Drive & Control Technology for Wind Turbines

Total Page:16

File Type:pdf, Size:1020Kb

Drive & Control Technology for Wind Turbines Drive & Control Technology for Wind Turbines The Drive & Control Company 2 Technology for Wind Turbines | Product Overview Everything is Going Round: Drive & Control Technology Wind energy continues on its Broad Range of Supplies road to success by greatly No matter whether the traditional increasing its share in electri- concept comprising rotor, gear- cal power production on a box, generator or a direct-drive worldwide basis. The nominal solution is involved: Rexroth offers power of wind turbines has matching gearbox and hydraulics risen from 100 kW to 3,000 kW. solutions for any type of wind Now the first 5-MW installa- turbine. Within our mechanical tions are harvesting power. drive technology segment we Rexroth as producer of hydrau- develop and manufacture all types lic and gear technology sys- of gearboxes required for wind tems is a competent partner turbine installations: efficient and comprehensive supplier generator gearboxes, highly precise to manufacturers of wind yaw drives for permanent wind turbines. tracking purposes and compact pitch drives used for rotor blade adjustment. Being the world’s leading supplier of industrial hydraulic equipment we also offer hydraulic solutions for wind energy applications: our supply range includes highly dyna- mic hydraulic pitch adjustment systems, reliable drive train brakes as well as yaw drive brakes. Bosch Rexroth. 4 The Drive & Control Company Rotor Blade Adjustment 6 Electromechanical 7 Rotor Blade Adjustment Hydraulic 8 Rotor Blade Adjustment Generator Gearboxes 10 for Systems up to 2,000 kW Differential Gearboxes 12 for Multi-Megawatt Turbines Yaw Drives 14 Yaw and Drive Train Brakes 16 Service 18 4 Technology for Wind Turbines A Company on the Upswing: Good Reasons for Rexroth Drive systems to be incor- Experience and Know-how Competence in Marketing porated in wind turbines must For about 100 years Rexroth have and Design satisfy many specific needs: been producing drive system com- The importance of industry- Variable wind loads, higher ponents. Already in the early specific drive system solutions is outputs, less available instal- nineties we built gearboxes for 3.2- steadily growing. Rexroth has taken lation space and minimum MW turbines and thus were among these trends into account by having weights are just a few techni- those that from the beginning took established market-oriented appli- cal requirements designers part in the technical development cation centers. In the application and engineers must observe of wind turbines. Long-standing center renewable energies, product aside from climatically induced contacts with leading universities experts are at your disposal, who strains. and renowned antifriction bearing are not only specialized in drive manufacturers help us to improve technology and hydraulics, but are our products on a constant basis. also familiar with the specifics of Rexroth concentrates its know-how your application. This enables us and technical expertise in its wind to provide tailored solutions for energy product sector and thus each wind turbine project. strengthens its position as sought- after partner of wind turbine manu- Being able to offer customer-specific facturers. engineering services is thus one of our strong points. The advantages our clients can thus expect from us are the result of decades of experi- ence with planetary gears and Simulation hydraulic components as well as our innovative power. Moreover, unpleasant surprises may be avoided thanks to our know-how in engin- eering, manufacturing and testing. Before a complex component is actually manufactured, we have made sophisticated FEM calcula- tions. Rexroth gearboxes are designed for maximum safety and reliability. In their design and development activities, our experienced engin- eers are assisted by modern com- puter software for gearing design and component optimization. Measurements on built-in proto- milling and grinding operations Heat treatment types are performed based on many involved in the manufacture of years of experience. In the field gearbox components and gear teeth we carry out, for example, air- is continually being further devel- and structure-borne noise as well oped and forms the basis of the as torque and load