Regeneration Guidelines: Major Aroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baggage Inspection Required for Travelers Going from Puerto Rico to the U.S
Baggage Inspection Required for Travelers Going From Puerto Rico to the U.S. Mainland USDA’s Animal and Plant Health Inspection Service Puerto Rico to the U.S. mainland at the airport prior to (APHIS) prohibits or restricts the movement of many your departure. Please be prepared to open and close agricultural products from Puerto Rico to the U.S. your own bags. If you have any fresh fruits or vegetables, mainland. These products include pork and pork products, plants, flowers, souvenirs made from plants or wood, most fresh fruits and vegetables, and certain types of or other agricultural products with you, please tell the plants and flowers. That’s because these items could inspector. Failure to declare these items can result in harbor a dangerous stowaway—an invasive pest or delays and possible issuance of civil penalties ranging disease. Just one piece of fruit or a single plant that is from $100 to $1,000 per violation. In addition, if you wish carrying an invasive pest or disease could cause millions to ship or mail agricultural items that are allowed into the of dollars in damage, expensive eradication efforts, and U.S. mainland, they must be inspected and/or certified by lost trade revenue. APHIS before you take them to an airline cargo office, the post office, or other courier service. To prevent the spread of invasive pests and diseases, APHIS inspects all passenger bags moving from Agricultural Items From Puerto Rico Allowed into the U.S. Mainland After Inspection n Allium spp. (includes lima, string)—have n Chamomile, Anthemis n Dandelion greens onion, garlic, and geographic restrictions. -
Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food. -
Taro: Postharvest Quality-Maintenance Guidelines
Vegetable and Root Crops January 2015 VC-5 Taro: Postharvest Quality-Maintenance Guidelines Robert E. Paull1 and Ching Cheng Chen2 1Department of Tropical Plant and Soil Sciences, University of Hawai‘i at Mänoa 2Department of Horticulture, National Chung-Hsing University, Taichung, Taiwan aro is one of the oldest food crops, widely dis- tributed throughout tropical Africa, Asia, and the Pacific.T It is the fifth most important root crop grown in the world. There is also substantial production in Egypt and the Caribbean (O’Hare and Asokan 1986). The root, also called a corm or tuber, as well as the petioles and leaves are consumed. All parts of the plant must be cooked prior to eating because of the acridity associ- ated with a compound on the calcium oxalate crystals (raphides) that it contains (Paull et al. 1999). The corm is high in starch and low in protein and fat. The plant is also known as kalo, tannier, malanga, dasheen, ed- doe, and cocoyam. There are numerous varieties (up to 600), in which corm flesh color varies from white to yellow, orange, and red, to purple. In Hawai‘i, the most From Lebot (2009); used with the permission of the common variety sold to consumers is the Chinese type author. ‘Bun-Long’ or ‘Bin Liang’, which has white flesh with obvious purple fibers and lower acridity than other varieties. For poi, ‘Lehua Maoli’, with its purplish flesh smaller taro type possesses some degree of dormancy, and dark purple fibers, is common. while there is no dormancy in the larger taro corms. -
Eating Puerto Rico: a History of Food, Culture, and Identity
