Plant Pathogens and Biological Control of Weeds in South Africa: a Review of Projects and Progress During the Last Decade
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safe Movement of Small Fruit Germplasm
FOOD AND AGRICULTURE ORGANIZATION INTERNATIONAL PLANT OF THE UNITED NATIONS GENETIC RESOURCES INSTITUTE FAO/IPGRI TECHNICAL GUIDELINES FOR THE SAFE MOVEMENT OF SMALL FRUIT GERMPLASM Edited by M. Diekmann, E.A. Frison and T. Putter In collaboration with the Small Fruit Virus Working Group of the International Society for Horticultural Science 2 CONTENTS Introduction 4 2.Strawberrygreenpetal 31 3. Witches-broom and multiplier Contributors 6 disease 33 Prokaryoticdiseases-bacteria 35 General Recommendations 8 1.Strawberryangular leaf spot 35 2.Strawberrybacterialwilt 36 Technical Recommendations 8 3. Marginal chlorosis of strawberry 37 A. Pollen 8 Fungal diseases 38 B. Seed 9 1. Alternaria leaf spot 38 C. In vitro material 9 2 Anthracnose 39 D. Vegetative propagules 9 3. Fusarium wilt 40 E. Disease indexing 10 4.Phytophthoracrownrot 41 F. Therapy 11 5.Strawberry black root rot 42 6. Strawberry red stele (red core) 43 Descriptions of Pests 13 7. Verticillium wilt 44 Fragaria spp. (strawberry) 13 Ribesspp.(currant,gooseberry) 45 Viruses 13 Viruses 45 1. Ilarviruses 13 1.Alfalfamosaicvirus(AMV) 45 2. Nepoviruses 14 2. Cucumber mosaic virus (CMV) 46 3. Pallidosis 15 3. Gooseberry vein banding virus 4. Strawberry crinkle virus (SCrV) 17 (GVBV) 48 5. Strawberry latent C virus (SLCV) 18 4. Nepoviruses 50 6.Strawberry mildyellow-edge 19 5.Tobacco rattlevirus(TRV) 51 7. Strawberry mottle virus (SMoV) 21 Diseasesofunknownetiology 53 8. Strawberry pseudo mild 1. Black currant yellows 53 yellow-edgevirus(SPMYEV) 22 2. Reversion of red and black currant 54 9. Strawberry vein banding 3.Wildfireof blackcurrant 56 virus (SVBV) 23 4.Yellow leaf spotofcurrant 57 Diseasesofunknownetiology 25 Prokaryotic disease 58 1. -
Pathogenesis of Gall-Rust Disease on Falcataria Moluccana in Areas Affected by Mount Merapi Eruption in Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 4, April 2020 E-ISSN: 2085-4722 Pages: 1310-1315 DOI: 10.13057/biodiv/d210406 Pathogenesis of gall-rust disease on Falcataria moluccana in areas affected by Mount Merapi eruption in Indonesia SRI RAHAYU♥, WIDIYATNO, DWI TYANINGSIH ADRIYANTI Department of Silviculture, Faculty of Forestry, Universitas Gadjah Mada. Jl. Agro No. 1, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia Tel./fax.: +62-274-550541, email: [email protected] Manuscript received: 14 December 2019. Revision accepted: 5 March 2020. Abstract. Rahayu S, Widiyatno, Adriyanti DT. 2020. Pathogenesis of gall-rust disease on Falcataria moluccana in areas affected by Mount Merapi eruption in Indonesia. Biodiversitas 21: 1310-1315. The gall rust pathogen Uromycladium falcatarium affects the fast- growing tree species Falcataria moluccana (Sengon) from seedling to mature stage producing galls on all its parts. Severe infestation causes tree mortality. There were two eruptions of the volcano at Mount Merapi, Java, Indonesia during October-November 2010 near to which Sengon is grown under community forests. This study, conducted in 2014, examined the implications of the volcanic eruptions on the incidence and severity of gall rust disease on Sengon trees growing in areas affected by the eruption. It revealed that the percentage infestation on seedlings caused by teliospores of U. falcatarium collected from areas close to Mount Merapi (3-7 km away- risky area) was significantly higher compared to those collected from trees 7.1-11 (are under alert) and 11.1-15 km (area under threat) away. The teilospores and galls collected from the ‘risky area’ also exhibited morphological variations. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
8 Galls, Witches Brooms and Fascinating Things
Number 2 March 2019 GALLS, WITCHES BROOMS AND FASCINATING THINGS …Gail Slykhuis Plant modifications are many and varied and are often discussed during an ANGAIR nature ramble or track walk. A popular misconception is that insect activity is the sole cause of these oddities. Whilst insect-forming galls are common, there are other culprits out there that are the cause of some very interesting plant growth. This article will cover several plant modifications that you may have seen on your walks around Anglesea and Aireys Inlet. Rust Galls — Golden Wattle, Acacia pycnantha Rust galls are caused by a fungus whose spores invade plant leaves and stems; fungal chemicals then stimulate the plant into forming irregularly