measurements. highest possible product quality. Rexroth invests systematically in Top Performance from advanced production machinery to Start to Finish ensure maximum quality and We know that quality greatly economic efficiency. depends on selecting the right suppliers. Therefore, our suppliers On our test benches all our com- must satisfy the same high stan- ponents are checked to most dards we have adopted. Quality stringent quality criteria prior to also means doing things right from shipment. In our manufacturing the start: from machining, to heat facilities we subject our generator treatment and assembly, including gearboxes to full-load tests up to a inspection, painting and shipment. nominal power of 5 MW; special In this context, our quality man- test configurations may be set up agement system to DIN EN ISO to comply with customer specifica- Grinding 9001:2000 is the basis and guarantor tions. Advanced software packages of a consistently high quality level. enable temperature and noise Another area of major concern to characteristics to be recorded. Assembly of REDULUS GPV Rexroth is environmental protec- tion. For many years we have also been operating an environmental management system to DIN EN ISO 14001 at our locations. Modern heat treatment methods have a decisive impact on the quality of gearings and components. Our vast experience in heat treatment technology is a most significant quality factor ensuring our gear- boxes meet maximum standards in terms of strength, load-carrying capacity, compactness and service life. The know-how we have gained over several decades in the various 6 Technology for Wind Turbines | Pitch Drives MOBILEX GFB Facing the Wind Optimally: Rexroth Solutions for Rotor Blade Adjustment 100 m above ground. A strong wind is blowing at this height. The pitch drives of the wind turbines – com- pactly arranged at the root of the three rotor blades – constantly rotate with the rotor and make sure the blades are correctly po- sitioned. They must meet highest requirements with respect to de- sign and functional safety. Aside from reliability, precise position- ing is of utmost importance. By providing both hydraulic and electromechanical pitch drives, Rexroth is capable of satisfying these technical needs. Technology for Wind Turbines | Electromechanical Pitch Drives MOBILEX GFB 7 MOBILEX GFB Pitch Drives The Rexroth supply scope includes a complete range of MOBILEX GFB planetary gearboxes for all wind turbine sizes. To this end we can draw on 40 years of experience in the manufacture of swing gears for mobile equipment, such as exca- vators or cranes. The proven tech- nological solutions in that field have been advanced to electro- mechanical pitch drives. The pitch drive supply range spans from small, two-stage planetary gears with output torques of about 1 kNm and ratios of 60:1 to three-stage types featuring output torques of about 20 kNm and ratios of 200:1. These space-saving drives consist of a compact two- or three-stage planetary gear unit equipped with output pinion and electric motor. Since electromechanical pitch drives are constantly rotating together with the rotor hub they are provided with special seal sys- tems. Where confined mounting Technical Features situations are encountered, an MOBILEX GFB Pitch Drives: angle-type input gear stage is avail- • Output torques from able as necessary. 1 to 20 kNm • Ratios ranging between 60 – 200 • Compact, space-saving two or three-stage planetary gearboxes • Optional bevel gear stage • Sturdy antifriction bearing • For the attachment of electric motors • Easy to install • Convenient oil change • Low-noise running charac- teristics 8 Technology for Wind Turbines | Hydraulic Pitch Drives Hydraulic Pitch Control The hydraulic pitch drive com- bines all desirable characteristics in a single system: high positioning forces, compact size, distributed intelligence, high dynamics as well as long service life and reliability. Plug & Play After assembly all pitch drives are checked for correct functioning on the test bed. Moreover, our staff makes sure all electrical modules are attuned to each other. This enables the pitch drives to be mounted and put into operation as soon as they arrive on site. Thus complex matching of signals and other electrical characteristics can be dispensed with – plug & play. Fail-Safe Properties The Fail-Safe operation of the individual pitch drives is achieved by establishing logical connectives between the individual hydraulic components. 