and anti-symmetry are obvious; the Jacobi identity can be verified through tedious calculations. Or you can use the fact that any cross product is determined by the cross-product of the basis vectors through linearity; and verify the Jacobi identity on the basis vectors using the cross products i × j = k; j × k = i; k×i= j Under many different names, this Lie algebra appears everywhere in physics. It is the single most important example of a Lie algebra.
    [Show full text]
  • Universal Enveloping Algebras and Some Applications in Physics
    Universal enveloping algebras and some applications in physics Xavier BEKAERT Institut des Hautes Etudes´ Scientifiques 35, route de Chartres 91440 – Bures-sur-Yvette (France) Octobre 2005 IHES/P/05/26 IHES/P/05/26 Universal enveloping algebras and some applications in physics Xavier Bekaert Institut des Hautes Etudes´ Scientifiques Le Bois-Marie, 35 route de Chartres 91440 Bures-sur-Yvette, France [email protected] Abstract These notes are intended to provide a self-contained and peda- gogical introduction to the universal enveloping algebras and some of their uses in mathematical physics. After reviewing their abstract definitions and properties, the focus is put on their relevance in Weyl calculus, in representation theory and their appearance as higher sym- metries of physical systems. Lecture given at the first Modave Summer School in Mathematical Physics (Belgium, June 2005). These lecture notes are written by a layman in abstract algebra and are aimed for other aliens to this vast and dry planet, therefore many basic definitions are reviewed. Indeed, physicists may be unfamiliar with the daily- life terminology of mathematicians and translation rules might prove to be useful in order to have access to the mathematical literature. Each definition is particularized to the finite-dimensional case to gain some intuition and make contact between the abstract definitions and familiar objects. The lecture notes are divided into four sections. In the first section, several examples of associative algebras that will be used throughout the text are provided. Associative and Lie algebras are also compared in order to motivate the introduction of enveloping algebras. The Baker-Campbell- Haussdorff formula is presented since it is used in the second section where the definitions and main elementary results on universal enveloping algebras (such as the Poincar´e-Birkhoff-Witt) are reviewed in details.
    [Show full text]
  • Euclidean Jordan Algebras for Optimization
    Euclidean Jordan algebras for optimization Michael Orlitzky Euclidean Jordan algebras for optimization Michael Orlitzky Cover image by Vexels March 23, 2021 WARNING ¡ CUIDADO ! ACHTUNG This is a draft. It contains more or less correct proofs of statements that say more or less what they should. Beyond that, I make no promises. I’ve made many, many, many, many large-scale changes to notation without ever going back to proofread from page one. Caveat emptor. 1 Contents Contents2 Glossary5 1 Preface6 1.1 Notation notation........................... 10 I Fundamentals 11 2 Vector space structure 12 2.1 Algebraic building blocks...................... 12 2.2 Vector and Hilbert spaces...................... 17 2.3 Continuity and compactness..................... 26 2.4 Algebras................................ 29 2.5 Solutions to exercises......................... 33 3 Polynomials and power-associativity 35 3.1 Univariate polynomials........................ 35 3.2 Multivariate polynomials....................... 44 3.3 Polynomial ring embeddings..................... 56 3.4 Rational functions.......................... 58 3.5 Power-associative algebras...................... 60 3.6 Polynomial continuity........................ 63 3.7 Solutions to exercises......................... 68 4 Linear Algebra 72 4.1 Linear operators, matrix representation.............. 72 4.2 Eigenvalues and self-adjoint operators............... 76 4.3 Positive semi-definite operators................... 86 4.4 Characteristic and minimal polynomials.............. 87 4.5 Solutions
    [Show full text]
  • Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2018 Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula Nicholas Graner Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mathematics Commons Recommended Citation Graner, Nicholas, "Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula" (2018). All Graduate Theses and Dissertations. 7232. https://digitalcommons.usu.edu/etd/7232 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. CANONICAL COORDINATES ON LIE GROUPS AND THE BAKER CAMPBELL HAUSDORFF FORMULA by Nicholas Graner A thesis submitted in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE in Mathematics Approved: Mark Fels, Ph.D. Charles Torre, Ph.D. Major Professor Committee Member Ian Anderson, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School for Graduate Studies UTAH STATE UNIVERSITY Logan,Utah 2018 ii Copyright © Nicholas Graner 2018 All Rights Reserved iii ABSTRACT Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula by Nicholas Graner, Master of Science Utah State University, 2018 Major Professor: Mark Fels Department: Mathematics and Statistics Lie's third theorem states that for any finite dimensional Lie algebra g over the real numbers, there is a simply connected Lie group G which has g as its Lie algebra.