shaped woody galls that may grow to 150mm in diameter. The light brown gall will develop a powdery surface as it produces spores, the gall then darkens with age and will often become a home for small insects and spider mites, often mistaken for the cause of the gall. Golden Wattle, Acacia pycnantha, is one of many acacia species capable of being infected by the rust gall fungus, Uromycladium tepperianum. The host provides the fungus with nutrients and as a consequence, severely infected trees will be weakened due to the reduced leaf canopy and may die. You may also have seen these rust galls on wattles with bipinnate Rust galls on Golden Wattle foliage e.g. Silver Wattle, Acacia dealbata, and Black Wattle, Acacia mearnsii, the rust fungus involved with these species being Uromycladium notabile. Witches Brooms — Large-leaf Bush-pea, Pultenaea daphnoides These wonderfully named aberrations are not uncommon in the natural environment. -
Uromycladium Acaciae, the Cause of a Sudden, Severe Disease Epidemic on Acacia Mearnsii in South Africa
Uromycladium acaciae, the cause of a sudden, severe disease Acacia mearnsii epidemic on in South Africa 1 2,3 1 4 Alistair R. McTaggart & Chanintorn Doungsa-ard & Michael J. Wingfield & Jolanda Roux Abstract A severe rust disease has caused extensive damage in 1988, from minor symptoms on the leaflets caused by its to plantation grown Acacia mearnsii trees in the KwaZulu- uredinial stage on A. mearnsii in South Africa. It has now Natal Province of South Africa since 2013. The symptoms are become a threat to plantations of A. mearnsii, with an altered characterized by leaf spots, petiole and rachis deformation, life cycle and increased disease severity. defoliation, gummosis, stunting of affected trees and die- back of seedlings. The cause of this new disease was identified Keywords Botrycephaleae . Emerging disease . Microcyclic using a combined morphological and DNA sequence ap- rust .Plantationforestry .Pucciniales .Taxonomy .Uredinales proach. Based on morphology, the rust fungus was identified as a species of Uromycladium. It formed powdery, brown telia on petioles, stems, leaves, seedpods and trunks of affected Introduction trees. The teliospores were two per pedicel and either lacked or had a collapsed sterile vesicle. Sequence data and morphol- Australian species of Acacia s. str. (Fabaceae, subfamily ogy showed that the collections from South Africa were con- Mimosoideae; from here referred to as Acacia)inSouth specific, however telia were not produced in all provinces. Africa are either considered weeds, such as A. dealbata and Uromycladium acaciae is the most suitable name for this rust A. saligna, or grown commercially for the production of tim- fungus, based on morphology and phylogenetic analyses of ber for pulp, and bark for tannins, glues and other products the internal transcribed spacer and large subunit regions of (Midgley and Turnbull 2003; Dobson and Feely 2002). -
The Acacia Gall Rust Fungus, Uromycladium Tepperianum a Fungal Pathogen of Port Jackson ( Acacia Saligna ) in South Africa
The Acacia Gall Rust Fungus, Uromycladium tepperianum A fungal pathogen of Port Jackson ( Acacia saligna ) in South Africa Alan Wood Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599 Description Uromycladium tepperianum (Sacc.) MacAlpine is a rust fungus originating from Australia where it naturally attacks Port Jackson. It causes the production of large irregularly sized galls on the leaves and stems, as well as witches’ brooms. The single-celled, brown teliospores are produced on pedicels, 3 teliospores to a pedicel. These are approximately 0.02 mm in diameter and ridged. The teliospores are produced in mass on the surface of the galls, appearing as a brown powder that is easily brushed off. Life Cycle The teliospores are spread by wind. After germinating they infect the tree by directly penetrating into epidermal cells of young phyllodes Gall of Uromycladium (“leaves”), stems and flower buds. From there they colonize the surrounding plant tissue and induce the formation of galls or witches’ tepperianum brooms. Teliospores are produced from May to about August. Germination occurs when there is freely available water on the plant surface (overnight dew or light rain), and the temperature is 10–20°C. These conditions are prevalent in spring in the Western Cape, when the plants are most actively growing and flowering. Disease Symptoms Infected Port Jackson trees are covered in conspicuous, knobly, red- brown galls, or sometimes witches’ brooms, on branches, phyllodes Three teliospores of or flowers. New galls often develop in February to March, the fungus the gall rust fungus having infected the plant at the end of the previous rainy season. -
