Amino Acid Chlorides: a Journey from Instability and Racemization Toward Broader Utility in Organic Synthesis Including Peptides and Their Mimetics

Total Page:16

File Type:pdf, Size:1020Kb

Amino Acid Chlorides: a Journey from Instability and Racemization Toward Broader Utility in Organic Synthesis Including Peptides and Their Mimetics Tetrahedron 71 (2015) 2785e2832 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Tetrahedron report number 1078 Amino acid chlorides: a journey from instability and racemization toward broader utility in organic synthesis including peptides and their mimetics Girish Prabhu a, Basavaprabhu a, N. Narendra b, T. M. Vishwanatha a, Vommina V. Sureshbabu a,* a Room No. 109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B.R. Ambedkar Veedhi, Bangalore University, Bangalore 560 001, India b Department of Chemistry, University College of Science, Tumkur University, B.H. Road, Tumkur 572 103, India article info Article history: Received 13 October 2014 Received in revised form 5 March 2015 Accepted 6 March 2015 Available online 18 March 2015 Dedicated to Professor Padmanabhan Balaram, Indian Institute of Science, Bangalore on the occasion of his superannuation Keywords: Amino acid chlorides Sterically hindered coupling Peptides Peptidomimetics Heterocycles Contents 1. Introduction . ............................................... 2787 2. Chlorinating reagents . ............................................... 2788 3. Preparation and properties . ............................................... 2789 3.1. Urethane protected amino acid chlorides . ......................2789 3.1.1. Cbz- and Boc-chemistry . ......................2789 3.1.2. Fmoc chemistry . ......................2790 3.1.3. Other urethane protecting groups . ......................2790 3.2. Non-urethane protected amino acid chlorides . ......................2791 3.3. Azido acid chlorides . ......................2793 3.4. b- and g-Amino acid chlorides . ......................2793 4. Coupling . ............................................... 2793 4.1. Solution-phase synthesis . ......................2794 4.1.1. SchotteneBaumann conditions . ......................2794 4.1.1.1. Fmoc chemistry . ......................2794 4.1.1.1.1. Continuous solution-phase synthesis . ......................2795 4.1.1.2. Other protecting groups . ......................2795 4.1.2. Non SchotteneBaumann conditions . ......................2798 * Corresponding author. E-mail addresses: [email protected], [email protected], [email protected] (V.V. Sureshbabu). http://dx.doi.org/10.1016/j.tet.2015.03.026 0040-4020/Ó 2015 Elsevier Ltd. All rights reserved. 2786 G. Prabhu et al. / Tetrahedron 71 (2015) 2785e2832 4.1.2.1. Use of co-coupling agents . ......................................2798 4.1.2.2. Metal/metal salts mediated coupling . ..........................2799 4.1.2.2.1. Coupling mediated by commercial zinc dust . ..........................2799 4.1.2.2.2. Microwaves enhanced coupling in the presence of zinc dust . ....................2799 4.1.3. Coupling involving Cbz- and Boc-chemistry . ..........................2800 4.1.4. Coupling involving other protecting groups . ..........................2802 4.1.4.1. Peoc chemistry . .. ......................................2802 4.1.4.2. Tosyl chemistry . ......................................2802 4.1.4.3. Phthaloyl chemistry . ......................................2803 4.2. Solid-phase peptide synthesis . ......................................2803 5. Assembly of sterically hindered peptides . ................... 2804 5.1. Coupling mediated by AgCN . ......................................2804 5.1.1. Cyclic hexapeptides: oxytocin antagonists . ....................................2804 5.2. Coupling of acid chlorides to N-silylated amino esters . ..........................2806 5.3. Assembly of peptides containing N-methyl amino acids . ..........................2806 5.4. Coupling involving Na-benzyl/alkyl-Ca,a-dimethylamino acid ethyl esters . ..........................2807 5.5. Cyclosporins and omphalotin A . ......................................2807 5.6. Petriellin A . .................................................2809 6. Applications . ....................2810 6.1. Amino acid derivatives . ......................................2810 6.1.1. Weinreb amides . ......................................2811 6.1.2. Hydroxamic acids . ......................................2811 6.1.3. 2-CF3-1,3-Oxazolidine (Tfm-pseudoproline) containing dipeptides . ..........................2811 6.1.4. 