Wavelet Operators and Multiplicative Observation Models

Total Page:16

File Type:pdf, Size:1020Kb

Wavelet Operators and Multiplicative Observation Models Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series Abdourrahmane Atto, Emmanuel Trouvé, Jean-Marie Nicolas, Thu Trang Le To cite this version: Abdourrahmane Atto, Emmanuel Trouvé, Jean-Marie Nicolas, Thu Trang Le. Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series. 2016. hal-00950823v3 HAL Id: hal-00950823 https://hal.archives-ouvertes.fr/hal-00950823v3 Preprint submitted on 26 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series Abdourrahmane M. Atto1;∗, Emmanuel Trouve1, Jean-Marie Nicolas2, Thu-Trang Le^1 Abstract|This paper first provides statistical prop- I. Introduction - Motivation erties of wavelet operators when the observation model IGHLY resolved data such as Synthetic Aperture can be seen as the product of a deterministic piece- Radar (SAR) image time series issued from new wise regular function (signal) and a stationary random H field (noise). This multiplicative observation model is generation sensors show minute details. Indeed, the evo- analyzed in two standard frameworks by considering lution of SAR imaging systems is such that in less than 2 either (1) a direct wavelet transform of the model decades: or (2) a log-transform of the model prior to wavelet • high resolution sensors can achieve metric resolution, decomposition. The paper shows that, in Framework providing richer spatial information than the deca- (1), wavelet coefficients of the time series are affected by metric data issued from ERS or ENVISAT missions. intricate correlation structures which affect the signal singularities. Framework (2) is shown to be associated • the earth coverage has increased: recent satellites such with a multiplicative (or geometric) wavelet transform as TerraSAR-X and Sentinel-1A repeat their cycle in and the multiplicative interactions between wavelets a dozen of days. and the model highlight both sparsity of signal changes The increase of those spatial and temporal resolutions near singularities (dominant coefficients) and decorre- makes information extraction tricky from highly resolved lation of speckle wavelet coefficients. The paper then SAR image time series. This compels us re-considering derives that, for time series of synthetic aperture radar data, geometric wavelets represent a more intuitive and data features and representations in order to simplify relevant framework for the analysis of smooth earth data processing. fields observed in the presence of speckle. From this The paper presents a parsimonious framework for analysis, the paper proposes a fast-and-concise geomet- the analysis of huge data associated with multiplica- ric wavelet based method for joint change detection and tive type interactions. These data are observed in many regularization of synthetic aperture radar image time situations, for instance when acquiring signals from series. In this method, geometric wavelet details are radar/sonar/ultrasonic waves [1]/[2]/[3],[4], when analyz- first computed with respect to the temporal axis in or- ing seasonality from meteorology data [5] or when focus- der to derive generalized-ratio change-images from the time series. The changes are then enhanced and speckle ing on proportionality in economy data [6] and political is attenuated by using spatial bloc sigmoid shrinkage. sciences [7]. We focus speci cally on SAR systems, a Finally, a regularized time series is reconstructed from challenging imagery domain with huge amount of data the sigmoid shrunken change-images. An application a ected by multiplicative type interactions. of this method highlights the relevancy of the method From the literature, analysis of SAR image time se- for change detection and regularization of SENTINEL- ries has been mainly performed on short-length image 1A dual-polarimetric image time series over Chamonix- sequences. This is the consequence of SAR data cost (very Mont-Blanc test site. high), long satellite revisit time and short satellite lifetime, Index Terms|Wavelets ; Geometric convolution ;Syn- among other issues. Literature concerns both theoretical thetic Aperture Radar ; Image Time Series Analysis. and application guided methods for: 1 LISTIC, EA 3703, UniversiteSavoie Mont Blanc - Universite identifying appropriate statistics/similarity measures Grenoble Alpes, France • 2 LTCI, CNRS UMR 5141, Telecom ParisTech, 46 rue Barrault, [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], etc.; 75013 Paris, France • detecting and analyzing speci c features, for instance ∗ [email protected] urban areas expansion [8], [18], [19], glaciers dynamics ||||||||{ The work was supported by PHOENIX ANR-15-CE23-0012 grant [13], [20], [21], snow cover mapping [22], sea clutter of the French National Agency of Research. analysis [23], forest mapping [24], earthquake mon- 2 itoring [8], sea ice motion analysis [25], coastline propose a joint ltering and change detection of high detection [26], soil erosion [27], etc.; resolution SAR image time