<I>Kuehneola Warburgiana</I>
ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.207 Volume 121, pp. 207–213 July–September 2012 Kuehneola warburgiana comb. nov. (Phragmidiaceae, Pucciniales), causing witches’ brooms on Rosa bracteata Yoshitaka Ono Faculty of Education, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 Japan Correspondence to: [email protected] Abstract—Caeomatoid rust infection has been observed on Rosa bracteata plants at a single site in Ishigaki Island, Okinawa, Japan, since 1995. The fungus (not previously known in Japan) was identified as Caeoma warburgiana by its characteristic systemic infection causing witches’ brooms and its spore morphology. Uredinial and telial sori were found on the leaves of the witches’ brooms of the infected rose plants at the same site in 2009. The urediniospores were pedicellate and echinulate. The teliospores were composed of two to four linearly arranged, thin-walled cells on a short pedicel. Caeoma-type aecia, Uredo-type uredinia and pedicellate teliospores with two to four linearly arranged cells are characteristic of the genus Kuehneola. Identical telia and teliospores were found in the lectotype of C. warburgiana. Caeoma warburgiana is recombined as Kuehneola warburgiana. Key words —Asia, life cycle, nomenclature, taxonomy Introduction Rosa bracteata is an evergreen perennial shrub, native of southern regions of China, growing in mixed forests, scrub, and sandy hills at low altitudes and seashores (Wu & Raven 2003). The plants also occur at coastal areas of Taiwan and adjacent islands of south Japan (Satake et al. 1989, Liu et al. 2000, Wu & Raven 2003). -
Color Plates
Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper. -
Predictability of Pathogen Host Range in Biological Control of Weeds
Predictability of pathogen host range in biological control of weeds Jane Barton* *Contractor to Landcare Research New Zealand Why aren’t pathogens used more widely for weed control? . Worldwide, pathogens have only been introduced to 11 countries (Arg, Aus, Chile, China, Fiji, India, NZ, PNG, SAf, Tahiti, USA) . No evidence of pathogen damage in the field that was not predicted by HR testing. Barton, J. (2004) Biological Control 31: 99-122. Methods . List all pathogens ever used for biocontrol of weeds . Find info. on pre-release host range testing . Find info. on their behaviour in the field after release (‘pers. comm.’) . Compare the two to determine how accurate pre-release predictions have been to-date Results (2010) . 37 projects worldwide (each project = intro. of 1 pathogen to 1 country for 1 weed complex) . 28 spp. of pathogens (all fungi) released . > 28 spp. of weeds targeted . Pathogens from 16 countries . Most pathogens have established, spread, and had at least some impact on their target Results (2010): Non-target damage in the field . Out of those 37 projects: . 2 projects with non-target damage in out-door field plots . 2 projects with predicted non- target damage in the field . 33 projects with no non-target damage in the field at all! Target weed: Musk thistle . Carduus nutans ssp. leiophyllus (= C. thoermeri) . Major weed of pastures & rangelands in the USA (competes with pasture) . From Europe & Asia . Control with herbicide not economically feasible Image from http://www.issg.org/database/species/ Puccinia carduorum . Rust fungus (Uredinales: Pucciniaceae) . Attacks C. thoermeri (and many other Carduus spp.) . -
Occurrence of Gymnoconia Peckiana in Turkey
Pak. J. Bot., 36(4): 897-899, 2004. OCCURRENCE OF GYMNOCONIA PECKIANA IN TURKEY ELŞAD HÜSEYIN*, FARUK SELÇUK AND MAKBULE KARAHAN Department of Biology, Kırşehir Arts and Sciences Faculty, Gazi University, 40100 Kırşehir, Turkey Abstract Gymnoconia peckiana (Howe) Trott., a rust fungus belonging to the family Pucciniaceae collected during a field trip around Trabzon in 1999 is reported as a new record for Turkey. Introduction Higher plants of Turkey have been well studied but the mycobiota has not been extensively investigated and most of the studies deal with macromycetes generally Agaricoid fungi. Reports on micromycetes, including rust fungi, has been made (Bremer et al., 1947, 1952; Petrak, 1953). Data concerning the Uredinales are fragmentary which has been published as diseases of cultivated plants (Karel, 1958) and on mycoflora of Turkey (Göbelez, 1963). As a result of these and other studies (Henderson, 1957, 