    [Show full text]
  • Arxiv:1412.2365V1 [Math.AG]
    POLARIZATION ALGEBRAS AND THEIR RELATIONS Ualbai Umirbaev1 Abstract. Using an approach to the Jacobian Conjecture by L.M. Dru˙zkowski and K. Rusek [12], G. Gorni and G. Zampieri [19], and A.V. Yagzhev [27], we describe a correspondence between finite dimensional symmetric algebras and homogeneous tuples of elements of polynomial algebras. We show that this correspondence closely relates Albert’s problem [10, Problem 1.1] in classical ring theory and the homogeneous de- pendence problem [13, page 145, Problem 7.1.5] in affine algebraic geometry related to the Jacobian Conjecture. We demonstrate these relations in concrete examples and formulate some open questions. Mathematics Subject Classification (2010): Primary 14R15, 17A40, 17A50; Sec- ondary 14R10, 17A36. Key words: the Jacobian Conjecture, polynomial mappings, homogeneous depen- dence, Engel algebras, nilpotent and solvable algebras. 1. Introduction The main objective of this paper is to connect two groups of specialists who are working on a closely connected problems and sometimes have intersections. Joining the efforts of these groups may be fruitful in studying the Jacobian Conjecture [13]. Namely, Albert’s problem [10, Problem 1.1] in classical ring theory and the homogeneous dependence prob- lem [13, page 145, Problem 7.1.5] in affine algebraic geometry are closely connected. Ring theory specialists are focused in studying only binary algebras and have some positive results in small dimensions. Affine algebraic geometry specialists have also some positive results in small dimensions and have some negative results for m-ary algebras if m ≥ 3. To make the subject more intriguing let’s start with two examples.
    [Show full text]
  • Arxiv:1808.03808V1 [Math.RA]
    THE UNIVERSALITY OF ONE HALF IN COMMUTATIVE NONASSOCIATIVE ALGEBRAS WITH IDENTITIES VLADIMIR G. TKACHEV Abstract. In this paper we will explain an interesting phenomenon which occurs in general nonasso- ciative algebras. More precisely, we establish that any finite-dimensional commutative nonassociative 1 algebra over a field satisfying an identity always contains 2 in its Peirce spectrum. We also show 1 that the corresponding 2 -Peirce module satisfies the Jordan type fusion laws. The present approach is based on an explicit representation of the Peirce polynomial for an arbitrary algebra identity. To work with fusion rules, we develop the concept of the Peirce symbol and show that it can be explicitly determined for a wide class of algebras. We also illustrate our approach by further applications to genetic algebras and algebra of minimal cones (the so-called Hsiang algebras). 1. Introduction Algebras whose associativity is replaced by identities were a central topic in mathematics in the 20th century, including the classical theory of Lie and Jordan algebras. Recall that an algebra is called Jordan if any two elements y,z ∈ A satisfy the following two identities: (1) zy − yz =0, (2) z((zz)y) − (zz)(zy)=0. The Peirce decomposition relative to an algebra idempotent is an important tool in the structure study of any nonassociative algebra. For example, the multiplication operator by an idempotent in a Jordan algebra is diagonalizable and the corresponding Peirce decomposition (relative to an idempotent c) into invariant subspaces 1 (3) A = Ac(0) ⊕ Ac(1) ⊕ Ac( 2 ) is compatible with the multiplication in the sense that the multiplication of eigenvectors is described by certain multiplication rules, also known as fusion laws.
