A Comparison of Techniques for Assessing Central Tendency in Left
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of Harmonic, Geometric and Arithmetic Means for Change Detection in SAR Time Series Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas
Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas To cite this version: Guillaume Quin, Béatrice Pinel-Puysségur, Jean-Marie Nicolas. Comparison of Harmonic, Geometric and Arithmetic means for change detection in SAR time series. EUSAR. 9th European Conference on Synthetic Aperture Radar, 2012., Apr 2012, Germany. hal-00737524 HAL Id: hal-00737524 https://hal.archives-ouvertes.fr/hal-00737524 Submitted on 2 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EUSAR 2012 Comparison of Harmonic, Geometric and Arithmetic Means for Change Detection in SAR Time Series Guillaume Quin CEA, DAM, DIF, F-91297 Arpajon, France Béatrice Pinel-Puysségur CEA, DAM, DIF, F-91297 Arpajon, France Jean-Marie Nicolas Telecom ParisTech, CNRS LTCI, 75634 Paris Cedex 13, France Abstract The amplitude distribution in a SAR image can present a heavy tail. Indeed, very high–valued outliers can be observed. In this paper, we propose the usage of the Harmonic, Geometric and Arithmetic temporal means for amplitude statistical studies along time. In general, the arithmetic mean is used to compute the mean amplitude of time series. -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Gibbs Sampling and Expectation Maximization Methods for Estimation of Censored Values from Correlated Multivariate Distributions A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial ful…llment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) in the Department of Mathematical Sciences of the McMicken College of Arts and Sciences May 2008 by Tina D. Hunter B.S. Industrial and Systems Engineering The Ohio State University, Columbus, Ohio, 1984 M.S. Aerospace Engineering University of Cincinnati, Cincinnati, Ohio, 1989 M.S. Statistics University of Cincinnati, Cincinnati, Ohio, 2003 Committee Chair: Dr. Siva Sivaganesan Abstract Statisticians are often called upon to analyze censored data. Environmental and toxicological data is often left-censored due to reporting practices for mea- surements that are below a statistically de…ned detection limit. Although there is an abundance of literature on univariate methods for analyzing this type of data, a great need still exists for multivariate methods that take into account possible correlation amongst variables. Two methods are developed here for that purpose. One is a Markov Chain Monte Carlo method that uses a Gibbs sampler to es- timate censored data values as well as distributional and regression parameters. The second is an expectation maximization (EM) algorithm that solves for the distributional parameters that maximize the complete likelihood function in the presence of censored data. -
Chapter 4: Central Tendency and Dispersion
Central Tendency and Dispersion 4 In this chapter, you can learn • how the values of the cases on a single variable can be summarized using measures of central tendency and measures of dispersion; • how the central tendency can be described using statistics such as the mode, median, and mean; • how the dispersion of scores on a variable can be described using statistics such as a percent distribution, minimum, maximum, range, and standard deviation along with a few others; and • how a variable’s level of measurement determines what measures of central tendency and dispersion to use. Schooling, Politics, and Life After Death Once again, we will use some questions about 1980 GSS young adults as opportunities to explain and demonstrate the statistics introduced in the chapter: • Among the 1980 GSS young adults, are there both believers and nonbelievers in a life after death? Which is the more common view? • On a seven-attribute political party allegiance variable anchored at one end by “strong Democrat” and at the other by “strong Republican,” what was the most Democratic attribute used by any of the 1980 GSS young adults? The most Republican attribute? If we put all 1980 95 96 PART II :: DESCRIPTIVE STATISTICS GSS young adults in order from the strongest Democrat to the strongest Republican, what is the political party affiliation of the person in the middle? • What was the average number of years of schooling completed at the time of the survey by 1980 GSS young adults? Were most of these twentysomethings pretty close to the average on -
Central Tendency, Dispersion, Correlation and Regression Analysis Case Study for MBA Program