9 Lead-in Their functions are based on purely High-quality hydraulic compo- mechanical principles and are nents from company-own fabri- highly reliable. Nevertheless, should cation, amply sized filters for highest complications arise all the same, oil purity as well as coolers and the rotor blade, powered by hydrau- heaters ensuring optimum operat- lic accumulators, will move into ing temperature are prerequisite to the safe end position without ex- a long service life. ternal control action being neces- sary. Using hydraulically pressure- controlled variable displacement Distributed Intelligence pumps in conjunction with hy- Proportional valves with inherent draulic accumulators results in processors and storage modules high actuating forces and spare are capable of performing all neces- capacity
Recommended publications
  • SRI: Wind Power Generation Project Main Report
    Environment Impact Assessment (Draft) May 2017 SRI: Wind Power Generation Project Main Report Prepared by Ceylon Electricity Board, Ministry of Power and Renewable Energy, Democratic Socialist Republic of Sri Lanka for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 17 May 2017) Currency unit – Sri Lankan rupee/s(SLRe/SLRs) SLRe 1.00 = $0.00655 $1.00 = SLRs 152.70 ABBREVIATIONS ADB – Asian Development Bank CCD – Coast Conservation and Coastal Resource Management Department CEA – Central Environmental Authority CEB – Ceylon Electricity Board DoF – Department of Forest DS – District Secretary DSD – District Secretaries Division DWC – Department of Wildlife Conservation EA – executing agency EIA – environmental impact assessment EMoP – environmental monitoring plan EMP – environmental management plan EPC – engineering,procurement and construction GND – Grama Niladhari GoSL – Government of Sri Lanka GRM – grievance redress mechanism IA – implementing agency IEE – initial environmental examination LA – Local Authority LARC – Land Acquisition and Resettlement Committee MPRE – Ministry of Power and Renewable Energy MSL – mean sea level NARA – National Aquatic Resources Research & Development Agency NEA – National Environmental Act PIU – project implementation unit PRDA – Provincial Road Development Authority PUCSL – Public Utility Commission of Sri Lanka RDA – Road Development Authority RE – Rural Electrification RoW – right of way SLSEA – Sri Lanka Sustainable Energy Authority WT – wind turbine WEIGHTS AND MEASURES GWh – 1 gigawatt hour = 1,000 Megawatt hour 1 ha – 1 hectare=10,000 square meters km – 1 kilometre = 1,000 meters kV – 1 kilovolt =1,000 volts MW – 1 megawatt = 1,000 Kilowatt NOTE In this report, “$” refers to US dollars This environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature.
    [Show full text]
  • Structure, Equipment and Systems for Offshore Wind Farms on the OCS
    Structure, Equipment and Systems for Offshore Wind Farms on the OCS Part 2 of 2 Parts - Commentary pal Author, Houston, Texas Houston, Texas pal Author, Project No. 633, Contract M09PC00015 Prepared for: Minerals Management Service Department of the Interior Dr. Malcolm Sharples, Princi This draft report has not been reviewed by the Minerals Management Service, nor has it been approved for publication. Approval, when given, does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Offshore : Risk & Technology Consulting Inc. December 2009 MINERALS MANAGEMENT SERVICE CONTRACT Structure, Equipment and Systems for Offshore Wind on the OCS - Commentary 2 MMS Order No. M09PC00015 Structure, Equipment and Systems: Commentary Front Page Acknowledgement– Kuhn M. (2001), Dynamics and design optimisation of OWECS, Institute for Wind Energy, Delft Univ. of Technology TABLE OF CONTENTS Authors’ Note, Disclaimer and Invitation:.......................................................................... 5 1.0 OVERVIEW ........................................................................................................... 6 MMS and Alternative Energy Regulation .................................................................... 10 1.1 Existing Standards and Guidance Overview..................................................... 13 1.2 Country Requirements. ....................................................................................