1959, 1961, 1964; Tamer et al., 1998; Kırbağ et al., 2001; Hüseyin & Kırbağ, 2003), about 290 species of rust fungi are recorded from Turkey. The present reports discribes the occurrence Gymnoconia peckiana from Turkey. Materials and Methods The plant material was collected from different localites of Trabzon province during July-August 1999. The host specimens were prepared according to established herbarium techniques. Microscopical examinations of fungi were performend using Nikon research microscopes. The specimens were identified after reference to related literature (Gäumann, 1959; Azbukina, 1974, 1975; Cummins & Hiratsuka, 2003; Bremer et al., 1952; Göbelez, 1963; Öner et al., 1974). The host specimen was identified using Flora of Turkey (Davis, 1965-1985). The collection is deposited at Gazi University, Kırşehir Sciences and Arts Faculty Herbarium in Kırşehir Province (KRFEF) of Turkey. -
Rust Diseases of Brambles
University of Kentucky College of Agriculture, Food & Environment Extension Plant Pathology College of Agriculture, Food and Environment Cooperative Extension Service Plant Pathology Fact Sheet PPFS-FR-S-06 Rust Diseases of Brambles Nicole Gauthier Jessica Sayre Plant Pathology Horticulture Extension Specialist Extension Agent Importance Cane & Leaf Rust The three most important rust diseases occurring Symptoms & Signs on brambles in Kentucky are cane and leaf rust, late The first evidence of cane and leaf rust is the presence rust, and orange rust. The most destructive of these of elongated, bright yellow pustules appearing on diseases is orange rust, which is ultimately lethal to infected floricanes (year-old canes that will produce plants. Once infected, entire plants must be removed fruit) in spring (Figure 1). Pustules rupture through and destroyed. In contrast, cane and leaf rust, along the bark and result in brittle canes that break easily. with late rust, are not lethal to plants and can be Small yellow pustules may also appear on undersides managed using cultural practices and fungicides. of leaves (Figure 2) and less frequently on fruit Distinguishing between these rust diseases is critical (Figure 3). Fungal signs (pustules of powdery yellow for proper management. rust spores) may be evident in mid-April and extend through summer. Premature defoliation, which results in stress and loss of plant vigor, can occur if 1a leaf infections are severe. Hosts Blackberry is susceptible; raspberry infections are rare. 1a Figure 1. (A) Cane and leaf rust pustules erupt through the bark of floricanes in spring. (B) Close-up of cane and leaf rust pustule containing abundant powdery yellow spores. -
BÖĞÜRTLEN PASI Kuehneola Uredinis (Link) Arth.’ E KARŞI KLASİK VE ORGANİK İLAÇLAMA PROGRAMLARININ ETKİNLİĞİ ÜZERİNDE ÇALIŞMALAR
BÖĞÜRTLEN PASI Kuehneola uredinis (Link) Arth.’ E KARŞI KLASİK VE ORGANİK İLAÇLAMA PROGRAMLARININ ETKİNLİĞİ ÜZERİNDE ÇALIŞMALAR Ayşegül KARSLI T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BÖĞÜRTLEN PASI Kuehneola uredinis (Link) Arth.’ E KARŞI KLASİK VE ORGANİK İLAÇLAMA PROGRAMLARININ ETKİNLİĞİ ÜZERİNDE ÇALIŞMALAR Ayşegül KARSLI Doç. Dr. Himmet TEZCAN (Danışman) YÜKSEK LİSANS TEZİ BİTKİ KORUMA ANABİLİMDALI Bursa – 2016 Her Hakkı Saklıdır Bilimsel Etik Bildirim Sayfası U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında; - tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi, - görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu, - başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu, - atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi, - kullanılan verilerde herhangi bir tahrifat yapmadığımı, - ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı beyan ederim. ..../..../2016 İmza Ayşegül KARSLI 4 ÖZET Yüksek Lisans Tezi BÖĞÜRTLEN PASI Kuehneola uredinis (Link) Arth.’ E KARŞI KLASİK VE ORGANİK İLAÇLAMA PROGRAMLARININ ETKİNLİĞİ ÜZERİNDE ÇALIŞMALAR Ayşegül KARSLI Uludağ Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Anabilim Dalı Danışman: Doç. Dr. Himmet TEZCAN İnsan sağlığı üzerine olumlu etkileri olduğunu ortaya koyan çalışmalar ve ayrıca taşıdığı tat ve aroması nedeniyle son yıllarda hem sofralık olarak tüketim hem de gıda sanayi alanında Böğürtlen (Rubus fruticocus L.) meyvesine olan talep artmaktadır. Ülkemizde de ürüne artan taleple birlikte böğürtlen üretimine eğilimin arttığı görülmektedir. Ülkemizde böğürtlenin yaklaşık % 84’ü Bursa ilinde üretilmektedir. Böğürtlen üretiminde fungal hastalıklar verimi etkileyen en önemli faktör olmakla birlikte ülkemizde bu hastalıkların mücadelesinde ruhsatlı bir fungisit bulunmamaktadır.