Business Statistic Central Tendency, Dispersion, Correlation and Regression Analysis Case study for MBA program CHUOP Theot Therith 12/29/2010 Business Statistic SOLUTION 1. CENTRAL TENDENCY - The different measures of Central Tendency are: (1). Arithmetic Mean (AM) (2). Median (3). Mode (4). Geometric Mean (GM) (5). Harmonic Mean (HM) - The uses of different measures of Central Tendency are as following: Depends upon three considerations: 1. The concept of a typical value required by the problem. 2. The type of data available. 3. The special characteristics of the averages under consideration. • If it is required to get an average based on all values, the arithmetic mean or geometric mean or harmonic mean should be preferable over median or mode. • In case middle value is wanted, the median is the only choice. • To determine the most common value, mode is the appropriate one. • If the data contain extreme values, the use of arithmetic mean should be avoided. • In case of averaging ratios and percentages, the geometric mean and in case of averaging the rates, the harmonic mean should be preferred. • The frequency distributions in open with open-end classes prohibit the use of arithmetic mean or geometric mean or harmonic mean. Prepared by: CHUOP Theot Therith 1 Business Statistic • If the distribution is bell-shaped and symmetrical or flat-topped one with few extreme values, the arithmetic mean is the best choice, because it is less affected by sampling fluctuations. • If the distribution is sharply peaked, i.e., the data cluster markedly at the middle or if there are abnormally small or large values, the median has smaller sampling fluctuations than the arithmetic mean. -
Incorporating a Geometric Mean Formula Into The
Calculating the CPI Incorporating a geometric mean formula into the CPI Beginning in January 1999, a new geometric mean formula will replace the current Laspeyres formula in calculating most basic components of the Consumer Price Index; the new formula will better account for the economic substitution behavior of consumers 2 Kenneth V. Dalton, his article describes an important improve- bias” in the CPI. This upward bias was a techni- John S. Greenlees, ment in the calculation of the Consumer cal problem that tied the weight of a CPI sample and TPrice Index (CPI). The Bureau of Labor Sta- item to its expected price change. The flaw was Kenneth J. Stewart tistics plans to use a new geometric mean for- effectively eliminated by changes to the CPI mula for calculating most of the basic compo- sample rotation and substitution procedures and nents of the Consumer Price Index for all Urban to the functional form used to calculate changes Consumers (CPI-U) and the Consumer Price In- in the cost of shelter for homeowners. In 1997, a dex for Urban Wage Earners and Clerical Work- new approach to the measurement of consumer ers (CPI-W). This change will become effective prices for hospital services was introduced.3 Pric- with data for January 1999.1 ing procedures were revised, from pricing indi- The geometric mean formula will be used in vidual items (such as a unit of blood or a hospi- index categories that make up approximately 61 tal inpatient day) to pricing the combined sets of percent of total consumer spending represented goods and services provided on selected patient by the CPI-U. -
Wavelet Operators and Multiplicative Observation Models
Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series Abdourrahmane Atto, Emmanuel Trouvé, Jean-Marie Nicolas, Thu Trang Le To cite this version: Abdourrahmane Atto, Emmanuel Trouvé, Jean-Marie Nicolas, Thu Trang Le. Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series. 2016. hal-00950823v3 HAL Id: hal-00950823 https://hal.archives-ouvertes.fr/hal-00950823v3 Preprint submitted on 26 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series Abdourrahmane M. Atto1;∗, Emmanuel Trouve1, Jean-Marie Nicolas2, Thu-Trang Le^1 Abstract|This paper first provides statistical prop- I. Introduction - Motivation erties of wavelet operators when the observation model IGHLY resolved data such as Synthetic Aperture can be seen as the product of a deterministic piece- Radar (SAR) image time series issued from new wise regular function (signal) and a stationary random H field (noise). This multiplicative observation model is generation sensors show minute details. Indeed, the evo- analyzed in two standard frameworks by considering lution of SAR imaging systems is such that in less than 2 either (1) a direct wavelet transform of the model decades: or (2) a log-transform of the model prior to wavelet • high resolution sensors can achieve metric resolution, decomposition. -
Measures of Central Tendency for Censored Wage Data