    [Show full text]
  • Exhibit 11R Drawings and Specifications of Gamesa Eolica
    Exhibit 11R Drawings and Specifications of Gamesa Eolica Wind Turbines The Applicant plans to use Gamesa G90 Wind Turbines at the Marble River Wind Farm (see enclosure #1, press announcement of purchase of Gamesa turbines). Gamesa is a leading company in the design, manufacturing, installation, operation and maintenance of wind turbines. In 2004, Gamesa was ranked second worldwide in a ranking of the Top 10 wind turbine manufacturers by BTM Consult, with a market share of 18.1%. In Spain, Gamesa Eólica is the leading manufacturer and supplier of wind turbines, with a market share of 56.8% in 2004. One of the partners in the Marble River Wind Farm, Acciona, has had a significant and successful history with Gamesa turbines. Gamesa has used the experience gained in its home market to develop a robust, adaptable wind turbine suitable for most wind conditions in the USA. Gamesa Wind US will carry out a major portion of the manufacturing of the wind turbines planned for Marble River in the Mid-Atlantic region, where Gamesa is already active in development and construction of wind energy projects. Gamesa G90 The Gamesa G90 is a 2-MW, three-bladed, upwind pitch regulated and active yaw wind turbine. The G90 has a blade length of 44m which, when added to the diameter of the hub, gives a total diameter of 90m and a swept area of 6362m2. The turbine blades are bolted to a hub at the low speed end of a 1:120 ratio gear box. Enclosure #2, G90-2.0MW, contains a picture of the G90 with a summary of the technical data.
    [Show full text]
  • U.S. Offshore Wind Manufacturing and Supply Chain Development
    U.S. Offshore Wind Manufacturing and Supply Chain Development Prepared for: U.S. Department of Energy Navigant Consulting, Inc. 77 Bedford Street Suite 400 Burlington, MA 01803-5154 781.270.8314 www.navigant.com February 22, 2013 U.S. Offshore Wind Manufacturing and Supply Chain Development Document Number DE-EE0005364 Prepared for: U.S. Department of Energy Michael Hahn Cash Fitzpatrick Gary Norton Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Lisa Frantzis Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant Consortium member organizations Key Contributors American Wind Energy Association Jeff Anthony and Chris Long Great Lakes Wind Collaborative John Hummer and Victoria Pebbles Green Giraffe Energy Bankers Marie DeGraaf, Jérôme Guillet, and Niels Jongste National Renewable Energy Laboratory David Keyser and Eric Lantz Ocean & Coastal Consultants (a COWI company) Brent D. Cooper, P.E., Joe Marrone, P.E., and Stanley M. White, P.E., D.PE, D.CE Tetra Tech EC, Inc. Michael D. Ernst, Esq. Notice and Disclaimer This report was prepared by Navigant Consulting, Inc. for the use of the U.S. Department of Energy – who supported this effort under Award Number DE-EE0005364. The work presented in this report represents our best efforts and judgments based on the information available at the time this report was prepared. Navigant Consulting, Inc. is not responsible for the reader’s use of, or reliance upon, the report, nor any decisions based on the report. NAVIGANT CONSULTING, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.
    [Show full text]
  • Wind Power Technology Knowledge Sharing, Provided by SKF 28
    EVOLUTION A SELECTION OF ARTICLES PREVIOUSLY PUBLISHED IN EVOLUTION, A BUSINESS AND TECHNOLOGY MAGAZINE FROM SKF WIND POWER TECHNOLOGY KNOWLEDGE SHARING, PROVIDED BY SKF 28 30 ContentsA selection of articles previously published in Evolution, a business and technology magazine issued by SKF. 03 Robust measures Premature bearing failures in wind gearboxes 32 14 and white etching cracks. 14 Dark forces How black oxide-coated bearings can make an impact on cutting O&M costs for wind turbines. 20 A flexibile choice SKF’s high-capacity cylindrical roller bearings are specifically designed for wind turbine gearbox applications. 23 Marble arts Developments in ceramic bearing balls for high- performance applications. 28 Wind powering the US The United States is increasingly looking to the skies to find new energy. 30 Spin doctors Engineering company Sincro Mecánica helps to make sure ageing turbines stay productive at Spain’s leading wind farms. 32 Improved efficiency A successfull cooperation of companies within the SKF Group has led to the development of an improved pump unit for centralized lubrication 20 systems. 2 evolution.skf.com 3 PHOTO: ISTOCKPHOTO Premature bearing failures in wind gearboxes and white etching cracks (WEC) Wind turbine gearboxes are subjected to a wide variety of operating conditions, some of which may push the bearings beyond their limits. Damage may be done to the bearings, resulting in a specific premature failure mode known as white etching cracks (WEC), sometimes called brittle, short-life, early, abnormal or white structured flaking (WSF). Measures to make the bearings more robust in these operating conditions are discussed in this article.