series. Section VI concludes • regularizing SAR data for speckle reduction and fea- the work. ture enhancement [19], [24], [26], [28], [29]. Most of these methods yield computationally greedy algo- II. Statistical properties of additive wavelet rithms because they have been built for the sole sake of transforms on multiplicative observation models performance over short-length image sequences. A. Problem formulation For long-time sequences such as those expected with the A multiplicative observation model involving future Sentinel constellation, a direct application of these strictly positive interactions of a piecewise regular methods is not an option: this direct application may be deterministic function f and a random process X can be unthinkable due to computational cost and unnecessary written as: for performance/robustness. Indeed, dense/long temporal y = fX = f + f(X - 1): (1) sampling results in redundant information on the time axis so that a purely temporal analysis may be sucient for In the model given by Eq. (1), function f is observed in a monitoring of most large scale earth structures. multiplicative signal-independent-noise X or, equivalently, The issue raised by new generation SAR sensors is thus in an additive signal-dependent-noise f(X-1). We assume that denotes a stationary sequence of revisiting these methods with the sake of adapting them X = (X[k])k2Z to long and dense temporal image samples. Among the positive (strictly) real random variables. references provided above, we consider hereafter wavelet The (standard) wavelet transform operates on Eq. (1) in based approaches derived in [8], [13] for change detection a way such that (linearity with respect to `+' operation) and in [29],[30] for image regularization. Wy = Wf + Wf(X - 1): (|) For change detection, [8] computes a log-ratio change measure and applies a wavelet transform to this log-ratio Question: assuming sparsity of W on f, what are the measure in order to emphasize di erent levels of changes. statistical properties of the noisy observation Wy? In contrast, [13] computes the wavelet transform of images In a noisy environment, the useful sparsity is strongly prior to change detection by using probabilistic pixel linked to the noise properties since noise a ects the non- features. zero coecients, and thus a ects the quality of the approx- For image regularization, [29] and [30] propose wavelet imation that can be obtained by considering those non- shrinkages by using: 1) a parametric Bayesian approach zero coecients. Noise being Wf(X - 1) in model (|), [29] and 2) a non-parametric sigmoid based approach [30]. the issue is then the statistical properties of this quantity. The wavelet transform applies on the spatial axes for both The following rst recalls basics on wavelet transforms parametric and non-parametric methods, so as to be more (Section II-B). Then Section II-C provides the statistical robust to speckle. Despite the somewhat di erent strategy, properties of wavelet coecients of the noise involved in parametric and non-parametric approaches can be shown transform (|). equivalent up to a probabilistic prior speci cation. The present paper revisit [8], [13], [29] and [30] for deriv- B. Basics on wavelet based transforms ing a joint and intuitive framework for change detection In the following, we are interested in multi-scale de- and regularization. The main contributions provided by composition schemes involving, up to a normalization con- the paper are enumerated through the following paper stant, some paraunitary lters (H0; H1) associated with a organization. Section II provides statistical properties of wavelet decomposition, see [31], among other references. standard (additive) wavelet transforms on a multiplicative A one-level wavelet decomposition involves splitting observation model. It highlights the non-stationarities
Recommended publications
  • Comparison of Harmonic, Geometric and Arithmetic Means for Change Detection in SAR Time Series Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas
    Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas To cite this version: Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas. Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series. EUSAR. 9th European Conference on Synthetic Aperture Radar, 2012., Apr 2012, Germany. hal-00737524 HAL Id: hal-00737524 https://hal.archives-ouvertes.fr/hal-00737524 Submitted on 2 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EUSAR 2012 Comparison of Harmonic, Geometric and Arithmetic Means for Change Detection in SAR Time Series Guillaume Quin CEA, DAM, DIF, F-91297 Arpajon, France Béatrice Pinel-Puysségur CEA, DAM, DIF, F-91297 Arpajon, France Jean-Marie Nicolas Telecom ParisTech, CNRS LTCI, 75634 Paris Cedex 13, France Abstract The amplitude distribution in a SAR image can present a heavy tail. Indeed, very high–valued outliers can be observed. In this paper, we propose the usage of the Harmonic, Geometric and Arithmetic temporal means for amplitude statistical studies along time. In general, the arithmetic mean is used to compute the mean amplitude of time series.