Diálogo Volume 18 Number 1 Article 23 2015 Eating Puerto Rico: A History of Food, Culture, and Identity Rafael Chabrán Whittier College Follow this and additional works at: https://via.library.depaul.edu/dialogo Part of the Latin American Languages and Societies Commons Recommended Citation Chabrán, Rafael (2015) "Eating Puerto Rico: A History of Food, Culture, and Identity," Diálogo: Vol. 18 : No. 1 , Article 23. Available at: https://via.library.depaul.edu/dialogo/vol18/iss1/23 This Book Review is brought to you for free and open access by the Center for Latino Research at Via Sapientiae. It has been accepted for inclusion in Diálogo by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. Eating Puerto Rico: A History of Food, Culture, and Identity By Cruz Miguel Ortíz Cuadra. Tr. Russ Davidson. Chapel Hill: University of North Carolina Press, 2013. 408 pp. isbn 978-1469608822 he original edition, Puerto Rico en su olla, ¿somos on the Caribbean, especially in terms of the definition of Taún lo que comimos?, published by Cruz Miguel “cuisine.” From Montanari (2003), he takes the notion that Ortíz Cuadra in 2006, publisher Doce Calles, in Aranjuez, food (and cuisine) is an extraordinary vehicle for self-rep- Madrid, was a rich tour de force by a food historian and resentation, community, and identity.5 To this recipe, he Professor of Humanities in the Department of Human- adds Fischler (1995) and Mintz’s definitions of cuisine ities at the University of Puerto Rico, Humacao. He is as: the familiarity with specific foodstuffs, techniques for an authority on the history of food, food habits and diet cooking as the culinary rules of a given community, and of Puerto Rico.1 Now an excellent English translation is the application of those rules in cooking.6 available, from the UNC series “Latin America in Transla- Ortíz Cuadra also concentrates on other central tion.” The book includes a Foreword by Ángel G. -
Genetic Diversity and Population Structure of Eddoe Taro in China Using Genome-Wide SNP Markers
Genetic diversity and population structure of eddoe taro in China using genome-wide SNP markers Zhixin Wang*, Yalin Sun*, Xinfang Huang, Feng Li, Yuping Liu, Honglian Zhu, Zhengwei Liu and Weidong Ke Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China * These authors contributed equally to this work. ABSTRACT Taro (Colocasia esculenta) is an important root and tuber crop cultivated worldwide. There are two main types of taro that vary in morphology of corm and cormel, `dasheen' and `eddoe'. The eddoe type (Colocasia esculenta var. antiquorium) is predominantly distributed throughout China. Characterizing the genetic diversity present in the germplasm bank of taro is fundamental to better manage, conserve and utilize the genetic resources of this species. In this study, the genetic diversity of 234 taro accessions from 16 provinces of China was assessed using 132,869 single nucleotide polymorphism (SNP) markers identified by specific length amplified fragment-sequencing (SLAF-seq). Population structure and principal component analysis permitted the accessions to be categorized into eight groups. The genetic diversity and population differentiation of the eight groups were evaluated using the characterized SNPs. Analysis of molecular variance showed that the variation among eight inferred groups was higher than that within groups, while a relatively small variance was found among the two morphological types and 16 collection regions. Further, a core germplasm set comprising 41 taro acces- sions that maintained the genetic diversity -
Araceae) from South America and Notes on the Tribe Caladieae
Willdenowia 35 – 2005 333 JOSEF BOGNER & EDUARDO G. GONÇALVES Two new species of Xanthosoma (Araceae) from South America and notes on the tribe Caladieae Abstract Bogner, J. & Gonçalves, E. G.: Two new species of Xanthosoma (Araceae) from South America and notes on the tribe Caladieae. – Willdenowia 35: 333-344. – ISSN 0511-9618; © 2005 BGBM Berlin- Dahlem. doi:10.3372/wi.35.35216 (available via http://dx.doi.org/) Two new species of Xanthosoma sect. Acontias, X. mariae and X. latestigmatum, are described and il- lustrated. They have pilose, pedate leaf blades as have in Xanthosoma only X. plowmanii and X. pottii, and their pollen grains are released as