    [Show full text]
  • On a Class of Malcev-Admissible Algebras
    47 J. Korean Math. Soc. Vo1.19, No. 1, 1982 ON A CLASS OF MALCEV-ADMISSIBLE ALGEBRAS by Youngso Ko and Hyo Chul Myung 1. Introduction For an algebra A over a field F, denote by A-the algebra with multiplication [x, y]=xy-yx defined on the same vector space as A, where juxtaposition xy is the product in A. Then A is termed Malcev-admissible if A-is a Malcev algebra; that is, the Malcev identity [[x, y], [x, z]]= [[[x, y], z], x]+[[[y, z], x], xJ+[[[z, xJ, xJ, yJ is satisfied for all x, y, zE A. An algebra A is called Lie-admissible if A-is a Lie algebra, namely, A- satisfies the Jacobi identity [[x, y], zJ + [[z, xJ, yJ + [[y, zJ, x] = 0 for x, y, zE A. It is well known that every Lie-admissible and alternative algebra is Malcev-admissible [8]. Thus a Malcev-admissible algebra is a natural generalization of Lie-admissible, alternative, and Malcev algebras. We assume hereafter that A is an algebra over F of characteristic =1= 2. Denote also by A+ the algebra with multiplication xoy= ~ (xy+yx) defined on the vector space A. The product xy in A is then given by xy= ~ [x, yJ+xoy. (1) Thus every Malcev algebra can occur as the attached algebra A-for a Malcev­ admissible algebra A by merely varying the commutative product xoy. This indicates that MaIcev-admissibility alone is too broad a condition to yield a fruitful structure theory. It has been shown that the flexible law (xy)x=x(yx) (2) for x, yEA is a useful restriction on A that imposes constraints on the product xoy and its relations with the product [, J.
    [Show full text]
  • Abraham Adrian Albert 1905-1972 by Nathan Jacobson
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 6, November 1974 ABRAHAM ADRIAN ALBERT 1905-1972 BY NATHAN JACOBSON Adrian Albert, one of the foremost algebraists of the world and Presi­ dent of the American Mathematical Society from 1965 to 1967, died on June 6, 1972. For almost a year before his death it had become apparent to his friends that his manner had altered from its customary vigor to one which was rather subdued. At first they attributed this to a letdown which might have resulted from Albert's having recently relinquished a very demanding administrative position (Dean of the Division of Physical Sciences at the University of Chicago) that he had held for a number of years. Eventually it became known that he was gravely ill of physical causes that had their origin in diabetes with which he had been afflicted for many years. Albert was a first generation American and a second generation Ameri­ can mathematician following that of E. H. Moore, Oswald Veblen, L. E. Dickson and G. D. Birkhoff. His mother came to the United States from Kiev and his father came from England.1 The father had run away from his home in Yilna at the age of fourteen, and on arriving in England, he discarded his family name (which remains unknown) and took in its place the name Albert after the prince consort of Queen Victoria. Albert's father was something of a scholar, with a deep interest in English literature. He taught school for a while in England but after coming to the United States he became a salesman, a shopkeeper, and a manufacturer.
    [Show full text]
  • 3-Lie Superalgebras Induced by Lie Superalgebras
    axioms Article 3-Lie Superalgebras Induced by Lie Superalgebras Viktor Abramov Institute of Mathematics and Statistics, University of Tartu, 50409 Tartu, Estonia; [email protected]; Tel.: +372-737-5872 Received: 21 November 2018; Accepted: 31 January 2019; Published: 11 February 2019 Abstract: We show that given a Lie superalgebra and an element of its dual space, one can construct the 3-Lie superalgebra. We apply this approach to Lie superalgebra of (m, n)-block matrices taking a supertrace of a matrix as the element of dual space. Then we also apply this approach to commutative superalgebra and the Lie superalgebra of its derivations to construct 3-Lie superalgebra. The graded Lie brackets are constructed by means of a derivation and involution of commutative superalgebra, and we use them to construct 3-Lie superalgebras. Keywords: Lie superalgebra; supertrace; commutative superalgebra; 3-Lie superalgebra MSC: 17B60; 17B66 1. Introduction A generalization of Hamiltonian mechanics, in which a ternary analog of Poisson bracket appears in a natural way, was proposed by Nambu in [1]. In this generalization of Hamiltonian mechanics, the right-hand side of analog of Hamilton equation is the ternary bracket of functions and two of these three functions play role of Hamiltonians. The ternary bracket at the right-hand side of analog of Hamilton equation is called a Nambu-Poisson bracket. Filippov in [2] proposed a notion of n-Lie algebra, which can be considered as an extension of the concept of binary Lie bracket to n-ary brackets. The basic component of a notion of n-Lie algebra, proposed by Filippov, is the generalization of Jacobi identity, which is now called Filippov-Jacobi or fundamental identity.
    [Show full text]