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Gibbs Sampling and Expectation Maximization Methods for Estimation of Censored Values from Correlated Multivariate Distributions A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial ful…llment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) in the Department of Mathematical Sciences of the McMicken College of Arts and Sciences May 2008 by Tina D. Hunter B.S. Industrial and Systems Engineering The Ohio State University, Columbus, Ohio, 1984 M.S. Aerospace Engineering University of Cincinnati, Cincinnati, Ohio, 1989 M.S. Statistics University of Cincinnati, Cincinnati, Ohio, 2003 Committee Chair: Dr. Siva Sivaganesan Abstract Statisticians are often called upon to analyze censored data. Environmental and toxicological data is often left-censored due to reporting practices for mea- surements that are below a statistically de…ned detection limit. Although there is an abundance of literature on univariate methods for analyzing this type of data, a great need still exists for multivariate methods that take into account possible correlation amongst variables. Two methods are developed here for that purpose. One is a Markov Chain Monte Carlo method that uses a Gibbs sampler to es- timate censored data values as well as distributional and regression parameters. The second is an expectation maximization (EM) algorithm that solves for the distributional parameters that maximize the complete likelihood function in the presence of censored data.
    [Show full text]
  • Incorporating a Geometric Mean Formula Into The
    Calculating the CPI Incorporating a geometric mean formula into the CPI Beginning in January 1999, a new geometric mean formula will replace the current Laspeyres formula in calculating most basic components of the Consumer Price Index; the new formula will better account for the economic substitution behavior of consumers 2 Kenneth V. Dalton, his article describes an important improve- bias” in the CPI. This upward bias was a techni- John S. Greenlees, ment in the calculation of the Consumer cal problem that tied the weight of a CPI sample and TPrice Index (CPI). The Bureau of Labor Sta- item to its expected price change. The flaw was Kenneth J. Stewart tistics plans to use a new geometric mean for- effectively eliminated by changes to the CPI mula for calculating most of the basic compo- sample rotation and substitution procedures and nents of the Consumer Price Index for all Urban to the functional form used to calculate changes Consumers (CPI-U) and the Consumer Price In- in the cost of shelter for homeowners. In 1997, a dex for Urban Wage Earners and Clerical Work- new approach to the measurement of consumer ers (CPI-W). This change will become effective prices for hospital services was introduced.3 Pric- with data for January 1999.1 ing procedures were revised, from pricing indi- The geometric mean formula will be used in vidual items (such as a unit of blood or a hospi- index categories that make up approximately 61 tal inpatient day) to pricing the combined sets of percent of total consumer spending represented goods and services provided on selected patient by the CPI-U.
    [Show full text]
  • “Mean”? a Review of Interpreting and Calculating Different Types of Means and Standard Deviations
    pharmaceutics Review What Does It “Mean”? A Review of Interpreting and Calculating Different Types of Means and Standard Deviations Marilyn N. Martinez 1,* and Mary J. Bartholomew 2 1 Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US FDA, Rockville, MD 20855, USA 2 Office of Surveillance and Compliance, Center for Veterinary Medicine, US FDA, Rockville, MD 20855, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-3-402-0635 Academic Editors: Arlene McDowell and Neal Davies Received: 17 January 2017; Accepted: 5 April 2017; Published: 13 April 2017 Abstract: Typically, investigations are conducted with the goal of generating inferences about a population (humans or animal). Since it is not feasible to evaluate the entire population, the study is conducted using a randomly selected subset of that population. With the goal of using the results generated from that sample to provide inferences about the true population, it is important to consider the properties of the population distribution and how well they are represented by the sample (the subset of values). Consistent with that study objective, it is necessary to identify and use the most appropriate set of summary statistics to describe the study results. Inherent in that choice is the need to identify the specific question being asked and the assumptions associated with the data analysis. The estimate of a “mean” value is an example of a summary statistic that is sometimes reported without adequate consideration as to its implications or the underlying assumptions associated with the data being evaluated. When ignoring these critical considerations, the method of calculating the variance may be inconsistent with the type of mean being reported.