3,4-Dihydro-4-oxo-1,2,3-benzotriazine-3-yl (Dhbt) and pentafluorophenyl (Pfp) esters . ...............2811 6.1.5. Hydroxyurea and hydantoin derivatives . ......................................2811 6.1.6. Aryl amides . ......................................2811 6.1.7. Diazoketones and homologation to b-amino acids . ..........................2813 6.1.8. FriedeleCrafts reaction: chiral aryl-a-amino ketones . .. ..........................2813 6.1.9. Reaction with Grignard reagent and other organometallic reagents . ..........................2815 6.1.10. Kinetic resolution of heterocyclic amines . ....................................2815 6.2. Heterocycles . .................................................2816 6.2.1. N-Carboxyanhydrides (NCA) and urethane protected N-carboxyanhydrides (UNCAs) . ...................2816 6.2.2. Fused 1,2,5-triazepine-1,5-diones . ......................................2816 6.2.3. Asparagine derived tetrahydropyrimidinones . ..........................2817 6.2.4. a-Methyltryptophan analogs . ......................................2817 6.2.5. Demethoxyfumitremorgin C analogs . ......................................2817 6.2.6. Fumiquinazoline alkaloids . ......................................2817 6.2.7. PicteteSpengler reaction: b-carbolines . .....................................2817 6.2.8. Benzofused bicyclic azepinones . ......................................2818 6.2.9. Substituted hydroxyproline based 2,5-diketopiperazines . ..........................2818 6.2.10. Azetidine-2-ones . ..
Recommended publications
  • Amide Bond Formation and Peptide Coupling
    Tetrahedron 61 (2005) 10827–10852 Tetrahedron report number 740 Amide bond formation and peptide coupling Christian A. G. N. Montalbetti* and Virginie Falque Evotec, 112 Milton Park, Abingdon OX14 4SD, UK Received 2 August 2005 Available online 19 September 2005 Contents 1. Introduction ................................................................. 10828 2. Amide bond formation: methods and strategies ....................................... 10828 2.1. Acyl halides . .......................................................... 10829 2.1.1. Acyl chlorides .................................................... 10829 2.1.1.1. Acyl chloride formation ...................................... 10829 2.1.1.2. Coupling reactions with acyl chlorides ........................... 10831 2.1.1.3. Limitations of acyl chlorides .................................. 10831 2.1.2. Acyl fluorides .................................................... 10831 2.1.3. Acyl bromides .................................................... 10832 2.2. Acyl azides . .......................................................... 10832 2.3. Acylimidazoles using CDI ................................................. 10833 2.4. Anhydrides . .......................................................... 10834 2.4.1. Symmetric anhydrides .............................................. 10834 2.4.2. Mixed anhydrides .................................................. 10834 2.4.2.1. Mixed carboxylic anhydrides .................................. 10834 2.4.2.2. Mixed carbonic anhydrides ...................................
    [Show full text]
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • Nomenclature of Carboxylic Acid Derivatives Acid Halide Substituents
    Gentilucci, Carboxylic Acid Derivatives Nomenclature of Carboxylic Acid Derivatives Gentilucci, Carboxylic Acid Derivatives Acid halides 1. Alkane + the suffix -oyl followed by the halogen. 2. Select the longest continuous carbon chain, containing the acyl group. 3. Number the carbon chain, beginning at the end nearest to the acyl group. 4. Number the substituents and write the name, listing substituents alphabetically. Acid halide substituents attached to rings are named using the suffix - carbonyl. 1 Gentilucci, Carboxylic Acid Derivatives Anhydrides 1. Symmetrical: replace the ending "acid" with "anhydride ". 2. Asymmetrical: select the longest continuous carbon chain, containing the carboxylic acid group, and derive the parent name by replacing the -e ending with -oic anhydride . 3. Number the carbon chain, beginning at the end nearest to the acyl group. 4. Number the substituents and write the name, listing substituents alphabetically. Gentilucci, Carboxylic Acid Derivatives Amides are named by replacing the ending -oic acid with -amide . 1. Select the longest continuous carbon chain, containing the acyl group, and derive the parent name by replacing the -e ending with -amide . 2. Number the carbon chain, beginning at the end nearest to the acyl group. 3. Number the substituents and write the name, listing substituents alphabetically. 4. If the nitrogen atom is further substituted, the substituents are preceded by N- to indicate that they are attached to the nitrogen. Acid halide substituents attached to rings are named using the suffix - carboxamide. 2 Gentilucci, Carboxylic Acid Derivatives Carboxylate esters 1. Select the longest continuous carbon chain containing the acyl group, and derive the parent name by replacing the -e ending with –oate .