MEASURES OF CENTRAL TENDENCY FOR CENSORED WAGE DATA Sandra West, Diem-Tran Kratzke, and Shail Butani, Bureau of Labor Statistics Sandra West, 2 Massachusetts Ave. N.E. Washington, D.C. 20212 Key Words: Mean, Median, Pareto Distribution medians can lead to misleading results. This paper tested the linear interpolation method to estimate the median. I. INTRODUCTION First, the interval that contains the median was determined, The research for this paper began in connection with the and then linear interpolation is applied. The occupational need to measure the central tendency of hourly wage data minimum wage is used as the lower limit of the lower open from the Occupational Employment Statistics (OES) survey interval. If the median falls in the uppermost open interval, at the Bureau of Labor Statistics (BLS). The OES survey is all that can be said is that the median is equal to or above a Federal-State establishment survey of wage and salary the upper limit of hourly wage. workers designed to produce data on occupational B. MEANS employment for approximately 700 detailed occupations by A measure of central tendency with desirable properties is industry for the Nation, each State, and selected areas within the mean. In addition to the usual desirable properties of States. It provided employment data without any wage means, there is another nice feature that is proven by West information until recently. Wage data that are produced by (1985). It is that the percent difference between two means other Federal programs are limited in the level of is bounded relative to the percent difference between occupational, industrial, and geographic coverage. -
Redalyc.Robust Analysis of the Central Tendency, Simple and Multiple
International Journal of Psychological Research ISSN: 2011-2084 [email protected] Universidad de San Buenaventura Colombia Courvoisier, Delphine S.; Renaud, Olivier Robust analysis of the central tendency, simple and multiple regression and ANOVA: A step by step tutorial. International Journal of Psychological Research, vol. 3, núm. 1, 2010, pp. 78-87 Universidad de San Buenaventura Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=299023509005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative International Journal of Psychological Research, 2010. Vol. 3. No. 1. Courvoisier, D.S., Renaud, O., (2010). Robust analysis of the central tendency, ISSN impresa (printed) 2011-2084 simple and multiple regression and ANOVA: A step by step tutorial. International ISSN electrónica (electronic) 2011-2079 Journal of Psychological Research, 3 (1), 78-87. Robust analysis of the central tendency, simple and multiple regression and ANOVA: A step by step tutorial. Análisis robusto de la tendencia central, regresión simple y múltiple, y ANOVA: un tutorial paso a paso. Delphine S. Courvoisier and Olivier Renaud University of Geneva ABSTRACT After much exertion and care to run an experiment in social science, the analysis of data should not be ruined by an improper analysis. Often, classical methods, like the mean, the usual simple and multiple linear regressions, and the ANOVA require normality and absence of outliers, which rarely occurs in data coming from experiments. To palliate to this problem, researchers often use some ad-hoc methods like the detection and deletion of outliers. -
“Mean”? a Review of Interpreting and Calculating Different Types of Means and Standard Deviations
pharmaceutics Review What Does It “Mean”? A Review of Interpreting and Calculating Different Types of Means and Standard Deviations Marilyn N. Martinez 1,* and Mary J. Bartholomew 2 1 Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US FDA, Rockville, MD 20855, USA 2 Office of Surveillance and Compliance, Center for Veterinary Medicine, US FDA, Rockville, MD 20855, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-240-3-402-0635 Academic Editors: Arlene McDowell and Neal Davies Received: 17 January 2017; Accepted: 5 April 2017; Published: 13 April 2017 Abstract: Typically, investigations are conducted with the goal of generating inferences about a population (humans or animal). Since it is not feasible to evaluate the entire population, the study is conducted using a randomly selected subset of that population. With the goal of using the results generated from that sample to provide inferences about the true population, it is important to consider the properties of the population distribution and how well they are represented by the sample (the subset of values). Consistent with that study objective, it is necessary to identify and use the most appropriate set of summary statistics to describe the study results. Inherent in that choice is the need to identify the specific question being asked and the assumptions associated with the data analysis. The estimate of a “mean” value is an example of a summary statistic that is sometimes reported without adequate consideration as to its implications or the underlying assumptions associated with the data being evaluated. When ignoring these critical considerations, the method of calculating the variance may be inconsistent with the type of mean being reported. -
Expectation and Functions of Random Variables