    [Show full text]
  • Partially Enclosed Vertical Axis Wind Turbine
    WORCESTER POLYTECHNIC INSTITUTE PROJECT ID: BJS – WS14 Partially Enclosed Vertical Axis Wind Turbine Major Qualifying Project 2013-2014 Paige Archinal, Jefferson Lee, Ryan Pollin, Mark Shooter 4/24/2014 1 Acknowledgments We would like to thank Professor Brian Savilonis for his guidance throughout this project. We would like to thank Herr Peter Hefti for providing and maintaining an excellent working environment and ensuring that we had everything we needed. We would especially like to thank Kevin Arruda and Matt Dipinto for their manufacturing expertise, without which we would certainly not have succeeded in producing a product. 2 Abstract Vertical Axis Wind Turbines (VAWTs) are a renewable energy technology suitable for low-speed and multidirectional wind environments. Their smaller scale and low cut-in speed make this technology well-adapted for distributed energy generation, but performance may still be improved. The addition of a partial enclosure across half the front-facing swept area has been suggested to improve the coefficient of performance, but it undermines the multidirectional functionality. To quantify its potential gains and examine ways to mitigate the losses of unidirectional functionality, a Savonius blade VAWT with an independently rotating enclosure with a passive tail vane control was designed, assembled, and experimentally tested. After analyzing the output of the system under various conditions, it was concluded that this particular enclosure shape drastically reduces the coefficient of performance of a VAWT with Savonius blades. However, the passive tail vane rotated the enclosure to the correct orientation from any offset position, enabling the potential benefits of an advantageous enclosure design in multidirectional wind environments.
    [Show full text]
  • Wind Turbine Technology
    Wind Energy Technology WhatWhat worksworks && whatwhat doesndoesn’’tt Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines Disadvantages Advantages • Rotors generally near ground • Omnidirectional where wind poorer – Accepts wind from any • Centrifugal force stresses angle blades • Components can be • Poor self-starting capabilities mounted at ground level • Requires support at top of – Ease of service turbine rotor • Requires entire rotor to be – Lighter weight towers removed to replace bearings • Can theoretically use less • Overall poor performance and materials to capture the reliability same amount of wind • Have never been commercially successful Lift vs Drag VAWTs Lift Device “Darrieus” – Low solidity, aerofoil blades – More efficient than drag device Drag Device “Savonius” – High solidity, cup shapes are pushed by the wind – At best can capture only 15% of wind energy VAWT’s have not been commercially successful, yet… Every few years a new company comes along promising a revolutionary breakthrough in wind turbine design that is low cost, outperforms anything else on the market, and overcomes WindStor all of the previous problems Mag-Wind with VAWT’s. They can also usually be installed on a roof or in a city where wind is poor. WindTree Wind Wandler Capacity Factor Tip Speed Ratio Horizontal Axis Wind Turbines • Rotors are usually Up-wind of tower • Some machines have down-wind rotors, but only commercially available ones are small turbines Active vs. Passive Yaw • Active Yaw (all medium & large turbines produced today, & some small turbines from Europe) – Anemometer on nacelle tells controller which way to point rotor into the wind – Yaw drive turns gears to point rotor into wind • Passive Yaw (Most small turbines) – Wind forces alone direct rotor • Tail vanes • Downwind turbines Airfoil Nomenclature wind turbines use the same aerodynamic principals as aircraft Lift & Drag Forces • The Lift Force is perpendicular to the α = low direction of motion.