    [Show full text]
  • Carbonyl Compounds
    Carbonyl Compounds What are Carbonyl Compounds? Carbonyl compounds are compounds that contain the C=O (carbonyl) group. Preparation of Aldehydes: 1. Preparation from Acid Chloride (Rosenmund Reduction): This reaction was named after Karl Wilhelm Rosenmund, who first reported it in 1918. The reaction is a hydrogenation process in which an acyl chloride is selectively reduced to an aldehyde. The reaction, a hydrogenolysis, is catalysed by palladium on barium sulfate, which is sometimes called the Rosenmund catalyst. 2. Preparation from Nitriles: This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R- CN) using SnCl2 and HCl and quenching the resulting iminium salt ([R- + − CH=NH2] Cl ) with water (H2O). During the synthesis, ammonium chloride is also produced. The reaction is known as Stephen Aldehyde synthesis. Dr. Sumi Ganguly Page 1 3. Preparation from Grignard Reagent: When Grignard Reagent is reacted with HCN followed by hydrolysis aldehyde is produced. Preparation of Ketones: 1. Preparation from Acid Chloride (Friedel-Crafts Acylation): Acid chlorides when reacted with benzene in presence of anhydrous AlCl3, aromatic ketone are produced. However, only aromatic ketones can be prepared by following this method. In order to prepare both aromatic and aliphatic ketones acid chlorides is reacted with lithium dialkylcuprate (Gilman Reagnt). Dr. Sumi Ganguly Page 2 The lithium dialkyl cuprate is produced by the reaction of two equivalents of the organolithium reagent with copper (I) iodide. Example: 3. Preparation from Nitriles and Grignard Reagents: When Grignard Reagent is reacted with RCN followed by hydrolysis aldehyde is produced. Dr. Sumi Ganguly Page 3 Physical Characteristic of Carbonyl Compounds: 1) The boiling point of carbonyl compounds is higher than the alkanes with similar Mr.
    [Show full text]
  • Indium Promoted-Convenient Method for Acylation of Alc이iols with Acyl Chlorides
    Communications to the Editor Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2 155 Indium Promoted-Convenient Method for Acylation of Alc이iols with Acyl Chlorides Dae Hyan Cho, Joong Gon Kim,f and Doo Ok Jang* Department of Chemistry, Yonsei University, Wonju 220-710, Korea ‘Biotechnology Division, Hanwha Chemical R & D Center, Daejeon 305-345, Korea Received November 9, 2002 Key Words : Indium, Alcohol, Acylation, Acyl chloride Even though various reagents for coupling of alcohols tions for the acylation of alcohols with acyl chlorides in the with carboxylic acids and transesterification of esters have presence of indium. The results are summarized in Table 1. been developed,1 there is still a great demand for a process Reaction of 2 (1 equiv) with 1 (1 equiv) in the presence of by using acyl chlorides for the acylation of alcohols in the indium (1 equiv) in CH3CN at room temperature produced case of substrates having steric hindrance or low reactivity. the corresponding ester in only 21% yield and the starting The acylation of alcohols with acyl chlorides is commonly acyl chloride and alcohol were recovered. The optimal yield carried out in the presence of tertiary amines such as 4- of the ester was attained with 3 equiv of 1 or 2 in the presence (methylamino) pyridine or 4 -pyrrolidinopyridine.2 Many of 3 equiv of indium. The solvent effect of acylation of 2 methods for the acylation of alcohols with acyl chlorides with 1 in the presence of indium was studied. The reaction have been developed using a variety of reagents.3 Most proceeded efficiently in common organic solvents such as recently, benzoylation of alcohols with lithium perchlorate DMF, Et2。,THF or CHzCh whereas non-polar solvents hase been reported.4 However, these methods have their own such as n-hexane or benzene gave poor yields of the ester.