monads, unlike in all other Xanthosoma species, which, as far as studied, release the pollen in tetrads. X. mariae is an evergreen plant mainly distinguished by its dark green velvety lustrous leaf blades with numerous leaflets and tuber-like swellings at the junction of petiole and blade; the gynoecium is of the Acontias type and the ovary is pilose in the lower part. X. latestigmatum is seasonally dormant and has medium green leaf blades with numerous leaflets and no tuber-like swellings; the gynoecium is of the Caladium type (with a very broad stigma) and completely glabrous. The relationship of the genera Caladium and Xanthosoma is discussed, C. paradoxum is transferred to Xanthosoma and the new combination X. paradoxum validated, and a key to the genera of the tribe Caladieae given. Introduction Two new species of Xanthosoma Schott cultivated in recent years in the Botanischer Garten München are described here. X. mariae has been collected only once in Peru by Mary Sizemore. -
Studies on the Flowers and Stems of Two Cocoyam Varieties
s Chemis ct try u d & o r R P e s Ogukwe et al., Nat Prod Chem Res 2017, 5:3 l e a r a r u t c h a DOI: 10.4172/2329-6836.1000263 N Natural Products Chemistry & Research ISSN: 2329-6836 Research Article Open Access Studies on the Flowers and Stems of Two Cocoyam Varieties: Xanthosoma sagittifolium and Colocasia esculenta Ogukwe CE*, Amaechi PC and Enenebeaku CK Department of Chemistry, Federal University of Technology, PMB 1526, Owerri, Imo State, Nigeria Abstract Qualitative and quantitative phytochemical composition of the flowers and stem sap ofXanthosoma sagittifolium and Colocasia esculenta were evaluated using standard methods. The result showed that the flowers contain saponins (6.61% and 5.50% respectively for the two species). Alkaloids of 6.22 and 9.80% respectively were also obtained from the result. Other Phytoconstituents like flavonoids, glycosides, phenols, steroids, and tannins were also evaluated. The proximate analysis revealed that the flowers contain high protein content (37.87% and 22.56% respectively), high moisture content and crude fat. Colocasia esculenta showed high percentage of total carbohydrate. The flowers of the two species of Cocoyam can therefore serve as spices and source of protein in local meals. Keywords: Flowers; Xanthosoma esculenta; Colocasia esculenta; used in preparing local soups and dishes. This was used to improve Nutrients; Spices the quality and the nutritional value of the meal thereby making it palatable. Thus, this dried flower of cocoyam was used in place of Introduction modern day synthetic spices or seasoning. This research work has Cocoyam is a common name for more than one tropical root and therefore been designed to evaluate the probable nutrients of the vegetable crop belonging to the Arum family (Aroids). -
Giant Swamp Taro, a Little-Known Asian-Pacific Food Crop Donald L
36 TROPICAL ROOT CROPS SYMPOSIUM Martin, F. W., Jones, A., and Ruberte, R. M. A improvement of yams, Dioscorea rotundata. wild Ipomoea species closely related to the Nature, 254, 1975, 134-135. sweet potato. Ec. Bot. 28, 1974,287-292. Sastrapradja, S. Inventory, evaluation and mainte Mauny, R. Notes historiques autour des princi nance of the genetic stocks at Bogor. Trop. pales plantes cultiVl!es d'Afrique occidentale. Root and Tuber Crops Tomorrow, 2, 1970, Bull. Inst. Franc. Afrique Noir 15, 1953, 684- 87-89. 