    [Show full text]
  • State of the Art of Aerolastic Codes for Wind Turbine Calculations
    PH* o S & %,N f=JT - 2>*f - - MZL INTERNATIONAL ENERGY AGENCY Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems ANNEX XI 28th Meeting of Experts State of the Art of Aerolastic Codes for Wind Turbine Calculations Lyngby, April 11-12,1996 Organized by : The Technical University of Denmark IS unlimited Scientific Coordination : B. Maribo Pedersen Dept, of Fluid Mechanics Technical University of Denmark jMfiXCimjxiow-^cjruiejt304MjuuMCJM3CJ»-ju^ww---^ INTERNATIONAL ENERGY AGENCY Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems ANNEX XI C D h) \r - 9G o tj f(jG — <U iETqr - O - -oH Ji G 28th Meeting of Experts State of the Art of Aerolastic Codes for Wind Turbine Calculations Lyngby, April 11-12,1996 Organized by : The Technical University of Denmark asffiBUimoFiHns %y-S Scientific Coordination : B. Maribo Pedersen Dept, of Fluid Mechanics Technical University of Denmark ISSN 0590-8809 r - DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. I CONTENTS page B. MAREBO PEDERSEN 1 Introductory Note D.C.QUARTON 3 Calculation of Wind Turbine Aeroelastic Behaviour The Garrad Hassan Approach C. LINDENBURG 13 Results of the PHATAS-m Development ALAN D. WRIGHT 25 Aeroelastic Code Development Activities in the United States L. N.FREEMAN and R.E.WILSON 37 The FAST Code G.GIANNAKIDIS and J.M.R.GRAHAM 57 Prediction of H.A.W.T. Blade Stall and Performance STIG 0YE 71 FLEX 4, Simulation of Wind Turbine Dynamics HANS GANANDER 77 The VIDYN - Story M.
    [Show full text]
  • 2010 – Trondheim, Norway
    European Academmy of Wind Energy 6th PhD Seminar on ceedings o Wind Energgy in Europe NTNU Trondheim, Norway 30th September and 1st October 2010 Seminar Pr NTNU EAWE y of Wind Energy y e and e Technology c m European Acade n University of Scien n Norwegia European Academy of Wind Energy Norwegian University of Science and Technology Seminar Proceedings 6th EAWE PhD Seminar on Wind Energy in Europe Norwegian University of Science and Technology (NTNU) 30th September and 1st October 2010 Trondheim, Norway Organised by NTNU for European Academy of Wind Energy (EAWE) Trondheim, September 2010 European Academy of Wind Energy Norwegian University of Science and Technology EAWE Steering Committee President: Mr. Félix Avia Aranda National Renewable Energy Centre (CENER), Spain Vice President: Prof. Peter Tavner Durham University, UK Secretary: Maren Wagner Local Organising Committee Chair: Prof. Geir Moe NTNU, Norway Editors: Mr. Daniel Zwick NTNU, Norway Ms. Marit Irene Kvittem NTNU, Norway Mr. Raymundo Torres Olguin NTNU, Norway 1st Edition, Trondheim, Norwegian University of Science and Technology, 2010 Printed: 150 copies Press date: September 2010 © Copyright 2010 by paper authors Contents 1 Session 1 - Introduction to Wind Energy 1 1.1 Hybrid life-cycle assessment of wind power . .3 1.2 Wind energy research in the age of massively parallel computers . .7 1.3 The correlation between Wind Turbine Turbulence and Failure - Pre- liminary Work . 11 1.4 Forecasting of wind turbine loads based on SCADA data . 17 2 Session 2 - Control and Design of Wind Turbines 23 2.1 Optimal Operation Planning for Wind Farms . 25 2.2 Yaw stability of a free-yawing 3-bladed downwind wind turbine .