    [Show full text]
  • FULL PAPER Enantioselective Addition of Alkynyl Ketones To
    This is the peer reviewed version of the following article: T. E. Campano, I. Iriarte, O. Olaizola, J. Etxabe, A. Mielgo, I. Ganboa, J. M. Odriozola, J. M. García, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 4390, which has been published in final form at https:// doi.org/10.1002/chem.201805542. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions FULL PAPER Enantioselective Addition of Alkynyl Ketones to Nitroolefins Assisted by Brønsted Base/H-Bonding Catalysis Teresa E. Campano,[a] Igor Iriarte,[a] Olatz Olaizola,[a] Julen Etxabe,[a] Antonia Mielgo,[a] Iñaki Ganboa,[a] José M. Odriozola,[b] Jesús M. García,[b] Mikel Oiarbide*[a] and Claudio Palomo*[a] Abstract: Various sets of enolizable alkynyl ketones (including methyl ideal atom economy and usually broad functional group ynones w ith -aryl, -alkenyl and -alkoxy groups) are able to react tolerance.[8] How ever, a general problem w ith this type of smoothly w ith nitroolefins under the assistance of bifunctional activation is the functional pKa barrier of most catalysts that Brønsted base/H-bond catalysts to provide adducts w ith two compromises their efficiency w ith less acidic carbon consecutive tertiary stereocenters in a highly diastereo- and pronucleophiles.[9] To our know ledge there is a single report on enantioselective fashion. Further transformation of the obtained asymmetric Brønsted base-catalyzed -additions of enolizable adducts into optically active acyclic and polycyclic molecules, ynones, by Peng, Wang and Shao (Scheme 1a, top).[10] Ynone including some w ith intricate carbon skeletons, is also demonstrated.
    [Show full text]
  • The Impact of Nanosciences and Biochemistry 2. Computational
    1. The Changing Landscape of Human Chemistry, Wright State University, Dayton, OH, 2 Performance – The Impact of Nanosciences United States; Department of Mechanical and and Biochemistry Materials Engineering, Wright State University, Dayton, OH, United States; 3Department of Physics, Morley O. Stone. 711th Human Performance Wing, Wright State University, Dayton, OH, United States. Air Force Research Laboratory, Wright-Patterson AFB, OH, United States. The potential application of silicene as a hydrogen storage material is studied by computational In all human endeavors, there is a desire to push the modeling using both first principles calculations and limits of human performance – operations within the classical grand canonical Monte Carlo simulations. Air Force are no exception. From aviation to ground The energetics of the adsorption of hydrogen atoms operations, traditional stressors such as fatigue are on silicene are investigated by DFT calculations. In being compounded by the need to process ever- addition, classical simulations were carried out to increasing amounts of information. This deluge of study the physisorption of molecular hydrogen in a information caused by sensor and bandwidth slit-pore model, constructed using two silicene layers, proliferation makes human-intensive operations, such and whose slit-pore size is varied by changing the as decision making, increasingly complicated. interlayer separation. Traditional approaches to alleviate this problem have relied upon increases in manpower (the 4. Interfacial Friction and Sliding in “brainpower”) to sift, prioritize, and act upon this Amorphous Carbon/Nanotube mountain of information. Increasingly, the Nanocomposites Department of Defense and the Air Force are realizing that this solution is untenable. Within the Zhenhai Xia, Jianbing Niu.
    [Show full text]
  • Part I. the Total Synthesis Of
    AN ABSTRACT OF THE THESIS OF Lester Percy Joseph Burton forthe degree of Doctor of Philosophy in Chemistry presentedon March 20, 1981. Title: Part 1 - The Total Synthesis of (±)-Cinnamodialand Related Drimane Sesquiterpenes Part 2 - Photochemical Activation ofthe Carboxyl Group Via NAcy1-2-thionothiazolidines Abstract approved: Redacted for privacy DT. James D. White Part I A total synthesis of the insect antifeedant(±)-cinnamodial ( ) and of the related drimanesesquiterpenes (±)-isodrimenin (67) and (±)-fragrolide (72)are described from the diene diester 49. Hydro- boration of 49 provided the C-6oxygenation and the trans ring junction in the form of alcohol 61. To confirm the stereoselectivity of the hydroboration, 61 was convertedto both (t)-isodrimenin (67) and (±)-fragrolide (72) in 3 steps. A diisobutylaluminum hydride reduction of 61 followed by a pyridiniumchlorochromate oxidation and treatment with lead tetraacetate yielded the dihydrodiacetoxyfuran102. The base induced elimination of acetic acid preceded theepoxidation and provided 106 which contains the desired hydroxy dialdehydefunctionality of cinnamodial in a protected form. The epoxide 106 was opened with methanol to yield the acetal 112. Reduction, hydrolysis and acetylation of 112 yielded (t)- cinnamodial in 19% overall yield. Part II - Various N- acyl- 2- thionothiazolidineswere prepared and photo- lysed in the presence of ethanol to provide the corresponding ethyl esters. The photochemical activation of the carboxyl function via these derivatives appears, for practical purposes, to be restricted tocases where a-keto hydrogen abstraction and subsequent ketene formation is favored by acyl substitution. Part 1 The Total Synthesis of (±)-Cinnamodial and Related Drimane Sesquiterpenes. Part 2 Photochemical Activation of the Carboxyl Group via N-Acy1-2-thionothiazolidines.