730. Sauer, C. O. Agricultural origins and dispersals. Mukerjee, I., and Khoshoo, T. N. V. Genetic The American Geogr. Society, New York, 1952. evolutionary studies in starch yielding Canna Sharma, A. K., and de Deepesh, N. Polyploidy in edulis. Gen. Iber. 23, 1971,35-42. Dioscorea. Genetica, 28, 1956, 112-120. Nishiyama. I. Evolution and domestication of the Simmonds, N. W. Potatoes, Solanum tuberosum sweet potato. Bot. Mag. Tokyo, 84, 1971, 377- (Solanaceae). In Simmonds, N. W., ed., Evolu 387. tion of crop plants. Longmans, London, 279- 283, 1976. Nishiyama, I., Miyazaki, T., and Sakamoto, S. Stutervant, W. C. History and ethnography of Evolutionary autoploidy in the sweetpotato some West Indian starches. In Ucko, J. J., and (Ipomea batatas (L). Lam.) and its preogenitors. Dimsley, G. W., eds., The domestication of Euphytica 24, 1975, 197-208. plants and animals. Duckworth, London, 177- Plucknett, D. L. Edible aroids, A locasia, Colo 199, 1969. casia, Cyrtosperma, Xanthosoma (Araceae). In Subramanyan, K. N., Kishore, H., and Misra, P. Simmonds, N. W., ed., Evolution of crop plants. Hybridization of haploids of potato in the plains London, 10-12, 1976. -
Diseases of Edible Aroids in India and Their Management
Diseases of Edible Aroids in India and Aroids: Plants belonging to the family Araceae their Management Among cultivable tropical tuber crops, the following are commercially cultivated edible aroids in India: 1. Amorphophalus paeoniifolius 2. Colocasia (C.esculenta var.esculenta and C.esculenta R.S.Misra var.antiquorum): Dasheen and Eddoe types Central Tuber Crops Research Institute Trivandrum (India) 3. Xanthosoma (Tannia) 4. Alocasia Amorphophallus tubers Amorphophallus mosaic disease and crop 1 Amorphophallus Mosaic Disease Collar rot of Amorphophallus Primary spread is through planting material. Secondary spread of the disease is through insect vectors, Myzus persicae Sulz., Aphis gossypii Glover, A. craccivora Koch. and Pentalonia nigronervosa coq. Disease symptoms include mosaic mottling of leaves and distortion of leaf lamina. Corms produced by the mottled plants are much smaller than those without mottled leaves. Management: Use of virus free planting material, spraying of systemic insecticides to prevent secondary spread Leaf blight caused by Phytophthora colocasiae Storage diseases in Amorphophallus 2 Management of Amorphophallus Diseases Major taro types in India •Use of healthy planting material without any apparent rotting symptoms •Treatment of the whole/cut tubers with cow-dung slurry mixed with Trichoderma before planting •Application of Trichoderma enriched compost in pits/field •Application of neem-cake @ 250g/pit •One foliar spray with Mancozeb (0.2%) and fenithrion (0.05%) at 60 and 90 DAP Taro Cultivation Field view -
Taro Systematik Unterklasse: Froschlöffelähnliche (Alismatidae
Taro Taro (Colocasia esculenta) Systematik Unterklasse: Froschlöffelähnliche (Alismatidae) Ordnung: Froschlöffelartige (Alismatales) Familie: Aronstabgewächse (Araceae) Unterfamilie: Aroideae Gattung: Colocasia Art: Taro Wissenschaftlicher Name Colocasia esculenta (L.) Schott Traditioneller Taroanbau auf Terrassen aus Lavagestein auf der Insel Kauaʻi Taro (Colocasia esculenta) ist eine Nutzpflanze aus der Familie der Aronstabgewächse (Araceae), die seit mehr als 2000 Jahren als Nahrungspflanze kultiviert wird. Ein anderer Name für Taro ist Wasserbrotwurzel. In alten Nachschlagewerken, wie z. B. Pierer's Universal-Lexikon findet sich für die Pflanze auch die Bezeichnung Tarro. Genutzt werden vorwiegend die stärkehaltigen Rhizome der Pflanze. Sie werden wie Kartoffeln gekocht. In den Anbauländern werden auch die Blätter und Blattstiele als Gemüse gegessen. Sie enthalten viel Mineralien, Vitamin A, B und C. Taro wird heute weltweit in feuchten, tropischen und subtropischen Klimazonen angebaut. Für den Export wird er in Ägypten, Costa Rica, der Karibik, Brasilien und Indien angepflanzt. In Hawaii ist die dort kalo[1] genannte Pflanze eine der wichtigsten traditionellen Nutzpflanzen. Aus den Rhizomen wird poi, eine Paste, hergestellt. Die Aborigines in Australien nutzen diese Pflanze um daraus Busch-Brot zu backen, indem sie aus dem Rhizom Mehl herstellten. Siehe auch [Bearbeiten] Sumpfpflanzen Wasserpflanzen Weblinks [Bearbeiten] Rhizome der Taro Commons: Taro – Album mit Bildern, Videos und Audiodateien Taro – eine Nahrungs- und eine Giftpflanze Beschreibung und Verwendungsmöglichkeit Einzelnachweise [Bearbeiten] 1. ↑ taro, kalo in Hawaiian Dictionaries Von „http://de.wikipedia.org/wiki/Taro― Kategorien: Aronstabgewächse | Nutzpflanze | Blattgemüse | Wurzelgemüse Taro From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the plant. For other uses, see Taro (disambiguation). It has been suggested that this article or section be merged with Colocasia esculenta. -