    [Show full text]
  • Expectation and Functions of Random Variables
    POL 571: Expectation and Functions of Random Variables Kosuke Imai Department of Politics, Princeton University March 10, 2006 1 Expectation and Independence To gain further insights about the behavior of random variables, we first consider their expectation, which is also called mean value or expected value. The definition of expectation follows our intuition. Definition 1 Let X be a random variable and g be any function. 1. If X is discrete, then the expectation of g(X) is defined as, then X E[g(X)] = g(x)f(x), x∈X where f is the probability mass function of X and X is the support of X. 2. If X is continuous, then the expectation of g(X) is defined as, Z ∞ E[g(X)] = g(x)f(x) dx, −∞ where f is the probability density function of X. If E(X) = −∞ or E(X) = ∞ (i.e., E(|X|) = ∞), then we say the expectation E(X) does not exist. One sometimes write EX to emphasize that the expectation is taken with respect to a particular random variable X. For a continuous random variable, the expectation is sometimes written as, Z x E[g(X)] = g(x) d F (x). −∞ where F (x) is the distribution function of X. The expectation operator has inherits its properties from those of summation and integral. In particular, the following theorem shows that expectation preserves the inequality and is a linear operator. Theorem 1 (Expectation) Let X and Y be random variables with finite expectations. 1. If g(x) ≥ h(x) for all x ∈ R, then E[g(X)] ≥ E[h(X)].
    [Show full text]
  • Notes on Calculating Computer Performance
    Notes on Calculating Computer Performance Bruce Jacob and Trevor Mudge Advanced Computer Architecture Lab EECS Department, University of Michigan {blj,tnm}@umich.edu Abstract This report explains what it means to characterize the performance of a computer, and which methods are appro- priate and inappropriate for the task. The most widely used metric is the performance on the SPEC benchmark suite of programs; currently, the results of running the SPEC benchmark suite are compiled into a single number using the geometric mean. The primary reason for using the geometric mean is that it preserves values across normalization, but unfortunately, it does not preserve total run time, which is probably the figure of greatest interest when performances are being compared. Cycles per Instruction (CPI) is another widely used metric, but this method is invalid, even if comparing machines with identical clock speeds. Comparing CPI values to judge performance falls prey to the same prob- lems as averaging normalized values. In general, normalized values must not be averaged and instead of the geometric mean, either the harmonic or the arithmetic mean is the appropriate method for averaging a set running times. The arithmetic mean should be used to average times, and the harmonic mean should be used to average rates (1/time). A number of published SPECmarks are recomputed using these means to demonstrate the effect of choosing a favorable algorithm. 1.0 Performance and the Use of Means We want to summarize the performance of a computer; the easiest way uses a single number that can be compared against the numbers of other machines.
    [Show full text]
  • E5df876f5e0f28178c70af790e47
    Journal of Applied Pharmaceutical Science Vol. 8(07), pp 001-009, July, 2018 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2018.8701 ISSN 2231-3354 Application of Chemometrics for the simultaneous estimation of stigmasterol and β-sitosterol in Manasamitra Vatakam-an ayurvedic herbomineral formulation using HPLC-PDA method Srikalyani Vemuri1, Mohan Kumar Ramasamy1, Pandiyan Rajakanu1, Rajappan Chandra Satish Kumar2, Ilango Kalliappan1,3* 1Division of Analytical Chemistry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattanku- lathur-603 203, Kancheepuram (Dt), Tamil Nadu, India. 2Clinical Trial and Research Unit (Metabolic Ward), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Tech- nology, Kattankulathur-603 203, Kancheepuram (Dt), Tamil Nadu, India. 3Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur-603 203, Kancheepuram (Dt), Tamil Nadu, India. ARTICLE INFO ABSTRACT Article history: A new research method has been developed to approach multiresponse optimization for simultaneously optimizing Received on: 08/05/2018 a large number of experimental factors. LC Chromatogram was optimized using Phenomenex RP C18 column (250 x Accepted on: 15/06/2018 4.6 mm; 5 µm); mobile phase was surged at isocratic mode with a flow of 1.0 mL/min using methanol and acetonitrile Available online: 30/07/2018 (95:5% v/v) at the detection max of 208 nm with the retention time of 16.3 and 18.1 min for Stigmasterol and β-Sitosterol respectively. Amount of Stigmasterol and β-Sitosterol was quantified and found to be 51.0 and 56.3 µg/ mg respectively.