    [Show full text]
  • Derivatives of Carboxylic Acids
    Acylation A4 1 DERIVATIVES OF CARBOXYLIC ACIDS ACYL (ACID) CHLORIDES - RCOCl ACID ANHYDRIDES - (RCO)2O named from corresponding acid named from corresponding acid remove -ic add -yl chloride remove acid add anhydride CH3COCl ethanoyl chloride (CH3CO)2O ethanoic anhydride C6H5COCl benzene carbonyl chloride δ− δ+ O δ− CH C O 3 δ− δ+ O δ+ CH3 C δ− CH3 C δ− Cl O bonding in acyl chlorides bonding in acid anhydrides Chemical Properties • colourless liquids which fume in moist air • acyl chlorides are more reactive than anhydrides • attacked at the positive carbon centre by nucleophiles • nucleophiles include water, alcohols, ammonia and amines • undergo addition-elimination reactions Uses of Acylation Industrially Manufacture of Cellulose acetate - making fibres Aspirin (acetyl salicylic acid) - analgaesic Ethanoic anhydride is more useful • cheaper • less corrosive • less vulnerable to hydrolysis • less dangerous reaction Laboratory Used to make carboxylic acid, esters, amines, N-substituted amines Ethanoyl chloride is used as it • is more reactive • gives a cleaner reaction Q.1 Investigate how aspirin is made industrially and in the laboratory. Why are the reagents and chemicals different? What properties of Aspirin make it such a useful drug? 2 A4 Acylation ADDITION ELIMINATION REACTIONS - OVERVIEW Mechanism • species attacked by nucleophiles at the positive carbon end of the C=O bond • the nucleophile adds to the molecule • either Cl or RCOO¯ is eliminated • a proton is removed General example - with water ACID CHLORIDES H Cl + Cl H O O
    [Show full text]
  • The Reactions of N-Methylformamide and N,N-Dimethylformamide with OH and Their Cite This: Phys
    PCCP View Article Online PAPER View Journal | View Issue The reactions of N-methylformamide and N,N-dimethylformamide with OH and their Cite this: Phys. Chem. Chem. Phys., 2015, 17,7046 photo-oxidation under atmospheric conditions: experimental and theoretical studies† ab b c c Arne Joakim C. Bunkan, Jens Hetzler, Toma´ˇs Mikoviny, Armin Wisthaler, Claus J. Nielsena and Matthias Olzmann*b The reactions of OH radicals with CH3NHCHO (N-methylformamide, MF) and (CH3)2NCHO (N,N-dimethyl- formamide, DMF) have been studied by experimental and computational methods. Rate coefficients were determined as a function of temperature (T = 260–295 K) and pressure (P = 30–600 mbar) by the flash photolysis/laser-induced fluorescence technique. OH radicals were produced by laser flash photolysis of 2,4-pentanedione or tert-butyl hydroperoxide under pseudo-first order conditions in an excess of the Creative Commons Attribution 3.0 Unported Licence. corresponding amide. The rate coefficients obtained show negative temperature dependences that can À12 À1 3 À1 be parameterized as follows: kOH+MF = (1.3 Æ 0.4) Â 10 exp(3.7 kJ mol /(RT)) cm s and kOH+DMF = À13 À1 3 À1 (5.5 Æ 1.7) Â 10 exp(6.6 kJ mol /(RT)) cm s . The rate coefficient kOH+MF shows very weak positive pressure dependence whereas kOH+DMF was found to be independent of pressure. The Arrhenius equations given, within their uncertainty, are valid for the entire pressure range of our experiments. Furthermore, MF and DMF smog-chamber photo-oxidation experiments were monitored by proton- transfer-reaction time-of-flight mass spectrometry.
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • N,N-Dimethylformamide
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 31 N,N-DIMETHYLFORMAMIDE Please note that the layout and pagination of this pdf file are not identical to those of the printed CICAD First draft prepared by G. Long and M.E. Meek, Environmental Health Directorate, Health Canada, and M. Lewis, Commercial Chemicals Evaluation Branch, Environment Canada Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2001 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]