    [Show full text]
  • Technical Documentation Wind Turbine Generator Systems 2MW Platform - Onshore
    GE Renewable Energy - Original Document - Technical Documentation Wind Turbine Generator Systems 2MW Platform - Onshore Technical Description and Data Applicable for Wind Turbine Generators from 2.0 MW to 2.8 MW with 116 m and 127 m Rotor Diameter Rev. 05 - EN 2018-12-13 imagination at work © 2018 General Electric Company. All rights reserved. GE Renewable Energy - Original Document - Visit us at www.gerenewableenergy.com All technical data is subject to change in line with ongoing technical development! Copyright and patent rights This document is to be treated confidentially. It may only be made accessible to authorized persons. It may only be made available to third parties with the expressed written consent of General Electric Company. All documents are copyrighted within the meaning of the Copyright Act. The transmission and reproduction of the documents, also in extracts, as well as the exploitation and communication of the contents are not allowed without express written consent. Contraventions are liable to prosecution and compensation for damage. We reserve all rights for the exercise of commercial patent rights. 2018 General Electric Company. All rights reserved. GE and the GE Monogram are trademarks and service marks of General Electric Company. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies. imagination at work General_Description_2.0-2.8-116_127-xxHz_2MW_EN_r05.docx GE Renewable Energy - Original Document - Technical Description and Data Table
    [Show full text]
  • Selection Guidelines for Wind Energy Technologies
    energies Review Selection Guidelines for Wind Energy Technologies A. G. Olabi 1,2,*, Tabbi Wilberforce 2, Khaled Elsaid 3,* , Tareq Salameh 1, Enas Taha Sayed 4,5, Khaled Saleh Husain 1 and Mohammad Ali Abdelkareem 1,4,5,* 1 Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] (T.S.); [email protected] (K.S.H.) 2 Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK; [email protected] 3 Chemical Engineering Program, Texas A & M University at Qatar, Doha P.O. Box 23874, Qatar 4 Centre for Advanced Materials Research, University of Sharjah, Sharjah 27272, United Arab Emirates; [email protected] 5 Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 615193, Egypt * Correspondence: [email protected] (A.G.O.); [email protected] (K.E.); [email protected] (M.A.A.) Abstract: The building block of all economies across the world is subject to the medium in which energy is harnessed. Renewable energy is currently one of the recommended substitutes for fossil fuels due to its environmentally friendly nature. Wind energy, which is considered as one of the promising renewable energy forms, has gained lots of attention in the last few decades due to its sustainability as well as viability. This review presents a detailed investigation into this technology as well as factors impeding its commercialization. General selection guidelines for the available wind turbine technologies are presented. Prospects of various components associated with wind energy conversion systems are thoroughly discussed with their limitations equally captured in this report.
    [Show full text]
  • Investigation of Wind Mill Yaw Bearing Using E-Glass Material
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Website: www.ijirset.com Vol. 6, Issue 9, September 2017 Investigation of Wind Mill Yaw Bearing Using E-Glass Material Maharshi Singh, L.Natrayan, M.Senthil Kumar. School of Mechanical and Building Sciences, VIT University, Chennai, Tamilnadu, India. ABSTRACT: Wind-turbine yaw drive endures to display a high rate of rapid failure in meanness of use of the best in current design performs. Subsequently yaw bearing is one of the priciest components of a yaw drive in wind turbine, higher-than-expected failure tariffsgrowth cost of energy. Supreme of the difficulties in wind-turbine yaw drive appear to discharge from bearings. Yaw bearing is located between the Tower and Nacelle portion of the Wind Turbine and slews shadow the wind way.The modelling of yaw bearing is done using Pro-E and fatigue life and static loading capacity are investigated by ANSYS. There is a gear positioned on the outer ring of the bearing and the Yaw Drive Motor is mated with this gear. The gear controls the angle control relative to the direction of the wind. This bearing gathering consists of an Outer ring, Inner ring, balls, and seal. Surviving yaw bearing made up of Carbon and Low Alloyed steels, High Alloyed Steels and Super Alloys. In this yaw bearing constitutes fairly accurate 25 tons of weight. So we categorical to diminish the weight of yaw bearings using composite materials. KEYWORDS:Yaw Bearing,Composite Material, Ansys, Fatigue Life, Yaw Drive, Static Load.
    [Show full text]