    [Show full text]
  • Geometric Mean
    Project AMP Dr. Antonio Quesada – Director, Project AMP Exploring Geometric Mean Lesson Summary: The students will explore the Geometric Mean through the use of Cabrii II software or TI – 92 Calculators and inquiry based activities. Keywords: Geometric Mean, Ratios NCTM Standards: 1. Analyze characteristics and properties of two-dimensional geometric shapes and develop mathematical arguments about geometric relationships (p.310). 2. Apply appropriate techniques, tools, and formulas to determine measurements (p.322). Learning Objectives: 1. Students will be able to construct a right triangle with an altitude drawn from the right angle. 2. Students will be able to use the geometric mean to find missing measures for parts of a right triangle. Materials Needed: 1. Cabri II Geometry Software 2. Pencil, Paper 3. Lab Handout Procedures/Review: 1. Attention Grabber: Begin by asking the students, “What are some ways we can find missing lengths of a right triangle?” (The students may already know how to apply the Pythagorean Theorem, or the formulas for special right triangles, or maybe even how to use trigonometric ratios). The answer you will be showing them is how to use the geometric mean. 2. Students can be grouped in teams of two or, if enough computers are available, they may work individually. 3. Assessment will be based on the students’ completion of the lab worksheet. 4. A review of ratios and proportions may be necessary prior to instruction. Project AMP Dr. Antonio Quesada – Director, Project AMP Exploring Geometric Mean Team Members: ____________________ ____________________ File Name: ____________________ Lab Goal: To analyze the relationship between different sides and segments of right triangles.
    [Show full text]
  • Better Than Average: Calculating Geometric Means Using SAS Kimberly Roenfeldt Henry M
    Paper 56-2018 Better than Average: Calculating Geometric Means Using SAS Kimberly Roenfeldt Henry M. Jackson Foundation for the Advancement of Military Medicine ABSTRACT Geometric means are a robust and precise way to visualize the central tendency of a data set, particularly when examining skewed data or comparing ratios. Measures of central tendency are predominantly presented as arithmetic means or medians that are relatively simple to calculate and interpret, but may be inaccurate in representing data that are not strictly normal. Geometric means represent the best of both worlds, providing estimates that take into account all the observations in a data set without being influenced by the extremes. They can be applied by SAS® programmers working in multiple industries including business, finance, health care, and research. Examples are varied and include examining compounded interest rates or returns on investments, assessing population changes in longitudinal data, or investigating lognormal data such lab assay results, biological concentrations, or decay rates. Fortunately, there are multiple methods in SAS that can be used to calculate geometric means including the GEOMEAN() function, the geomean keyword in PROC SURVEYMEANS, as well as manual data manipulations such as log transformation combined with PROC MEANS and exponentiation. This paper will explain the utility of geometric means and provide examples for using SAS to calculate geometric means and their measures of variability for your data. INTRODUCTION What is a geometric mean? Geometric means are a type of “average”, or measure of central tendency in a distribution of data points, in the same group as the median, mode, or arithmetic mean.