Elaboration and Evaluation of Typical Puerto Rican Dishes Prepared with Mixtures of Plantain, Cassava and Tanier Flours 1
Elaboration and Evaluation of Typical Puerto Rican Dishes Prepared with Mixtures of Plantain, Cassava and Tanier Flours 1 Isabel B. de Calo ni and Jose R. Cruz-Cay2 ABSTRACT Mixtures of flours from plantain (Musa acuminata x balbisiana AAB), cas sava (Manihot escutenta Crantz) and tanier (Xanthosoma spp) were prepared for the elaboration of typical Puerto Rican dishes. The proportion of flours blended were the following- 50:25:25, 60:20:20, 75:15:10 and 75:10:15 of plantain, cassava, and tanier, respectively. Plantain flour was always used as the main flour because of the commercial importance of this crop on the Island. The blends were prepared with 454 g of combined flours mixed with 1250 g boiling water, 11.5 g of salt and 36.0 g of annatto seed in oil (achiote). "Pasteles" and "alcapurrias" (a boiled meat pie and turnovers, respectively), were prepared and found acceptable by a trained taste panel. No significant difference in general acceptability was observed among the samples prepared with the mixtures of flours when fresh and after 3 months frozen storage. INTRODUCT ION Plantain (Musa acuminata X balbisiana AAB), cassava (Manihot es culenta Crantz) and tanier (X anthosoma spp) are starchy crops commonly used in tropical countries such as Puerto Rico. Plantain production ranks third in importance among ail food crops (3). Gonzalez Villafane (4) concluded that as a result of the adoption of modern technology recom mended by the Agricultural Experiment Station farmers can increase their yields greatly. To deal with problems of overproduction during the summer, it is necessary to process new products from plantains. -
In Vivo Screening of Salinity Tolerance in Giant Swamp Taro (Cyrtosperma Merkusii)
CSIRO PUBLISHING The South Pacific Journal of Natural and Applied Sciences, 32, 33-36, 2014 www.publish.csiro.au/journals/spjnas 10.1071/SP14005 In vivo screening of salinity tolerance in Giant Swamp Taro (Cyrtosperma merkusii) Shiwangni Rao1, Mary Taylor2 and Anjeela Jokhan1 1Faculty of Science, Technology & Environment, The University of the South Pacific, Suva, Fiji. 2Centre for Pacific Crops & Trees, Secretariat of the Pacific Community, Suva, Fiji. Abstract Giant Swamp Taro (Cyrtosperma merkusii) is a staple food crop in the Pacific, especially in the low lying atoll islands such as Tuvalu and Kiribati. This is owing to its ability to survive under poor soil conditions and harsh environments. However, as a result of the effects of climate change such as sea water inundation and intrusion into the fresh ground water lens, this crop is now under threat. To address this issue an adaption approach was taken whereby, Cyrtosperma merkusii was screened in vivo for salt tolerance. The epistemology followed random selection of two cultivars Ikaraoi and Katutu. These two cultivars were subjected to 0% (0 parts per trillion), 0.5% (5 ppt), 1% (10 ppt), 1.5% (15 ppt) and 2% (20 ppt) of salt in Yates’s advance seedling common potting mix. Both cultivars were able to tolerate salinity levels up-to 5ppt which is significantly more than the salt tolerance in glycophytes of 2.83 ppt. This research provides an insight into the variation of salt tolerance that may exist in C.merkusii gene pool, which can be used to adapt to natural disasters and buffer its impacts.