POL 571: Expectation and Functions of Random Variables Kosuke Imai Department of Politics, Princeton University March 10, 2006 1 Expectation and Independence To gain further insights about the behavior of random variables, we first consider their expectation, which is also called mean value or expected value. The definition of expectation follows our intuition. Definition 1 Let X be a random variable and g be any function. 1. If X is discrete, then the expectation of g(X) is defined as, then X E[g(X)] = g(x)f(x), x∈X where f is the probability mass function of X and X is the support of X. 2. If X is continuous, then the expectation of g(X) is defined as, Z ∞ E[g(X)] = g(x)f(x) dx, −∞ where f is the probability density function of X. If E(X) = −∞ or E(X) = ∞ (i.e., E(|X|) = ∞), then we say the expectation E(X) does not exist. One sometimes write EX to emphasize that the expectation is taken with respect to a particular random variable X. For a continuous random variable, the expectation is sometimes written as, Z x E[g(X)] = g(x) d F (x). −∞ where F (x) is the distribution function of X. The expectation operator has inherits its properties from those of summation and integral. In particular, the following theorem shows that expectation preserves the inequality and is a linear operator. Theorem 1 (Expectation) Let X and Y be random variables with finite expectations. 1. If g(x) ≥ h(x) for all x ∈ R, then E[g(X)] ≥ E[h(X)]. -
Notes on Calculating Computer Performance
Notes on Calculating Computer Performance Bruce Jacob and Trevor Mudge Advanced Computer Architecture Lab EECS Department, University of Michigan {blj,tnm}@umich.edu Abstract This report explains what it means to characterize the performance of a computer, and which methods are appro- priate and inappropriate for the task. The most widely used metric is the performance on the SPEC benchmark suite of programs; currently, the results of running the SPEC benchmark suite are compiled into a single number using the geometric mean. The primary reason for using the geometric mean is that it preserves values across normalization, but unfortunately, it does not preserve total run time, which is probably the figure of greatest interest when performances are being compared. Cycles per Instruction (CPI) is another widely used metric, but this method is invalid, even if comparing machines with identical clock speeds. Comparing CPI values to judge performance falls prey to the same prob- lems as averaging normalized values. In general, normalized values must not be averaged and instead of the geometric mean, either the harmonic or the arithmetic mean is the appropriate method for averaging a set running times. The arithmetic mean should be used to average times, and the harmonic mean should be used to average rates (1/time). A number of published SPECmarks are recomputed using these means to demonstrate the effect of choosing a favorable algorithm. 1.0 Performance and the Use of Means We want to summarize the performance of a computer; the easiest way uses a single number that can be compared against the numbers of other machines. -
Robust Statistical Procedures for Testing the Equality of Central Tendency Parameters Under Skewed Distributions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@USM ROBUST STATISTICAL PROCEDURES FOR TESTING THE EQUALITY OF CENTRAL TENDENCY PARAMETERS UNDER SKEWED DISTRIBUTIONS SHARIPAH SOAAD SYED YAHAYA UNIVERSITI SAINS MALAYSIA 2005 ii ROBUST STATISTICAL PROCEDURES FOR TESTING THE EQUALITY OF CENTRAL TENDENCY PARAMETERS UNDER SKEWED DISTRIBUTIONS by SHARIPAH SOAAD SYED YAHAYA Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy May 2005 ACKNOWLEDGEMENTS Firstly, my sincere appreciations to my supervisor Associate Professor Dr. Abdul Rahman Othman without whose guidance, support, patience, and encouragement, this study could not have materialized. I am indeed deeply indebted to him. My sincere thanks also to my co-supervisor, Associate Professor Dr. Sulaiman for his encouragement and support throughout this study. I would also like to thank Universiti Utara Malaysia (UUM) for sponsoring my study at Universiti Sains Malaysia. Thanks are due to Professor H.J. Keselman for according me access to his UNIX server to run the relevant programs; Professor R.R. Wilcox and Professor R.G. Staudte for promptly responding to my queries via emails; Pn. Azizah Ahmad and Pn. Ramlah Din for patiently helping me with some of the computer programs and En. Sofwan for proof reading the chapters of this thesis. I am deeply grateful to my parents and my wonderful daughter, Nur Azzalia Kamaruzaman for their inspiration, patience, enthusiasm and effort. I would also like to thank my brothers for their constant support. Finally, my grateful recognition are due to (in alphabetical order) Azilah and Nung, Bidin and Kak Syera, Izan, Linda, Min, Shikin, Yen, Zurni and to those who had directly or indirectly lend me their friendship, moral support and endless encouragement during my study.