    [Show full text]
  • Superlets: Time-Frequency Super-Resolution Using Wavelet Sets
    bioRxiv preprint doi: https://doi.org/10.1101/583732; this version posted September 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Superlets: time-frequency super-resolution using wavelet sets Vasile V. Moca1, Adriana Nagy-Dăbâcan1, Harald Bârzan1,2, Raul C. Murean1,* 1Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Pta. Timotei Cipariu 9/20, 400191 Cluj-Napoca, Romania 2Technical University of Cluj-Napoca, Basis of Electronics Department, Str. G. Baritiu 26-28, 400027 Cluj-Napoca, Romania * Correspondence to: Dr. Raul C. Mureşan Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Pta. Timotei Cipariu 9/20, 400191 Cluj-Napoca, Romania Tel: +40364730730 Fax: +4036470731 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/583732; this version posted September 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Time-frequency analysis is ubiquitous in many fields of science. Due to the Heisenberg-Gabor uncertainty principle, a single measurement cannot estimate precisely the location of a finite oscillation in both time and frequency. Classical spectral estimators, like the short-time Fourier transform (STFT) or the continuous-wavelet transform (CWT) optimize either temporal or frequency resolution, or find a tradeoff that is suboptimal in both dimensions.
    [Show full text]
  • A Geometric Mean-Based DEMATEL Model for Evaluating the Critical Challenges of Spare Parts Planning 121
    A Geometric Mean-based DEMATEL Model for Evaluating the Critical Challenges of Spare Parts Planning 121 A Geometric Mean-based DEMATEL Model for Evaluating the Critical Challenges of Spare Parts Planning Sung-Shun Weng1, Kai-Ying Chen2, Chih-Yuan Li2 1 Department of Information and Finance Management, National Taipei University of Technology, Taiwan 2 Department of Industrial Engineering and Management, National Taipei University of Technology, Taiwan [email protected], [email protected], [email protected]* Abstract meet service-level requirements is the main challenge of SPP. Other researchers, including the present We present a method for evaluating the critical authors, contend that both factors are challenges in SPP. challenges of spare parts planning (SPP) to help planners The distributed nature of the spare parts, relatively develop appropriate SPP strategies. The purpose of this large number of stock keeping units, varying demand study is to propose a framework that clarifies key factors patterns, and lead time variation are various factors that shaping the understanding of critical challenges of SPP. increase the complexity of SPP optimization [3]. Through a literature review, 16 critical challenges of the The present study investigates the probable SPP criteria of planning are identified. Field study data existence of a geometric mean-based decision making are acquired through questionnaires given to logistics trial and evaluation laboratory (DEMATEL) model for managers at a well-known computer company. After the evaluating the critical challenges of SPP. Our data are analyzed through principal component analysis structured method can provide valuable information to (PCA), the geometric mean is calculated, and we then evaluate the relationships among the critical challenges evaluate these critical challenges of the SPP criteria using of SPP, which is why we explore this topic using an the decision making trial and evaluation laboratory objective and systematic analysis.
    [Show full text]
  • The Precision of the Arithmetic Mean, Geometric Mean And
    1 The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach1 Mike Thelwall, Statistical Cybermetrics Research Group, School of Mathematics and Computer Science, University of Wolverhampton, Wulfruna Street, Wolverhampton, UK. When comparing the citation impact of nations, departments or other groups of researchers within individual fields, three approaches have been proposed: arithmetic means, geometric means, and percentage in the top X%. This article compares the precision of these statistics using 97 trillion experimentally simulated citation counts from 6875 sets of different parameters (although all having the same scale parameter) based upon the discretised lognormal distribution with limits from 1000 repetitions for each parameter set. The results show that the geometric mean is the most precise, closely followed by the percentage of a country’s articles in the top 50% most cited articles for a field, year and document type. Thus the geometric mean citation count is recommended for future citation-based comparisons between nations. The percentage of a country’s articles in the top 1% most cited is a particularly imprecise indicator and is not recommended for international comparisons based on individual fields. Moreover, whereas standard confidence interval formulae for the geometric mean appear to be accurate, confidence interval formulae are less accurate and consistent for percentile indicators. These recommendations assume that the scale parameters of the samples are the same but the choice of indicator is complex and partly conceptual if they are not. Keywords: scientometrics; citation analysis; research evaluation; geometric mean; percentile indicators; MNCS 1. Introduction The European Union and some countries and regions produce periodic reports that compare their scientific performance with the world average or with appropriate comparators (EC, 2007; Elsevier, 2013; NIFU, 2014; NISTEP, 2014; NSF, 2014; Salmi, 2015).
    [Show full text]